跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/10 12:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:薛銘童
研究生(外文):Ming-Tung Hsueh
論文名稱:大花咸豐草化感作用對雜草防治效用及其於蔬菜栽培的應用研究
論文名稱(外文):Allelopathic Effects of Bidens pilosa var. radiata Sch. Bip. on the Weed Control and its Application to Vegetable Cultivation
指導教授:范致豪張文亮張文亮引用關係
指導教授(外文):Chihhao FanWen-Lian Chang
口試委員:盧虎生張尊國陳尊賢羅筱鳳
口試委員(外文):Huu-Sheng LurTsun-Kuo ChangZueng-Sang ChenHsiao-Feng Lo
口試日期:2021-05-28
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:193
中文關鍵詞:化感作用化感物質大花咸豐草香附子蔬菜生產雜草管理
外文關鍵詞:allelopathyallelochemicalBidens pilosa L. var. radiata Sch. Bip.Cyperus rotundus L.vegetable productionweed management
DOI:10.6342/NTU202101541
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1069
  • 評分評分:
  • 下載下載:104
  • 收藏至我的研究室書目清單書目收藏:0
雜草管理是蔬菜生產體系相當重要的一環。一般農夫普遍採用的管理策略包括耕犁、刈草、覆蓋及施用除草劑等。其中又以除草劑的使用最為普遍。然而,研究指出過量使用除草劑及具除草劑抗性雜草的出現,已經造成許多環境及生態的問題。有鑑於此,部分科學家致力於從化感植物中找到新的天然植毒性物質,開發新型除草劑;或是致力於將化感植物或作物,作為覆蓋植物,導入輪作或間作的系統中。咸豐草(Bidens pilosa L.)是兼具傳統可食的野菜及中草藥的化感植物,具有導入蔬菜生產系統,提升雜草防治功效的潛力。在臺灣,咸豐草共計有白花鬼針(B. pilosa L. var. pilosa)、小白花鬼針(B. pilosa L. var. minor (Blume) Sherff)及大花咸豐草(B. pilosa L. var. radiata Sch. Bip.)等3個變種。其中以大花咸豐草入侵性最強,但針對此物種的發芽光需求、自毒作用、化感物質釋出途徑、化感作用識別以及在蔬菜生產系統中的雜草控制潛力的相關研究甚少。
本研究首先進行實驗室、盆栽及田間試驗,用以評估不同pH、光環境及殘體植毒性對大花咸豐草的發芽影響,了解未來應用上如何防止該物種的衍生危害。其次,透過自田間蒐集大花咸豐草植群天然淋溶液、利用吸附劑吸收葉、莖及葉等不同部位揮發性化合物、搜集根部淋洗液及施用殘體或其水萃液試驗方法等,探討此物種之化感物質可能的釋出途徑、種類及其影響。為了評估大花咸豐草化感作用對其他植物的影響程度,以香附子(Cyperus rotundus L.)為測試植物,進行大花咸豐草殘體植毒性對香附子種間密度依賴(density-dependent)、兩物種種間競爭和大花咸豐草田間土壤與其殘體對香附子塊莖更新之影響等試驗。最後,本研究也以小白菜(Brassica rapa L. subsp. chinensis (L.) Makino)為材料,在盆栽中施用大花咸豐草殘體,探討其化感物質對小白菜生長期間的雜草防治效果,以及對小白菜生長是否會產生不良影響。
試驗結果顯示,大花咸豐草種子最適發芽pH為5-7之間,其中以胚根生長對不同pH處理較為敏感,強酸性或偏鹼性環境對其幼苗之胚根發育有明顯負面影響。光照對大花咸豐草發芽影響隨環境而異,培養皿的試驗結果顯示,發芽並無光需求,但在以土壤為介質的盆栽則有明顯照光促進發芽的現象。遠紅光處理雖可抑制種子發芽,但預處理後於黑暗中培育仍可發芽的現象,顯示種子的發芽光反應應是極低光量反應(very low fluence response, VLFR)。試驗同時發現,大花咸豐草殘體與水萃液在控制(實驗室)、半自然(溫室或生長箱盆栽)及自然(田間)狀態下均可對其種子表現出植毒性。由遠紅光預處理後於黑暗中培育的發芽受抑現象推測,殘體或水萃液中所含的酚類化感物質可能會破壞Pfr光敏素,進而抑制種子的發芽率。在化感物質釋出途徑方面,試驗結果顯示大花咸豐草雖可透過淋溶、揮發、根分泌及殘體分解等途徑釋出植毒性物質,但以殘體分解為最重要的途徑。同時,由各途徑的化感物質分析得知,淋溶或殘體分解途徑的主要化感物質應為酚類,而揮發途徑則以-蒎烯(-pinene)、莰烯(camphene)、月桂油烯(myrcene)、檸烯(limonene)及石竹烯(caryophyllene)等萜類及苯基庚三炔(phenylheptatriyne)等多炔類(polyacetylene)化感物質為主。除此之外,植毒性-密度依賴試驗結果發現,施用大花咸豐草殘體可明顯改變香附子之單株乾重-栽培密度對數關係斜率。亦即殘體對香附子生長的抑制強度隨施用量遞增,但隨栽培密度增加而遞減,顯示殘體植毒性明顯存在低密度處理,但在高密度處理中則被稀釋了。而由大花咸豐草與香附子的種間競爭試驗進一步發現,相較於無施用處理,施用活性碳處理可提高香附子的生長,推測是因為大花咸豐草所釋出的植毒性物質經活性碳吸收,降低對香附子生長的影響,顯示化感作用在大花咸豐草與相鄰植物的競爭中扮演一定程度的影響。最後,在小白菜的栽培試驗中發現,大花咸豐草殘體可以顯著抑制雜草種子發芽達5週,並且即使在施用1週後播種小白菜,亦不會對小白菜的生長造成影響。
