|
M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In International Conference on Machine Learning, volume 70, pages 214–223. PMLR, 2017. J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450, 2016. L. Brieman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and regression trees. Wadsworth Inc, 1984. C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):1–27, 2011. D. Dua and C. Graff. UCI machine learning repository, 2017. P. J. García-Laencina, J.-L. Sancho-Gómez, and A. R. Figueiras-Vidal. Pattern classification with missing data: a review. Neural Computing and Applications, 19(2):263–282, 2010. L. Gondara and K. Wang. MIDA: Multiple imputation using denoising autoencoders. In PacificAsia Conference on Knowledge Discovery and Data Mining, volume 10939, pages 260–272. Springer, 2018. D. Grangier and I. Melvin. Feature set embedding for incomplete data. In Advances in Neural Information Processing Systems, volume 23, pages 793–801, 2010. W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large graphs. In Proceedings of the 31st International Conference on Neural Information Processing Systems, pages 1025–1035, 2017. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016. U. Hwang, D. Jung, and S. Yoon. HexaGAN: Generative adversarial nets for real world classification. In Proceedings of the 36th International Conference on Machine Learning, volume 97, pages 2921–2930. PMLR, 2019. K.-Y. Kim, B.-J. Kim, and G.-S. Yi. Reuse of imputed data in microarray analysis increases imputation efficiency. BMC Bioinformatics, 5(1):1–9, 2004. D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference on Learning Representations (Poster), 2015. S. C.-X. Li, B. Jiang, and B. Marlin. MisGAN: Learning from incomplete data with generative adversarial networks. In International Conference on Learning Representations, 2019. R. J. Little and D. B. Rubin. Statistical analysis with missing data, volume 793. John Wiley & Sons, 2019. N. Lopes. Handling missing values via a neural selective input model. Neural Network World, 22:357–370, 01 2012. R. Mazumder, T. Hastie, and R. Tibshirani. Spectral regularization algorithms for learning large incomplete matrices. The Journal of Machine Learning Research, 11:2287–2322, 2010. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikitlearn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011. K. Pelckmans, J. De Brabanter, J. A. Suykens, and B. De Moor. Handling missing values in support vector machine classifiers. Neural Networks, 18(56): 684–692, 2005. M. Śmieja, L. u. Struski, J. Tabor, B. Zieliński, and P. a. Spurek. Processing of missing data by neural networks. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, volume 31, page 2724–2734, 2018. G. Somepalli, M. Goldblum, A. Schwarzschild, C. B. Bruss, and T. Goldstein. SAINT: Improved neural networks for tabular data via row attention and contrastive pretraining. arXiv preprint arXiv:2106.01342, 2021. D. J. Stekhoven and P. Bühlmann. Missforest—nonparametric missing value imputation for mixed-type data. Bioinformatics, 28(1):112–118, 2012. S. Van Buuren and K. Groothuis-Oudshoorn. mice: Multivariate imputation by chained equations in r. Journal of Statistical Software, 45(1):1–67, 2011. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems, pages 5998–6008, 2017. P. Vincent, H. Larochelle, Y. Bengio, and P.A. Manzagol. Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th International Conference on Machine learning, pages 1096–1103, 2008. D. Williams, X. Liao, Y. Xue, and L. Carin. Incomplete-data classification using logistic regression. In Proceedings of the 22nd International Conference on Machine Learning, pages 972–979, 2005. J. Xia, S. Zhang, G. Cai, L. Li, Q. Pan, J. Yan, and G. Ning. Adjusted weight voting algorithm for random forests in handling missing values. Pattern Recognition, 69:52–60, 2017. J. Yoon, J. Jordon, and M. Schaar. GAIN: Missing data imputation using generative adversarial nets. In International Conference on Machine Learning, pages 5689–5698. PMLR, 2018. J. You, X. Ma, Y. Ding, M. J. Kochenderfer, and J. Leskovec. Handling missing data with graph representation learning. In Advances in Neural Information Processing Systems, volume 33, pages 19075–19087, 2020. H.-F. Yu, N. Rao, and I. S. Dhillon. Temporal regularized matrix factorization for high-dimensional time series prediction. In Advances in Neural Information Processing Systems, volume 29, pages 847–855, 2016.
|