|
[1] T.T. N. Amir Shahroudy, Jun Liu and G. Wang. Ntu rgb+d: A large scale dataset for 3d human activity analysis. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. [2] Z. Cao, G. Hidalgo, T. Simon, S. Wei, and Y. Sheikh. Openpose: Realtime multi person 2d pose estimation using part affinity fields. CoRR, abs/1812.08008, 2018. [3] J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, and L. FeiFei. ImageNet: A Large Scale Hierarchical Image Database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009. [4] Y. Du, W. Wang, and L. Wang. Hierarchical recurrent neural network for skele ton based action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1110–1118. IEEE Computer Society, 2015. [5] H. Fang, S. Xie, and C. Lu. RMPE: regional multiperson pose estimation. CoRR, abs/1612.00137, 2016. [6] G.,B.Cui,andS.Yu.Skeletonbasedactionrecognitionwithsynchronouslocaland nonlocal spatiotemporal learning and frequency attention. CoRR, abs/1811.04237, 2018. [7] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation, 2015. [8] J. C. H. L. L. Shi, Y. Zhang. Skeletonbased action recognition with directed graph neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019. [9] C. Li, Q. Zhong, D. Xie, and S. Pu. Skeletonbased action recognition with convolutional neural networks. CoRR, abs/1704.07595, 2017. [10] C. Li, Q. Zhong, D. Xie, and S. Pu. Cooccurrence feature learning from skeleton data for action recognition and detection with hierarchical aggregation. CoRR, abs/ 1804.06055, 2018. [11] S. Li, W. Li, C. Cook, C. Zhu, and Y. Gao. Independently recurrent neural network (indrnn): Building A longer and deeper RNN. CoRR, abs/1803.04831, 2018. [12] S. Lin, Y. Lin, C. Chen, and Y. Hung. Recognizing human actions with outlier frames by observation filtering and completion. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 13(3):28, 2017. [13] C. Liu, Y. Hu, . Li, S. Song, and J. Liu. Pkummd: A large scale benchmark for continuous multimodal human action understanding. arXiv preprint arXiv:1703.07475, 2017. [14] J. Liu, A. Shahroudy, D. Xu, and G. Wang. Spatiotemporal LSTM with trust gates for 3d human action recognition. CoRR, abs/1607.07043, 2016. [15] Z. Liu, H. Zhang, Z. Chen, Z. Wang, and W. Ouyang. Disentangling and unify ing graph convolutions for skeletonbased action recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020. [16] Y. X. S. Yan and D. Lin. Spatial temporal graph convolutional networks for skeletonbased action recognition. In Association for the Advancement of Artificial Intelligence, 2018. [17] L. Shi, Y. Zhang, J. Cheng, and H. Lu. Twostream adaptive graph convolutional networks for skeletonbased action recognition. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019. [18] S. Song, C. Lan, J. Xing, W. Zeng, and J. Liu. An endtoend spatiotemporal attention model for human action recognition from skeleton data. CoRR, abs/1611.06067, 2016. [19] S. B. L. B. R. G. J. H. T. Lin, M. Maire and others. Microsoft coco: Common objects in context. In European Conference on Computer Vision (ECCV), 2014. [20] K.S.B.Z.C.H.S.V.F.V.T.G.T.B.P.N.W.Kay,J.Carreiraandothers. The kinetics human action video dataset. arXiv preprint arXiv:1705.06950, 2017. [21] J.Wang,Z.Liu,Y.Wu, and J.Yuan.Miningactionletensembleforactionrecognition with depth cameras. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages 1290–1297, 2012.
|