大花咸豐草雖是高入侵性的外來植物,但在食用及醫藥方面極具發展潛力。本研究顯示,該植物殘體的化感作用具直接應用在田間防治雜草及導入蔬菜輪作生產系統的潛力。
Weed management is important for vegetable production. The often-used management strategies include plowing, mowing, mulching, and herbicide, and so many; among these strategies, herbicide utilization is the most widely used method. However, research indicated that the increased herbicide utilization and the occurrence of weeds with herbicide resistance have caused many environmental and ecological problems. Due to this reason, some researchers devoted themselves to exploring new/effective natural phytotoxic compounds from allelopathic plants while some aimed to introduce allelopathic plants/crops as the cover crop in the rotation or intercropping system. Bidens pilosa L. has been identified as an edible and medicinal herb with allelopathy, possessing the potential to enhance weed control in the vegetable production system. Three varieties, i.e. B. pilosa var. pilosa, B. pilosa var. minor, and B. pilosa var. radiata (BPr), were found in Taiwan. Among them, BPr was known as the most invasive one but few studies were conducted on its germination light requirement, autotoxicity, allelopathy, and the weed control potential in the vegetable production system.
In this study, experiments at the scales of laboratory, pot, and field were conducted to evaluate the effects of pH, light conditions, and residue phytotoxicity on BPr germination. To evaluate the possible allelopathic pathways of BPr, natural leachates, volatile compounds, root exudates, and residues of this species were collected and examined in the laboratory, pot, and field according. In addition, to understand the effects of BPr allelopathy on the neighbor plants, Cyperus rotundus L. (CR) was selected as the target plant for the density-dependent experiments, interspecies competition experiments, and several field residue/mulch application experiments. Finally, the effects of BPr residue on the weed control and growth of Chinese mustard (Brassica campestris L. ssp. chinensis (L.) Makino) were also evaluated.
