跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/07 05:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊秉文
研究生(外文):Bing-Wen Zhuang
論文名稱:高溫與淹水對酪梨葉片逆境生理指標之影響
論文名稱(外文):Effects of high temperature and waterlogging on stress physiology index of leaves in avocados (Persea americana L.)
指導教授:林書妍
指導教授(外文):Shu-Yen Lin
口試委員:陳右人陳柏安
口試委員(外文):Iou-Zen ChenPo-An Chen
口試日期:2021-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝暨景觀學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:101
中文關鍵詞:氣孔導度葉綠素螢光總酚含量11-二苯基-2-三硝基苯肼抗壞血酸過氧化酶過氧化氫酶
外文關鍵詞:stomatal conductancechlorophyll fluorescencetotal phenolic contentDPPH (11-diphenyl-2-picrylhydrazyl)APX (ascorbate peroxidase)CAT (catalase)
DOI:10.6342/NTU202103049
相關次數:
  • 被引用被引用:0
  • 點閱點閱:355
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
酪梨被認為是不耐淹水之果樹,酪梨淹水相關研究使用之品種多為墨西哥系,在臺灣尚未有相關研究,而臺灣常見品種多屬西印度系,耐逆性可能具有差異。本試驗選用‘秋可得’(‘Choquatte’)、‘厚兒’(‘Hall’)、‘黑美人’(‘Black-Beauty’)、‘紅心圓’(‘Hong-Sin-Yuan’)及‘章安’(‘Chang-Ann’)五個臺灣常見酪梨品種之實生苗及嫁接苗作為材料,以溫度與水分因子組合探討高溫淹水對酪梨生理影響。溫度設定以日夜溫35/30℃、30/25℃兩個不同高溫模擬臺灣目前夏季狀況,分別給予淹水與正常澆灌兩種水分處理,並在淹水4天及回復期4天期間,持續測定氣孔導度與葉綠素螢光參數變化,並分析葉片之總酚含量、DPPH清除率與抗氧化酵素活性,了解酪梨植株葉片在高溫淹水環境下抗氧化力變化,期望能了解不同品種對高溫淹水反應的差異,並由生理或生化含量的變化,建立適合做為酪梨淹水耐性評估的指標。以‘秋可得’、‘厚兒’之實生苗與‘黑美人’、‘紅心圓’之嫁接苗作為材料,進行品種、溫度、水分三因子分析,氣孔導度與葉綠素螢光在淹水4天與離水回復4天後皆顯著降低。淹水環境下總酚含量與DPPH清除率無顯著變化,僅35/30℃高溫處理8天後兩項參數顯著下降,丙二醛含量在高溫與淹水處理則皆無顯著差異。‘秋可得’、‘厚兒’、 ‘黑美人’、‘紅心圓’4個品種在35/30℃與30/25℃淹水環境之氣孔導度與葉綠素螢光變化,在35/30℃中,兩項參數在各品種的表現都較在30/25℃中更早下降,且溫度與淹水與否並無交感效應,推測高溫淹水下的逆境反應更為迅速,應為兩種逆境同時發生之疊加效果。比較‘黑美人’與‘紅心圓’嫁接苗的淹水反應,在35/30℃淹水環境下,兩品種在氣孔導度、葉綠素螢光、總酚含量、DPPH清除率與抗氧化酵素活性變化表現皆相近,顯示砧木對酪梨之耐逆性影響較大。‘黑美人’、‘紅心圓’、‘章安’實生苗的比較試驗中,根據氣孔導度與葉綠素螢光相關參數之表現,‘黑美人’與‘章安’相較於‘紅心圓’在35/30℃淹水環境下表現更好,兩項參數在處理期間較慢開始下降,顯示‘黑美人’與‘章安’在高溫下對於淹水反應有較佳的耐性。
Avocado is considered to be sensitive to waterlogging. Varieties belonging to Mexican race were most studied in the waterlogging research. However, more cultivars in Taiwan were West Indian race and there was no related study on the waterlogging issue. Different botanical races may show different responses to flooding conditions. In this experiment, the seedlings and grafted seedlings of avocado varieties in Taiwan, including ‘Choquatte’, ‘Hall’, ‘Black-Beauty’, ‘Hong-Sin-Yuan’and ‘Chang-Ann’, were selected as materials, and the combining factors of the high-temperature and flooding were treated to investigate the physiological performance of avocados. Two day and night temperature 35/30℃ and 30/25℃ were set to simulate summer temperature of Taiwan. Stomatal conductance and variations of chlorophyll fluorescence parameters were measured, and the total phenolic content, DPPH scavenging ratio and antioxidant enzyme activity of the leaves were analyzed to explore the avocado plant leaves under high-temperature flooding conditions were observed. Stomatal conductance and chlorophyll fluorescence decreased significantly after 4 days of flooding and 4 days of recovery period. The varience showed significantly only under 35/30℃ treatment for 8 days. However, there was no significant in total phenolic content and DPPH scavenging ratio after flooding treatment. The malondialdehyde (MDA) content showed no significicant difference under temperature and flooding combination treatments. The changes of stomatal conductance and chlorophyll fluorescence decreased earlier in 35/30℃, but there was no interaction effect between high-temperature and flooding. The more rapid stress response of high-temperature and flooding may be the superimposed effect of the two stresses occurring at the same time. In the comparative experiment of grafted seedlings of ‘Black Beauty’ and ‘Hong-Sin-Yuan’, under 35/30℃ flooding environment, the two varieties showed similar changes in stomatal conductance, chlorophyll fluorescence, total phenol content, DPPH scavenging ratio and antioxidant enzyme activity, indicating that the rootstock has a greater impact on the stress tolerance of avocado. In the comparison experiment of seedlings of ‘Black-Beauty’, ‘Hong-Sin-Yuan’, and ‘Chang-Ann’, according to the performance of stomatal conductance and chlorophyll fluorescence, ‘Black Beauty’ and ‘Chang-Ann’ perform better in 35/30℃ flooding environment compared with ‘Hong-Sin-Yuan’, and the two parameters have a late fall time, which can be used as a recommended rootstock.
