|
[1] A. Abdalla, H. Cen, E. Abdel-Rahman, L. Wan, and Y. He. Color calibration of proximal sensing rgb images of oilseed rape canopy via deep learning combined with k-means algorithm. Remote Sensing, 11(24):3001, 2019. [2] M. L. Barr, G. Guo, S. E. Colby, and M. D. Olfert. Detecting body mass index from a facial photograph in lifestyle intervention. Technologies, 6(3):83, 2018. [3] J. C. Berry, N. Fahlgren, A. A. Pokorny, R. S. Bart, and K. M. Veley. An automated, high-throughput method for standardizing image color profiles to improve image-based plant phenotyping. PeerJ, 6:e5727, 2018. [4] V. K. Bhutani, G. R. Gourley, S. Adler, K. Bill, C. Dalin, and L. H. Johnson. Nonin-vasive measurement of total serum bilirubin in a multiracial predischarge newborn population to assess the risk of severe hyperbilirubinemia. Pediatrics, 2000. [5] F. Bousefsaf, A. Pruski, and C. Maaoui. 3d convolutional neural networks for remote pulse rate measurement and mapping from facial video. Applied Sciences, 9(20):4364, 2019. [6] L. De Greef, M. Goel, M. J. Seo, E. C. Larson, J. W. Stout, J. A. Taylor, and S. N. Patel. Bilicam: using mobile phones to monitor newborn jaundice. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pages 331–342, 2014. [7] H. H. Falk and O. D. Jensen. A machine learning approach for jaundice detection using color corrected smartphone images. Master’s thesis, NTNU, 2018. [8] G. D. Finlayson, M. Mackiewicz, and A. Hurlbert. Color correction using root-polynomial regression. IEEE Transactions on Image Processing, 24(5):1460–1470, 2015. [9] C. A. Hartanto and A. Wibowo. Development of mobile skin cancer detection using faster r-cnn and mobilenet v2 model. In 2020 7th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), pages 58–63. IEEE, 2020. [10] S. Jiayun, X. Chunming, Y. Ke, Y. ZHANG, W. Yiqin, Y. Haixia, and Q. Peng. Tongue image color correction method based on root polynomial regression. In 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), pages 1337–1342. IEEE, 2019. [11] T. S. Leung, F. Outlaw, L. W. MacDonald, and J. Meek. Jaundice eye color index (jeci): quantifying the yellowness of the sclera in jaundiced neonates with digital photography. Biomedical optics express, 10(3):1250–1256, 2019. [12] Y. Lu, X. Li, L. Zhuo, J. Zhang, and H. Zhang. Dccn: A deep-color correction network for traditional chinese medicine tongue images. In 2018 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pages 1–6. IEEE, 2018. [13] D. R. Lucio, R. Laroca, E. Severo, A. S. Britto, and D. Menotti. Fully convolutional networks and generative adversarial networks applied to sclera segmentation. In 2018 IEEE 9th International Conference on Biometrics Theory, Applications and Systems (BTAS), pages 1–7. IEEE, 2018. [14] B. Luo, J. Shen, S. Cheng, Y. Wang, and M. Pantic. Shape constrained network for eye segmentation in the wild. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 1952–1960, 2020. [15] A. Mariakakis, M. A. Banks, L. Phillipi, L. Yu, J. Taylor, and S. N. Patel. Biliscreen: smartphone-based scleral jaundice monitoring for liver and pancreatic disorders. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(2):1–26, 2017. [16] J. Niu, C. Zhao, and G.-Z. Li. A comprehensive study on color correction for medical facial images. International Journal of Machine Learning and Cybernetics, 10(5):935–947, 2019. [17] J.-L. Niu, C.-B. Zhao, and G.-Z. Li. A novel color correction framework for facial images. In 2014 International Conference on Medical Biometrics, pages 47–54. IEEE, 2014. [18] F. Outlaw, M. Nixon, O. Odeyemi, L. W. MacDonald, J. Meek, and T. S. Leung. Smartphone screening for neonatal jaundice via ambient-subtracted sclera chromaticity. PloS one, 15(3):e0216970, 2020. [19] B. Qin, L. Liang, J. Wu, Q. Quan, Z. Wang, and D. Li. Automatic identification of down syndrome using facial images with deep convolutional neural network. Diagnostics, 10(7):487, 2020. [20] F. Qingchun, C. Jian, and W. Xiu. Seedling image color correction method under natural illumination in greenhouse. IFAC-PapersOnLine, 51(17):81–84, 2018. [21] A. Riskin, A. Tamir, A. Kugelman, M. Hemo, and D. Bader. Is visual assessment of jaundice reliable as a screening tool to detect significant neonatal hyperbilirubinemia? The Journal of pediatrics, 152(6):782–787, 2008. [22] M. Vitek, P. Rot, V. Štruc, and P. Peer. A comprehensive investigation into sclera biometrics: a novel dataset and performance study. Neural Computing & Applications, 32(24), 2020. [23] X. Wang and D. Zhang. A comparative study of color correction algorithms for tongue image inspection. In International Conference on Medical Biometrics, pages 392–402. Springer, 2010. [24] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10):1499–1503, 2016.
|