The results showed that the suitable pH for BPr germination was 5 - 7, and the radicle growth was more sensitive to pH than germination. A strong acid or alkali environment had significant inhibition on radicle growth. The influence of light on BPr germination varied in different conditions, i.e., no light requirement was observed when incubated in the Petri dishes while germination was stimulated under the light when incubated in pots. Besides, although far-red light almost completely inhibited BPr germination, seeds germinated when incubated in the darkness after far-red light pretreatment. This phenomenon indicated that the light response of BPr seed germination might be a very low fluence response (VLFR). The results also demonstrated that the BPr residues and their water extracts exhibited phytotoxicity to its seeds in the experiments of controlled (laboratory), semi-natural (pots in the greenhouse or growth chamber), and natural (field) conditions. Since the germination inhibition was found in the dark incubation after far-red light pretreatment, it was suggested that the phenolics contained in the residues or water extracts might destroy the Pfr phytochrome and further inhibited the seed germination. For the research of allelochemical releasing pathways, the results illustrated that BPr could release phytotoxic substances through leaching, volatilization, root exudation, and residue decomposition; however, residue decomposition was supposed the most important pathway. According to the results of compound analysis, the main allelochemicals in leaching and residue decomposition pathways were phenolics while the terpenoids such as -pinene, camphene, myrcene, limonene, and caryophyllene, and the polyacetylene, such as phenylheptatriyne, were the main allelochemicals in volatilization pathway. In addition, the results from the density-dependent phytotoxicity experiments showed that BPr residue could alter the slope of the logarithmic relationship between dry weight per plant and the density of CR. In other words, the inhibition of the residue phytotoxicity on CR growth increased with application rate but decreased with increasing CR density. The phytotoxicity was exhibited in the low-density treatments but diluted in the high-density treatments. In the interspecies competition between BPr and CR, it was found that CR had greater growth when applied with activated carbon than that without activated carbon. It