致謝.....i
中文摘要 .....ii
Abstract.....iv
目錄.....vi
表目錄.....viii
圖目錄.....ix
第一章 前言.....1
第二章 前人研究.....2
一、酪梨產業現況.....2
二、淹水的風險與對環境的影響.....3
三、植物在淹水逆境下的型態變化.....4
1.通氣組織.....4
2.不定根.....5
3.基部肥大與皮孔增生.....6
4.果樹的例子.....6
四、植物在淹水逆境下的生理反應.....7
1.葉片下垂與萎凋.....7
2.生長抑制、葉片老化與提早落葉.....7
3.氣孔導度.....8
4.光合作用相關參數.....9
5.活性氧族含量.....10
6.丙二醛含量.....11
7.抗氧化酵素活性變化.....11
8.非酵素型抗氧化物含量.....12
五、酪梨淹水反應的相關研究.....12
1.生長調查.....13
2.氣孔導度與葉綠素螢光.....13
3.轉錄體分析.....14
第三章 材料與方法.....15
一、試驗材料15
1.酪梨植株與試驗流程.....15
2.試藥.....16
3.儀器.....17
二、試驗方法.....18
1.氣孔導度測量.....18
2.葉綠素螢光測量.....18
3.總酚含量分析.....18
4.DPPH自由基清除率分析.....19
5.丙二醛含量分析.....20
6.過氧化氫酶活性測定.....21
7.抗壞血酸過氧化氫酶.....22
8.蛋白質濃度分析.....23
三、統計分析.....23
第四章 結果與討論.....24
一、酪梨於高溫與淹水狀態的生理生化表現.....24
1.氣孔導度與葉綠素螢光.....24
2.總酚含量、丙二醛含量及抗氧化力.....26
3.不同品種在高溫及淹水環境時的反應表現.....28
二、‘黑美人’、‘紅心圓’及‘章安’之逆境生理指標表現.....29
1.氣孔導度與葉綠素螢光參數.....29
2.總酚含量、丙二醛含量與DPPH清除率.....32
3.抗氧化酵素之變化.....34
三、影響氣孔導度之環境因素.....36
1.光強度.....37
2.光質.....37
3.光波動.....38
第五章 總結.....39
表.....40
圖.....51
參考文獻.....83
附錄.....99
中央氣象局. 2009. 臺灣氣候變化統計報告1897-2008. 中央氣象局. 台北.
安寶貞、王姻婷、張福炘、蔡志濃、石信德. 2006. 臺灣之酪梨疫病. 臺灣農業研究 5: 13-24.
阮素芬、鄭正勇. 1986. 浸水對百香果幼株生長與型態之影響. 中國園藝 32:34-42.
周佳、李明安、許晃雄、洪志誠、盧孟明、陳正達. 2017. 臺灣氣候變遷科學報告2017—物理現象與機制.國家災害防救科技中心. 新北.
林冠宏、黃薇綺、羅筱鳳. 2012. 高溫、淹水及乾旱對甘藷葉綠素螢光之影響. 臺灣園藝 58: 315-325.
高景輝. 1994. 植物荷爾蒙生理. 華香園出版社. 臺北.
高景輝. 1997. 淹水逆境下之植物生理. p. 37-35. 刊於:廖萬正等編著. 果樹天然災害預防及復育手冊. 臺中區農業改良場. 臺中.
莊文忠. 2004. 浸水對柑橘類砧木幼株生長之影響. 臺灣大學園藝所碩士論文.台北.
張致盛、陳怡靜、張林仁. 2008. 臺灣果樹農業氣象災害與因應策略. 作物、環境與生物資訊 6: 61-71
許聖章、張靜貞. 2009. 臺灣颱風災害之影響評估—以蔬菜供需為例. 應用經濟論叢 89: 31-62.
陳宏宇、許晃雄、林李耀、陳永明、郭士筠. 2018. 臺灣氣候的過去與未來. 國家災害防救科技中心. 新北.
陸明德. 2002. 以逢機增殖多型性DNA(RAPD)標誌檢測酪梨品種之遺傳親緣性. 臺灣大學園藝所碩士論文. 台北.
