|
H. Bilen, M. Pedersoli, and T. Tuytelaars. Weakly supervised object detectionwith convex clustering.2015IEEEConferenceonComputerVisionandPatternRecognition(CVPR), pages 1081–1089, 2015. R. Cabral, F. de la Torre, J. Costeira, and A. Bernardino. Matrix completion forweaklysupervised multilabel image classification.IEEETransactionsonPatternAnalysisandMachineIntelligence, 37:121–135, 2015. J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model and thekineticsdataset.2017IEEEConferenceonComputerVisionandPatternRecognition(CVPR), pages 4724–4733, 2017. X. Cui, Q. Liu, M. Gao, and D. N. Metaxas. Abnormal detection using interactionenergy potentials.CVPR2011, pages 3161–3167, 2011. A. Datta, M. Shah, and N. Lobo. Persononperson violence detection in video data.Objectrecognitionsupportedbyuserinteractionforservicerobots,1:433–438vol.1,2002. Y. Dauphin, A. Fan, M. Auli, and D. Grangier. Language modeling with gated convolutional networks. InICML, 2017 C.Feichtenhofer. X3d: Expandingarchitecturesforefficientvideorecognition.2020IEEE/CVFConferenceonComputerVisionandPatternRecognition(CVPR),pages200–210, 2020. C. Feichtenhofer, H. Fan, J. Malik, and K. He. Slowfast networks for video recognition.2019IEEE/CVFInternationalConferenceonComputerVision(ICCV), pages6201–6210, 2019. J.C.Feng,F.T.Hong,andW.S.Zheng.Mist: Multipleinstanceselftrainingframework for video anomaly detection.ArXiv, abs/2104.01633, 2021. H. Guo, X. Wu, N. Li, R. Fu, G. Liang, and W. Feng. Anomaly detection and localization in crowded scenes using shortterm trajectories. In2013IEEEInternationalConferenceonRoboticsandBiomimetics(ROBIO), pages 245–249, 2013. M.Hasan, J.Choi, J.Neumann, A.RoyChowdhury, andL.Davis. Learningtemporal regularity in video sequences.2016IEEEConferenceonComputerVisionandPatternRecognition(CVPR), pages 733–742, 2016. W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank. A system for learningstatistical motion patterns.IEEETransactionsonPatternAnalysisandMachineIntelligence, 28:1450–1464, 2006. M. Ilse, J. M. Tomczak, and M. Welling. Attentionbased deep multiple instancelearning. InICML, 2018. R. T. Ionescu, F. S. Khan, M.I. Georgescu, and L. Shao. Objectcentricautoencoders and dummy anomalies for abnormal event detection in video.InProceedingsoftheIEEE/CVFConferenceonComputerVisionandPatternRecognition(CVPR), June 2019.35 A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. FeiFei.Largescale video classification with convolutional neural networks.2014IEEEConferenceonComputerVisionandPatternRecognition, pages 1725–1732, 2014. L. Kratz and K. Nishino. Anomaly detection in extremely crowded scenes usingspatiotemporal motion pattern models. InCVPR, 2009. G. Liu, J. Wu, and Z. Zhou. Key instance detection in multiinstance learning. InACML, 2012. W. Liu, W. Luo, D. Lian, and S. Gao. Future frame prediction for anomaly detection a new baseline.2018IEEE/CVFConferenceonComputerVisionandPatternRecognition, pages 6536–6545, 2018. I. Loshchilov and F. Hutter. Decoupled weight decay regularization. InICLR, 2019. C. Lu, J. Shi, and J. Jia. Abnormal event detection at 150 fps in matlab.2013IEEEInternationalConferenceonComputerVision, pages 2720–2727, 2013. L. V. D. Maaten and G. E. Hinton. Visualizing data using tsne.JournalofMachineLearningResearch, 9:2579–2605, 2008. R. Mehran, A. Oyama, and M. Shah. Abnormal crowd behavior detection usingsocial force model. InCVPR, 2009. A.Paszke, S.Gross, S.Chintala, G.Chanan, E.Yang, Z.DeVito, Z.Lin, A.Desmaison, L. Antiga, and A. Lerer. Automatic differentiation in pytorch. 2017. C.Piciarelli, C.Micheloni, andG.Foresti. Trajectorybasedanomalouseventdetection.IEEETransactionsonCircuitsandSystemsforVideoTechnology, 18:1544–1554, 2008.36 B. Shin, J. Cho, H. Yu, and S. Choi. Sparse network inversion for key instance detection in multiple instance learning.202025thInternationalConferenceonPatternRecognition(ICPR), pages 4083–4090, 2021. K. Simonyan and A. Zisserman. Twostream convolutional networks for actionrecognition in videos. InNIPS, 2014. W. Sultani, C. Chen, and M. Shah. Realworld anomaly detection in surveillancevideos. InProceedingsoftheIEEEConferenceonComputerVisionandPatternRecognition(CVPR), June 2018. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,andA.Rabinovich. Goingdeeperwithconvolutions.2015IEEEConferenceonComputerVisionandPatternRecognition(CVPR), pages 1–9, 2015. Y.Tian, G.Pang, Y.Chen, R.Singh, J.Verjans, andG.Carneiro. Weaklysupervisedvideo anomaly detection with contrastive learning of long and shortrange temporalfeatures.ArXiv, abs/2101.10030, 2021. D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features with 3d convolutional networks.2015IEEEInternationalConferenceonComputerVision(ICCV), pages 4489–4497, 2015. B. Wan, Y. Fang, X. Xia, and J. Mei. Weakly supervised video anomaly detectionvia centerguided discriminative learning.2020IEEEInternationalConferenceonMultimediaandExpo(ICME), pages 1–6, 2020. X.Wang,K.H.Tieu,andW.Grimson. Learningsemanticscenemodelsbytrajectoryanalysis. InECCV, 2006.37 P. Wu, J. Liu, Y. Shi, Y. Sun, F. Shao, Z. Wu, and Z. Yang. Not only look, but alsolisten: Learning multimodal violence detection under weak supervision. InECCV,2020. S. Wu, B. E. Moore, and M. Shah. Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes.2010IEEEComputerSocietyConferenceonComputerVisionandPatternRecognition, pages 2054–2060, 2010. M. Z. Zaheer, A. Mahmood, M. Astrid, and S.I. Lee. Claws: Clustering assistedweakly supervised learning with normalcy suppression for anomalous event detection. InEuropeanConferenceonComputerVision, pages 358–376. Springer, 2020. J. Zhang, L. Qing, and J. Miao. Temporal convolutional network with complementary inner bag loss for weakly supervised anomaly detection.2019IEEEInternationalConferenceonImageProcessing(ICIP), pages 4030–4034, 2019. T. Zhang, H. Lu, and S. Z. Li. Learning semantic scene models by object classification and trajectory clustering. InCVPR, 2009. J.X. Zhong, N. Li, W. Kong, S. Liu, T. H. Li, and G. Li. Graph convolutionallabel noise cleaner: Train a plugandplay action classifier for anomaly detection. InProceedingsoftheIEEE/CVFConferenceonComputerVisionandPatternRecognition(CVPR), June 2019.
|