was presumed that the phytotoxins released from BPr were adsorbed by the activated carbon, and hence reduced the inhibition on the CR. Lastly, in the Chinese mustard growth experiments, it was demonstrated that the BPr residue could significantly inhibit the weed germination for five weeks while no growth reduction was found in the Chinese mustard even sowed one week after residue application.
Although BPr is a highly invasive species, it exhibits great development potential in edible and herbal medicinal purposes. In this study, it was found that the BPr residues were capable of being used for controlling weeds in the field and being introduced to the vegetable rotation systems.
口試委員會審定書 I
誌 謝 II
摘 要 IV
Abstract VI
目 錄 IX
表目錄 XV
圖目錄 XVII
附表目錄 XXII
第壹章 前言 1
第貳章 文獻回顧 6
壹、 植物化感作用(Allelopathy) 6
一、 植物化感作用的研究歷史概述 6
二、 植物化感作用的定義 12
貳、 化感物質(Allelochemical) 13
一、 酚類化感物質 13
二、 萜類化感物質 16
三、 含氮化感物質 17
四、 多炔類化感物質 19
參、 化感物質釋出途徑 20
一、 淋溶(Leaching) 21
二、 揮發(Volatilization) 23
三、 根部分泌(Root exudation) 24
四、 殘體分解(Residue decomposition) 25
肆、 化感作用試驗方法 26
一、 實驗室試驗(控制環境) 26
(一) 培養皿 27
(二) 三明治法 27
(三) 植物盒法 27
(四) 海綿法 28
二、 生長箱或溫網室內的盆栽試驗(半自然環境) 28
(一) 評估添加化感物質或殘體對受測植物的影響 29
(二) 評估化感植物對受測植物之影響 29
1. 簡單成對混植法 29
2. 添加試驗設計 30
3. 取代試驗設計 31
4. 密度依賴試驗 31
三、 田間試驗(自然環境) 33
(一) 區別化感作用的田間試驗 33
(二) 評估如何將化感植物或其殘體(含水萃液)應用於在農業生產系統 34
1. 輪作制度 34
2. 間作制度 36
3. 殘體與其水萃液 36
伍、 影響雜草種子發芽的因子 37
一、 溫度 38
二、 光環境 38
三、 pH 40
四、 化感物質 41
陸、 主要研究植物介紹 41
一、 咸豐草 41
(一) 種類、特性及分佈 41
(二) 發芽特性研究 42
(三) 化感作用研究 44
二、 蔬菜田主要雜草-香附子 44
(一) 特性及分佈 44
(二) 防治研究 45
1. 化學防治 45
2. 非化學防治 46
3. 化感作用防治 47
第參章 材料與方法 48
壹、 供試材料的預備 48
一、 大花咸豐草種子採集與調製 48
二、 大花咸豐草殘體來源與製備 48
三、 香附子塊莖採集 49
四、 供試蔬菜作物種子來源 49
貳、 土壤理化性質分析方法 49
一、 土壤反應(pH值) 49
二、 土壤電導度 49
三、 土壤質地 50
四、 土壤陽離子交換容量 50
五、 土壤礦質元素分析 50
六、 土壤中有效氮之測定 50
七、 土壤有機質含量 50
參、 光環境、酸鹼值及殘體對大花咸豐草繁衍潛力評估 51
一、 試驗一:光度及酸鹼度對大花咸豐草種子發芽之影響 52
(一) 光度及酸鹼度處理 52
(二) 發芽試驗 52
二、 試驗二:不同光因子及化感作用對大花咸豐草繁衍之影響 53
(一) 試驗二L1:不同部位殘體水萃液對大花咸豐草種子發芽與胚根發育之影響 54
1. 不同部位殘體水萃液之製備 54
2. 發芽試驗 54
(二) 試驗二L2:光因子及地上部殘體水萃液對大花咸豐草種子發芽及胚根生長之影響 55
1. 光處理 55
2. 地上部殘體水萃液之製備 56
3. 發芽試驗 56
4. 胚根量測 57
(三) 試驗二P1:光質及地上部殘體對大花咸豐草種子於盆栽中發芽之影響 57
(四) 試驗二P2:遠紅光預處理對大花咸豐草種子於盆栽中之發芽影響 58
(五) 試驗二F1:遠紅光預處理及殘體對大花咸豐草種子在田間發芽之影響 59
肆、 大花咸豐草化感作用評估 60
一、 試驗三:大花咸豐草地上部淋溶途徑之化感作用評估 60
(一) 試驗三L1:天然植群淋溶液之化感作用檢定 60
1. 雨水及植群淋溶液蒐集 60
2. 化感物質(allelochemicals)分析 62
(1) 總多酚(total phenolics)分析 62
(2) 多炔類-苯基庚三炔(phenylheptatriyne)分析 62
A. 地上部植體測定 62
B. 植群淋溶液測定 63
3. 發芽試驗 63
(二) 試驗三L2:不同部位之植體水萃液化感作用檢定 64
1. 不同部位植體淋溶液製備 64