農業委員會. 2021. 農業統計資料查詢. 25 May 2021. <https://agrstat.coa.gov.tw/sdweb/public/inqnuiry/IquireAdvance.aspx>.
農糧署. 2021. 酪梨良好農業規範(TGAP) 2020版. 28 Aug 2021. <https://www.afa.gov.tw/cht/index.php?code=list&ids=756>
農糧署. 2021. 農產品批發市場交易行情站. 25 May 2021. <https://amis.afa.gov.tw/main/Main.aspx>
劉敏莉. 2017. 葉綠素螢光在作物耐熱性篩選之應用. 高雄區農業改良場研究彙報 21: 1-15.
歐錫坤. 2003. 酪梨(幸福果)品種介紹. 技術服務 53: 12-17.
蕭元彰、李國譚. 2012. 土壤水分逆境對果樹生理之影響. 臺灣園藝 58: 185-197
關務署. 2021. 海關進出口統計. 25 May 2021. <https://portal.sw.nat.gov.tw/APGA/GA35>
Ahmed, S., E. Nawata, M. Hosokawa, Y. Domae, and T. Sakuratani. 2002. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Sci. 163: 117-123.
Arbona, V., M.F. Lopez-Climent, R.M. Perez-Clemente, and A. Gómez-Cadenas. 2009. Maintenance of a high photosynthetic performance is linked to flooding tolerance in citrus. Environ. Exp. Bot. 66: 135-142.
Arbona, V., Z. Hossain, M.F. Lopez-Climent, R.M. Perez-Clemente, and A. Gomez-Cadenas. 2008. Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiol. Plant 132:452-466.
Arismendi, M.J., R. Almada, P. Pimentel, A. Bastias, A. Salvatierra, P. Rojas, P. Hinrichsen, M. Pinto, A. Di Genova, and D. Travisany. 2015. Transcriptome sequencing of Prunus sp. rootstocks roots to identify candidate genes involved in the response to root hypoxia. Tree Genet. Genomes. 11: 1-16.
Armstrong, A.C. 1978. The effect of drainage treatment in cereal yield: Result from experiment on clay lands. J. Agric. Sci. 9: 229-235
Arora, A., R. Sairam, and G. Srivastava, 2002. Oxidative stress and antioxidative system in plants. Curr. Sci. 82: 1227-1238.
Asada, K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141: 391-396.
Bai, T., C. Li, F. Ma, F. Feng, and H. Shu. 2010. Responses of growth and antioxidant system to root-zone hypoxia stress in two Malus species. Plant Soil. 327: 95-105.
Bhusal, N., H.S. Kim, S.G. Han, and T.M. Yoon. 2020. Photosynthetic traits and plant–water relations of two apple cultivars grown as bi-leader trees under long-term waterlogging conditions. Environ. Exp. Bot. 176: 104-111.
Blokhina, O., E. Virolainen, and K.V. Fagerstedt. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Annu. Bot. 91: 179-194.
Bragina, T.V., N.A. Rodionova, and G.M. Grinieva. 2003. Ethylene production and activation of hydrolytic enzymes during acclimation of maize seedlings to partial flooding. Russ. J. Plant Physiol. 50: 794-798.
Carr, M.K.V. 2013. The water relations and irrigation requirements of avocado (Persea americana Mill.): a review. Exp. Agric. 49: 256-278.
Casierra-Posada, F. and J. Cutler. 2017. Photosystem II fluorescence and growth in cabbage plants (Brassica oleracea var. capitata) grown under waterlogging stress. Rev. U.D.C. Act. Div. Cient. 20: 321-328.
Chapman, J.M., J.K. Muhlemann, S.R. Gayomba, and G.K. Muday. 2019. RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses. Chem. Res. Toxicol. 32: 370-396.
Chavez-Arias, C.C., S. Gomez-Caro, and H. Restrepo-Diaz. 2019. Physiological biochemical and chlorophyll fluorescence parameters of Physalis Peruviana L. seedlings exposed to different short-term waterlogging periods and Fusarium Wilt Infection. Agronomy 9: 213.
Chen F, F. Wang, F. Wu, W. Mao, G. Zhang, and M. Zhou. Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Plant Physiol. Biochem. 48: 663-72.
Chen, C., S. Chen, R.K. Jha, L.C.C. Nali, G. Lorenzini, and L. Ma. 2020. Phenol metabolism of two cultivars of durum wheat (Triticum durum Desf.) as affected by ozone and flooding stress. J. Agron. Crop Sci. 206: 338-351.
Chen, H., Q.P. Li, Y.L. Zeng, F. Deng, and W.J. Ren. 2019. Effect of different shading materials on grain yield and quality of rice. Sci. Rep. 9: 9992.
Christianson, J.A., D.J. Llewellyn, E.S. Dennis, and I.W. Wilson. 2010. Global gene expression responses to waterlogging in roots and leaves of cotton (Gossypium hirsutum L.). Plant Cell Physiol. 51: 21-37
Chung, S., J. Takeuchi, M. Fujihara, and C. Oeurng. 2019. Flood damage assessment on rice crop in the Stung Sen River Basin of Cambodia. Paddy Water Environ. 17: 255- 263.
Clavijo-Herrera, J., E. Van Santen, and C. Gómez. 2018. Growth, water-use efficiency, stomatal conductance, and nitrogen uptake of two lettuce cultivars grown under different percentages of blue and red light. Horticulturae 4: 16.
Coutts, M.P. 1981. Effects of waterlogging on water relations of actively-growing and dormant sitka spruce seedlings. Ann. Bot. 47: 747-753.
Davies, F.S., and J.A. Flore. 1986. Flooding, gas exchange and hydraulic conductivity of highbush blueberry. Physiol. Plant. 67: 545-551.
Doupis, G., N. Kavroulakis, G. Psarras, and I.E. Papadakis. 2017. Growth photosynthetic performance and antioxidative response of ‘Hass’ and ‘Fuerte’ avocado (Persea americana Mill.) plants grown under high soil moisture. Photosynthetica 55: 655-663.
Drew, M. 1997. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Ann. Rev. Plant Physiol. Plant Mol. Biol. 48: 223-250.
Drew, M.C. 1992. Soil aeration and plant root metabolism. Soil Sci. 154: 259-268
Drew, M.C., M.B. Jackson, S.C. Giffard, and R. Campbell 1981. Inhibition by silver ions of gas space (aerenchyma) formation in adventitious roots of Zea mays L. subjected to exogenous ethylene is to oxygen dificiency. Planta 153: 217-224.
Du, X., X. Jin, X. Yang, X. Yang, X. Xiang, and Y. Zhou. 2015. Spatial-temporal pattern changes of main agriculture natural disasters in China during 1990-2011. J. Geographical Sci. 25: 387-398.
Else, M.A., D. Coupland, L. Dutton, and M.B. Jackson. 2001. Decreased root hydraulic conductivity reduces leaf water potential, initiates stomatal closure and slows leaf expansion in flooded plants of castor oil (Ricinus communis) despite diminished delivery of ABA from the roots to shoots in xylem sap. Physiol. Plant. 111: 46-54.
FAO. 2021. FAO Statistical Databases. 25 May 2021. <http://faostat.fao.org>.
Farrow, B.J., N. Taylor, and N. van den Berg. 2011. The physiological response of two tolerant Persea americana rootstocks to Phytophthora cinnamomi and flooding. VII World Avocado Congress, Cairns, Australia. September 2011, 9 pp.
Fassio, C., P.M. Gil, B. Schaffer, and M. Castro. 2011. Influence of rootstock on the response of ‘Hass’ avocado trees to flooding stress. Acta. Hort. 889: 378-383
Ferreyra, R., P. Maldonado, J. Celedón, P.M. Gil, A. Torres, and G. Sellés. 2008. Soil air content effects on the water status of avocado trees. Acta Hort. 72: 291-296.
Filippou, P., A. Chrystalla, O. Toshihiro, V.D.K. Katrien, H. Vaggelis, K. Loukas, A. Vassilis, V.B. Frank, R.F. Alisdair, and F. Vasileios. 2016. Kresoxim-methyl primes Medicago truncatula plants against abiotic stress factors via altered reactive oxygen and nitrogen species signalling leading to downstream transcriptional and metabolic readjustment, J. Exp. Bot. 67: 1259-1274.
Fletcher, R.S., T. Slimmon, C.Y. McAuley, and L.S. Kott. 2005. Heat stress reduces the accumulation of rosmarinic acid and the total antioxidant capacity in spearmint (Mentha spicata L.). J. Sci. Food Agric. 85: 2429-2436.
Fukao, T., E. Yeung, and J. Bailey-Serres, 2011. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell 23: 412-427.
Gambrell, R.P. and W.H. Patrick. 1978. Chemical and microbiologicalproperties of anaerobic soils and sediments. In: Hook, D.D. and R.M.M. Crawford. eds. Plant life in anaerobic environments. Ann Arbor, MI: Ann Arbor Science: 375-423.
Garcia-Sanchez, F., J.P. Syvertsen, V. Gimeno, P. Botia, and J.G. Perez-Perez. 2007. Responses to flooding and drought stress by two citrus rootstock seedlings with different water-use efficiency. Physiol. Plant. 130: 532-542.
Gil, P. M., B. Schaffer, S. M. Gutierrez, and C. Li. 2007. Effect of waterlogging on plant water status, leaf gas exchange and biomass of avocado. Proc. VI World Avocado Congr. p. 12-16.
Gil, P. M., C. Bonomelli, B. Schaffer, R. Ferreyra, and C. Gentina. 2012. Effect of soil water-to-air ratio on biomass and mineral nutrition of avocado trees. J. Plant Nutr. Soil Sci. 12: 609-630
Glenz, C., R. Schlaepfer, I. Iorgulescu, and K. Kienast. 2006. Flooding tolerance of central european tree and shrub species. For. Ecol. Manag. 235: 1-13.
Grineva, G.M. and T.V. Bragina. 1993. Formation of adaptations to flooding in corn. Soviet. Plant Physiol. 40: 583-587.