2. 化感物質(allelochemicals)分析 64
3. 發芽試驗 64
二、 試驗四:大花咸豐草不同部位揮發物質之化感作用評估 64
(一) 不同部位之揮發性物質測定 64
(二) 大花咸豐草葉片揮發物質之化感作用檢定 66
三、 試驗五:大花咸豐草地下部化感作用評估 66
(一) 大花咸豐草根部分泌物對香附子塊莖萌芽及幼苗生長之影響 66
四、 試驗六:於半自然及自然環境中區別大花咸豐草化感作用 67
(一) 試驗六P1:密度依賴植毒性試驗 68
(二) 試驗六P2:大花咸豐草與香附子種間競爭試驗 68
(三) 試驗六F1:香附子塊莖於大花咸豐草植群田間之萌芽試驗 69
(四) 試驗六F2:大花咸豐草植群及地上部殘體覆蓋對香附子更新之影響 70
伍、 應用大花咸豐草化感作用於蔬菜生產之評估 71
一、 試驗七:添加大花咸豐草地上部殘體對小白菜於盆栽中生長之影響 71
陸、 資料處理與統計分析 71
一、 變方分析 71
二、 發芽率分析 72
第肆章 結果與討論 73
壹、 大花咸豐草種子田間發芽潛力之評估 73
一、 試驗一:光度及酸鹼度對大花咸豐草種子發芽之影響 73
(一) 大花咸豐草種子發芽率對光度及酸鹼度之反應 73
(二) 胚根胚軸發育 78
二、 試驗二:不同光因子及化感作用對大花咸豐草繁衍之影響 80
(一) 試驗二L1:不同部位殘體水萃液對大花咸豐草種子發芽與胚根發育之影響 80
(二) 試驗二L2:光因子及地上部殘體水萃液對大花咸豐草種子於控制環境中發芽及胚根生長之影響 83
1. 控制環境中種子發芽之光需求與對地上部殘體水萃液處理的反應 83
2. 控制環境中種子發芽對遠紅光預處理的反應 85
3. 控制環境中種子發芽對遠紅光處理之反應 85
4. 控制環境中胚根生長對光因子及地上部殘體水萃液的反應 86
(三) 光質及地上部殘體對種子於半自然環境中發芽之影響 88
1. 試驗二P1:半自然環境中種子發芽對光質與地上部殘體處理的反應 88
(1) 半自然環境中種子之發芽光需求與對地上部殘體處理的反應 88
(2) 試驗二P1:半自然環境中種子發芽對遠紅光處理之反應 91
2. 試驗二P2:半自然環境中遠紅光預處理對種子發芽之影響 92
(四) 試驗二F1:遠紅光預處理及地上部殘體對種子於自然環境中發芽之影響 93
1. 自然環境中種子發芽對遠紅光預處理的反應 93
2. 自然環境中種子發芽對地上部殘體處理的反應 95
貳、 大花咸豐草化感作用之評估 98
一、 大花咸豐草化感物質釋出途徑 98
(一) 大花咸豐草地上部淋溶途徑之化感作用評估 98
1. 試驗三L1:天然植群淋溶液之化感作用檢定 98
(1) 雨水與植群淋溶液酸鹼值與電導度 98
(2) 天然植群淋溶液之酚類化感物質分析 99
(3) 天然植群淋溶液之苯基庚三炔化感物質分析 100
(4) 天然植群淋溶液對萵苣種子發芽之影響 107
2. 試驗三L2:不同部位之植體水萃液化感作用檢定 110
(1) 不同部位植體水萃液之酸鹼值與電導度 110
(2) 不同部位植體水萃液之酚類化感物質分析 110
(3) 不同部位植體水萃液之苯基庚三炔化感物質分析 111
(4) 不同部位植體水萃液對萵苣種子發芽之影響 119
(二) 試驗四:大花咸豐草揮發途徑之化感作用評估 122
1. 不同部位之揮發性物質測定 122
2. 大花咸豐草葉片揮發物質之化感作用檢定 124
(三) 試驗五:大花咸豐草根部分泌途徑之化感作用評估 136
二、 試驗六:大花咸豐草化感作用之區別與地上部殘體分解途徑評估 137
(一) 試驗六P1:由植毒性-密度依賴試驗識別大花咸豐草化感作用 137
1. 香附子植株各部位之生長反應 137
2. 香附子梢根比之反應 139
3. 香附子塊莖增生之反應 139
(二) 試驗六P2:由種間競爭試驗識別大花咸豐草之化感作用 142
1. 不同競爭形式對試驗植株之生長影響 142
2. 不同競爭形式對試驗植株梢根比之影響 147
3. 不同競爭形式對香附子塊莖增生之影響 149
(三) 試驗六F1:香附子塊莖於大花咸豐草植群田間之萌芽試驗 150
(四) 試驗六F2:大花咸豐草植群及其地上部殘體對香附子更新之影響 151
參、 應用大花咸豐草化感作用於蔬菜生產系統 157
一、 試驗七:添加大花咸豐草地上部殘體對小白菜於盆栽中生長之影響 157
第伍章 結論 162
壹、 研究發現 162
貳、 研究貢獻 163
參、 研究限制 163
肆、 未來研究方向 163
參考文獻 165
附 表 187
中央氣象局. 2020. 觀測資料查詢系統. https://e-service.cwb.gov.tw/HistoryData
Query/index.jsp.
孔垂華、胡飛、王朋. 2016. 植物化感(相生相剋)作用. 高等教育出版社:北京.中國.
方麗萍. 2020. 2018 年台灣除草劑市場槪況. 中華民國雜草學會會刊 41: 55-59.
王三太、林子凱. 2005. 小白菜. 刊於:台灣農家要覽增修訂三版策劃委員會. 農家要覽-農作篇(三版). 行政院農業委員會. 臺北. 臺灣.
王斐能. 2020. 設施友善栽培小白菜直播法. 桃園區農業專訊 114: 8-10.
王新傳. 1980. 鮑氏土壤機械分析法. 刊於:林家棻主編. 農業試驗所特刊第13號:作物需肥診斷技術. 行政院農業委員會農業試驗所. 臺中. 臺灣. p. 27-29.
王運之. 2017. 消失中的飲食: 探究都市阿美族之年長者飲食樣貌─ 以野菜為例. 東海大學餐旅管理學系碩士論文. 臺中. 臺灣.
江貴波、黃丹瑩、黃蘭妹、林國威. 2011. 勝紅薊和三葉鬼針草的自化感作用. 湖南農業大學學報 37: 624-626.