Havens, K. J. 1996. Plant adaptations to saturated soils and the formation of hypertrophied lenticels and adventitious roots in woody species. Wetlands Program Technical Report. Virginia Institute of Marine Science, College of William and Mary. No. 96-2.
Haworth, M., G. Marino, C. Brunetti, D. Killi, A. De Carlo, and M. Centritto. 2018. The impact of heat stress and water deficit on the photosynthetic and stomatal physiology of olive (Olea europaea L.) - A case study of the 2017 heat wave. Plants 7: 76.
He, C.J., M.C. Drew, and P.W. Morgan. 1994. Induction of enzymes associated with lysigenous aerenchyma formation in roots of Zea mays during hypoxia or nitrogen starvation. Plant Physiol. 105: 861-865.
Hejnák, V., Ö. Tatar, G.D. Atasoy, J. Martinková, A.E. Çelen, F. Hnilička, and M. Skalický. 2015. Growth and photosynthesis of upland and pima cotton: response to drought and heat stress. Plant Soil Environ. 61: 507-514.
Hoffman-Benning S. and H. Kende. 1992. On the role of abscisic acid and gibberrellin in the regulation of growth in rice. Plant Physiol. 99: 1156-1161.
Hook D.D. and J.R. Scholtens. 1978. Adaptations and flood tolerance of tree species, p. 47-128. In: Hook, D.D. and R.M.M. Crawford (eds.). Plant life in anaerobic environments. Ann Arbor Sci. press, Ann Arbor, MI.
Hook, D.D. 1984. Adaptations to flooding with fresh water. In: Kozlowski, T.T. (ed.), Flooding and plant growth. Orlando, U.S.A., Academic Press. p. 265-294.
Hossain, Z., M.F. López-Climent, V. Arbona, R.M. Pérez-Clemente, and A. Gómez-Cadenas. 2009. Modulation of the antioxidant system in citrus under waterlogging and subsequent drainage. J. Plant Physiol. 166:1391-1404.
Ieperen, W.V., A. Savvides, and D. Fanourakis. 2012. Red and blue light effects during growth on hydraulic and stomatal conductance in leaves of young cucumber plants. Acta Hort. 956: 223-230.
Incrocci, L., A. Pardossi, P. Vernieri, F. Tognoni, and G. Serra. 2000. Effects of heat stress and hypoxia on growth, water relations and ABA levels in bean (Phaseolus vulgaris L.) seedlings. Acta Hort. 516: 31-40
Irfan, M., S. Hayat, Q. Hayat, S. Afroz, and A. Ahmad. 2010. Physiological and biochemical changes in plants under waterlogging. Protoplasma 241: 3-17
Jackson, M.B. 1985 Ethylene and responses of plants to soil waterlogging and submergence. Ann. Rev. Plant Physiol. 56: 145-174.
Jackson, M.B. 1991. Regulation of water relationships in flooded plants by ABA from leaves, roots and xylem saps. In: Davies W.J., and H.G. Jones (eds.), Abscisic acid: Physiology and biochemistry. p. 217-226. Bios. Scientific, Oxford.
Jackson, M.B., S. Young, and K.C. Hall. 1988. Are roots a source of abscisic acid for the shoots of flooded pea plants? J. Exp. Bot. 39: 1631-1637.
Kapilan, R., M. Vaziri, and J.J. Zwiazek, 2018. Regulation of aquaporins in plants under stress. Biol. Res. 51:4.
Kawase, M. 1972. Effect of flooding on ethylene concentration in horticultural plants. J. Amer. Soc. Hort. Sci. 97: 584-588.
Kawase, M. 1974. Role of ethylene in induction of flooding damage in sunflower. Physiol. Plant. 31: 29-38.
Kawase, M. 1981. Effect of ethylene on aerenchyma formation. Amer. J. Bot. 68: 651-658.
Konings, H. 1982. Ethylene-promoted formation of aerenchyma in seedling roots of Zea mays L. under aerated and non-aerated conditions. Physiol. Plant. 54: 119-124.
Kozlowski, T.T. 1997. Responses of woody plants to flooding and salinity. Tree Physiol. 17(7): 490
Kreuzwieser, J. and H. Rennenberg. 2014. Molecular and physiological responses of trees to waterlogging stress. Plant Cell Environ. 37: 2245-2259.
Kundzewicz, Z. W., S. Kanae, S. I. Seneviratne, J. Handmer, N. Nicholls, P. Peduzzi, R. Mechler, L. M. Bouwer, N. Arnell, K. Mach, R. Muir-Wood, G. R. Brakenridge, W. Kron, G. Benito, Y. Honda, K. Takahashi, and B. Sherstyukov. 2014. Flood risk and climate change: global and regional perspectives. Hydrol Sci J. 59: 1-28.
Larson, K.D., B. Schaffer, and F.S. Davies. 1993. Floodwater oxygen content, ethylene production and lenticel hypertrophy in flooded mango (Mangifera indica L.) trees. J. Expt. Bot. 44: 665-671.
Li, C., J. Dong, W. Bernd, L. Yun, D. Tingbo, and C. Weixing. 2011. Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. 180: 672-678.
Li, T., J. Kromdijk, Ep Heuvelink, F.R. van Noort, E. Kaiser, and L.F.M. Marcelis. 2016. Effects of diffuse light on radiation use efficiency of two Anthurium cultivars depend on the response of stomatal conductance to dynamic light intensity. Front. Plant Sci. 7: 56.
Lomas, J. 1992. Analysis of the effect of heat stress during flowering on the yield of avocado under mediterranean climatic conditions. Agric. For. Meteorol. 59: 207-206.
Loreti, E. and G.G. Striker. 2020. Plant responses to hypoxia: Signaling and adaptation. Plants. 9(12): 1704
Mamdouh, M.N.A., M.E. Younis, O.A. El-Shihaby, and Z.M. El-Bastawisy. 2002. Kinetin regulation of growth and secondary metabolism in waterlogging and salinity treated Vigna sinensis and Zea mays. Acta Physiol. Plant. 24: 19-27.
Mancuso, S. and S. Shabala. 2010. Waterlogging signalling and tolerance in plants. Heidelberg, Germany, Springer-Verlag.
Marchioretto, L.D.R., A.D. Rossi, L.O.d Amaral, and A.M.A.d.S. Ribeiro. 2018. Tolerance of apple rootstocks to short-term waterlogging. Cienc. Rural. 48.
Mariz-Ponte, N., R.J. Mendes, S. Sario, J.M.P Ferreira de Oliveira, P. Melo, and C. Santos. 2018. Tomato plants use non-enzymatic antioxidant pathways to cope with moderate UV-A/B irradiation: A contribution to the use of UV-A/B in horticulture. J. Plant Physiol. 221: 32-42.
McKee, W.H. and M.R. McKevlin 1993. Geochemical processes and nutrient uptake by plants in hydric soils. Environ. Toxicol. Chem. 12: 2197-2207.
Menge, J.A. and L.J. Marais. 2000. Soil environmental factors and their relationship of avocado root rot. Subtropical Fruit News 8: 1-11.
Mignolet-Spruyt, L., E. Xu, N. Idänheimo, F.A. Hoeberichts, P. Mühlenbock, M. Brosché, F. Van Breusegem, and J. Kangasjärvi. 2016. Spreading the news: Subcellular and organellar reactive oxygen species production and signalling. J. Exp. Bot. 67: 3831-3844.
Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405-410.
Møller, M. 2001. Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species. Ann. Rev. Plant Physiol. Plant Mol. Biol. 52: 561-591.
Muhammad, A.A., A. Muhammad, and A. Qasim. 2010. Response of two genetically diverse wheat cultivars to salt stress at different growth stages: leaf lipid peroxidation and phenolic contents. Pak. J. Bot. 42: 559-565.
Olmo-Vega, A., F. Garcia-Sanchez, S. Simon-Grao, I. Simon, V. Lidon, M. Nieves, and J.J. Martinez-Nicolas. 2017. Physiological responses of three pomegranate cultivars under flooded conditions. Scientia Hort. 224: 171-179
Outlaw, W.H. 2003. Integration of cellular and physiological functions of guard cells. Crit. Rev. Plant Sci. 22: 503-529.
Ouzounis, T., E. Heuvelink, Y. Ji, H.J. Schouten, R.G.F. Visser, and L.F.M. Marcelis. 2016. Blue and red LED lighting effects on plant biomass, stomatal conductance, and metabolite content in nine tomato genotypes. Acta Hort. 1134: 251-258.
Pearcy, R.W., J.P. Krall, and G.F. Sassenrath-Cole. 1996. Photosynthesis in fluctuating light environments, p. 321-346. In N.R. Baker (ed.). Photosynthesis and the Environment. Springer, Dordrecht.
Peri, P.L., G. Martínez Pastur, and M.V. Lencinas. 2009. Photosynthetic response to different light intensities and water status of two main Nothofagus species of southern Patagonian forest, Argentina. J. For. Sci. 55: 101-111.
Peschke, V.M. and M.M. Sachs. 1994. Characterization and expression of anaerobically induced maize transcripts. Plant Physiol. 104: 387-394.
Pimentel, P., R. Almada, A. Salvatierra, G. Toro, M.J. Arismendi, M.T. Pino, B. Sagredo, and M. Pinto. 2014. Physiological and morphological responses of Prunus species with different degree of tolerance to long-term root hypoxia. Scientia Hort. 180: 14-23.
Ploetz, R.C. and B. Schaffer. 1988. Effect of flooding and Phytophora root rot on net gas exchange and growth of avocado. Phytopathology 79:204-208.
Ponnamperuma, F.N. 1984. Effect of flooding on soils, p. 9-45. In: T.T. Kozlowski (ed). Flooding and plant growth. San Francisco, U.S.A., Academic Press.
Radmann, E., E. Klumb, S. Deuner, and V. Bianchi. 2018. Antioxidant capacity in leaf and root tissues of Prunus spp. under flooding. J. Exp. Agric. Int. 26: 1-10.
Rao, L., S. Li, and X. Cui. 2021. Leaf morphology and chlorophyll fluorescence characteristics of mulberry seedlings under waterlogging stress. Sci Rep. 11: 13379.
Raskin, I. and H. Kende 1984. Role of gibberellin in growth response of submerged deep water rice. Plant Physiol. 76: 947-950.
Reeksting, B.J., N.A. Olivier, and N. van den Berg. 2016. Transcriptome responses of an ungrafted Phytophthora root rot tolerant avocado (Persea americana) rootstock to flooding and Phytophthora cinnamomi. BMC Plant Biol. 16: 205.
Reeksting, B.J., N.J. Taylor, and N. van den Berg. 2014. Flooding and Phytophthora cinnamomi: Effects on photosynthesis and chlorophyll fluorescence in shoots of non-grafted Persea americana (Mill.) rootstocks differing in tolerance to Phytophthora root rot. S. Afr. J. Physiother. 95: 40-53.
Ren, B., J. Zhang, S. Dong, P. Liu, and B. Zhao. 2016. Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize. PloS one. 11(9): e0161424.
Rivero, R.M., J.M. Ruiz, P.C. García, L.R. López-Lefebre, E. Sánchez, and L. Romero. 2001. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 160:315-321.
Rodriguez-Gamir, J., G. Ancillo, M.C. Gonzalez-Mas, E. Primo-Millo, D.J. Iglesias, and M.A. Forner-Giner. 2011. Root signalling and modulation of stomatal closure in flooded citrus seedlings. Plant Physiol. Biochem. 49: 636-645.
Rossi, L., M. Borghi, A. Francini, X. Lin, D.Y. Xie, and L. Sebastiani. 2016. Salt stress induces differential regulation of the phenylpropanoid pathway in Olea europaea cultivars Frantoio (salt-tolerant) and Leccino (salt-sensitive). J. Plant Physiol. 204: 8-15.
Ruban, A.V. 2015. Evolution under the sun: Optimizing light harvesting in photo-synthesis. J. Exp. Bot. 66: 7-23.
Ruperti, B., A. Botton, F. Populin, G. Eccher, M. Brilli, S. Quaggiotti, S. Trevisan, N. Cainelli, P. Guarracino, and E. Schievano. 2019. Flooding responses on grapevine: A physiological, transcriptional, and metabolic perspective. Front. Plant Sci. 10: 339.
Saab, I.N. and M.M. Sachs. 1996. A flooding-induced xyloglucan endo-transglycosylase homolog in maize is responsive to ethylenl and associated with aerechyma. Plant Physiol. 112: 385-391.
Sairam, R.K., K. Dharmar, S. Lekshmy, and V. Chinnusamy. 2011. Expression of antioxidant defense genes in mung bean (Vigna radiata L.) roots under water- logging is associated with hypoxia tolerance. Acta Physiologiae Plantarum 33: 735-744.
Salvatierra, A., G. Toro, P. Mateluna, I. Opazo, M. Ortiz, and P. Pimentel. 2020. Keep calm and survive: Adaptation strategies to energy crisis in fruit trees under root hypoxia. Plants 9: 1108.
Sánchez-Reinoso, A.D., Y. Jiménez-Pulido, J.P. Martínez-Pérez, C.S. Pinilla, and G. Fischer. 2019. Chlorophyll fluorescence and other physiological parameters as indicators of waterlogging and shadow stress in lulo (Solanum quitoense var. septentrionale) seedlings. Revista Colombiana De Ciencias Hortícolas 13: 325-335.
Sanclemente, M.A., B. Schaffer, P.M. Gil, A.I. Vargas, and F.S. Davies. 2014. Pruning after flooding hastens recovery of flood-stressed avocado (Persea americana Mill.) trees. Scientia Hort. 169: 27-35.
Sanclemente, M.A., B. Schaffer, P.M. Gil, F.S. Davies, and J.H. Crane. 2013. Leaf removal before flooding influences recovery of avocado (Persea americana Mill.) trees from flooding stress. Scientia Hort. 150:154-163.
Sasidharan, R. and L.A. Voesenek. 2015. Ethylene-mediated acclimations to flooding stress. Plant Physiol. 169: 3-12.
Sasidharan, R., S. Hartman, Z. Liu, S. Martopawiro, N. Sajeev, H. Van Veen, E. Yeung, and L.A.C.J Voesenek. 2018. Signal dynamics and interactions during flooding stress. Plant Physiol. 176: 1106-1117.
Savé, R. and L. Serrano. 1986. Some physiological and growth responses of kiwi fruit (Actinidia chinensis) to flooding. Physiol. Plant. 66: 75-78.
Schaffer, B. 1998. Flooding responses and water-use efficiency of subtropical and tropical fruit trees in an environmentally-sensitive wetland. Ann. Bot. 81: 475-481.
Schaffer, B., B.N. Wolstenholme, and A.W. Whiley. 2013. The avocado: Botany, production and uses. 2nd ed. CABI, Wallingford, UK.
Schaffer, B., F.S. Davies, and J.H. Crane. 2006. Responses of subtropical and tropical fruit trees to flooding in calcareous soil. HortScience 41:549-555.
Schaffer, B., P.C. Andersen, and R.C. Ploetz. 1992. Responses of fruit crops to flooding. Hort. Rev. 13: 257-313.
Shabala, S. 2011. Physiological and cellular aspects of phytotoxicity tolerance in plants: The role of membrane transporters and implications for crop breeding for waterlogging tolerance. New Phytol. 190: 289-298.
Sharma, A., B. Shahzad, A. Rehman, R. Bhardwaj, M. Landi, and B. Zheng. 2019. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24: 2452.
Shi H, C. Jiang, T. Ye, D.X. Tan, R.J. Reiter, H. Zhang, R. Liu, and Z. Chan. 2015. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass (Cynodon dactylon (L). Pers.) by exogenous melatonin. J. Exp. Bot. 66: 681-694.
Shimazaki, K., M. Doi, S.M. Assmann, and T. Kinoshita. 2007. Light regulation of stomatal movement. Ann. Rev. Plant Biol. 58: 219-247.
Sroka, Z. and W. Cisowski. 2003. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem. Toxicol. 41: 753-758.
Steffens, B. 2014. The role of ethylene and ROS in salinity, heavy metal, and flooding responses in rice. Frontiers Plant Sci. 5: 685.
Toro, G., M. Pinto, and P. Pimentel. 2018. Root respiratory components of Prunus spp. rootstocks under low oxygen: regulation of growth, maintenance, and ion uptake respiration. Scientia Hort. 239: 259-268.
Tournaire-Roux, C., M. Sutka, H. Javot, E. Gout, P. Gerbeau, D.T. Luu, R. Bligny, and C. Maurel. 2003. Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425: 393-397.
Tylova, E., E. Peckova, Z. Blascheova, and A. Soukup. 2017. Casparian bands and suberin lamellae in exodermis of lateral roots: An important trait of roots system response to abiotic stress factors. Ann. Bot. 120: 71-85.
Vavasseur, A. and A.S. Raghavendra. 2005. Guard cell metabolism and CO2 sensing. New Phytol. 165: 665-682.
Visser, E.J.W., G.M. Bogemann, C.W.P.M. Blom, and L.A.C.J. Voesenek. 1996. Ethylene accumulation in waterlogged Rumex plants promotes formation of adventitious roots. J. Exp. Bot. 47: 403-410
Voesenek, L.A.C.J., J.J. Benschop, J. Bou, M.C.H. Cox, H.W. Groeneveld, F.F. Millenaar, R.A.M. Vreeburg, and A.J.M. Peeters. 2003. Interactions between plant hormones regulate submergence-induced shoot elongation in the flooding-tolerant dicot Rumex palustris. Ann. Bot. 91: 205-211.
Vriezen, W.H., Z. Zhou, and D. Van der Straeten. 2003. Regulation of submergence-induced enhanced shoot elongation in Oryza sativa L. Ann. Bot. 91: 263-270.
Wample, R.L. and D.M. Reid. 1978. Control of adventitious root production and hypocotyl hypertrophy of sunflower (Helianthus annuus) in response to flooding. Physiol. Plant. 44: 351-358.
Wang, A.F., M. Roitto, S. Sutinen, T. Lehto, J. Heinonen, G. Zhang, and T. Repo. 2016. Waterlogging in late dormancy and the early growth phase affected root and leaf morphology in Betula pendula and Betula pubescens seedlings. Tree Physiol. 36: 86-98.
Wang, J., B. Yuan, and B. Huang. 2019. Differential heat-induced changes in phenolic acids associated with genotypic variations in heat tolerance for hard fescue. Crop Sci. 59: 667-672.
Way, D.A. and R.W. Pearcy. 2012. Sunflecks in trees and forests: From photosynthetic physiology to global change biology. Tree Physiol. 32: 1066-1081.
Wu, X., T. Yonglu, L. Chaosu, W. Chun, and H. Gang. 2015. Chlorophyll fluorescence and yield responses of winter wheat to waterlogging at different growth stages. Plant Prod. Sci. 18: 284-294.
Xiong, D., C. Douthe, and J. Flexas. 2018. Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species. Plant Cell Environ. 41: 436-450.
Yeung, E., H. Van Veen, D. Vashisht, A.L.S. Paiva, M. Hummel, T. Rankenberg, B. Steffens, A. Steffen-Heins, M. Sauter, and M. De Vries. 2018. A stress recovery signaling network for enhanced flooding tolerance in Arabidopsis thaliana. Proc. Natl. Acad. Sci. 115: E6085-E6094.
Zhang, F., K. Zhu, Y.Q. Wang, Z.P. Zhang, F. Lu, H.Q. Yu, and J.Q. Zou. 2019. Changes in photosynthetic and chlorophyll fluorescence characteristics of sorghum under drought and waterlogging stress. Photosynthetica 57: 1156-1164.
Zhang, J. and X. Zhang. 1994. Can early wilting of old leaves account for much of the ABA accumulation in flooded leaves? J. Exp. Bot. 45: 1335-1342.
Zhou, M. 2010. Improvement of plant waterlogging tolerance, p. 267-285. In: Mancuso, S. and S. Shabala. (eds.). Waterlogging signalling and tolerance in plants. Heidelberg, Germany, Springer-Verlag.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