行政院農業委員會農業試驗所. 2013a. 土壤酸鹼值(pH值)測定方法-電極法(TARI S501.1B). 臺中. 臺灣.
行政院農業委員會農業試驗所. 2013b. 土壤電導度測定方法(TARI S101.1B). 臺中. 臺灣.
行政院農業委員會農業試驗所. 2013c. 土壤肥力測定方法-孟立克3號萃取法(TARI S301.1B). 臺中. 臺灣.
行政院農業委員會農業試驗所. 2013d. 土壤有機質測定方法-燃燒紅外線測定法(TARI S201.1B). 臺中. 臺灣.
行政院環境保護署. 2009. 土壤酸鹼值測定方法-電極法(NIEA S410.62C). 臺北. 臺灣.
行政院環境保護署. 2011. 土壤中陽離子交換容量─醋酸銨法(NIEA S201.61C). 臺北. 臺灣.
何麗芝、王婧、趙振東、陳玉湘、古研. 2011. 3-蒈烯資源及其生物活性應用研究進展. 林產化學與工業 31: 122-126.
吳雪月. 2006. 台灣新野菜主義. 天下遠見. 臺北. 臺灣.
宋軍朋. 2015. 《物類相感志》科技史料價值研究. 華東師範大學博士論文.上海.中國.
李豐旭. 2019. 台灣平地常見八種野菜抗氧化能力分析. 中原大學化學研究所. 中原大學碩士論文.桃園. 臺灣.
沈百奎、歐錫坤、林俊義. 2004. 農業試驗所特刊第108號:新興蔬菜之栽培及烹調(Ⅲ). 行政院農業委員會農業試驗所. 臺中. 臺灣.
沈明來. 2010. 試驗設計. 九州出版社. 臺北. 臺灣.
周昌弘. 2006. 農業廢棄物之利用與環保: 植物相剋作用在永續農業之利用. 刊於:林俊義、 戴振耀、 蔡武雄、 廖慶樑主編. 生物技術與綠色農業研討會專刊. 行政院農業委員會農業試驗所及中華永續農業協會. 臺中. 臺灣. p. 103-116.
林妤姍、張雅玲、劉雲聰、蔣永正、張素貞. 2016. 苗栗地區作物栽培與雜草相之變遷. 中華民國雜草學會會刊 37: 71-77.
林柏昌、林有義. 2008. 蝴蝶食草圖鑑:246 種蝴蝶食草蜜源植物與 180 種蝴蝶生態圖鑑. 晨星出版社. 臺中. 臺灣.
林家棻. 1980. 農業試驗所特刊第13號:作物需肥診斷技術. 行政院農業委員會農業試驗所. 臺中. 臺灣.
金恒鑣、劉瓊霦、夏禹九、黃正良. 2003. 福山天然闊葉林生態系對降水水化學的交互作用. 臺灣林業科學 18: 363-373.
侯金日. 2008. 藿香薊種子發芽生態生理學及其田間建立之研究. 臺灣大學農藝學研究所博士論文. 臺北. 臺灣. p. 1-179.
侯金日、楊雅斯、王淑敏. 1999a. 不同光質對兩種鬼針屬 (Bidens) 植物種子發芽之影響. 中華民國雜草學會會刊 20: 39-54.
侯金日、楊雅斯、王淑敏. 1999b. 咸豐草 (Bidens pilosa L.) 及大花咸豐草 (Bidens pilosa L. var. radiata Sch.) 開花後不同天數之種子大小及發芽特性. 中華民國雜草學會會刊 20: 61-72.
胡敏夫、余志儒、林俊義、謝廷芳、吳明哲、劉光隆. 2006. 農業試驗所特刊第123號:保健藥用野草. 行政院農業委員會農業試驗所. 臺中. 臺灣.
徐玲明、林訓仕. 2005. 三種鬼針草植株、種子外觀形態及發芽率之比較. 中華民國雜草學會會刊 26、33-42.
徐玲明、蔣慕琰. 2010. 二種酢漿草屬 (Oxalis) 雜草的發芽特性及化學防治. 中華民國雜草學會會刊 31、57-67.
袁秋英. 2016. 植物相剋化合物於雜草管理之應用. 藥毒所專題報導.第121期: 1-19.
莊文進、侯金日. 2016. 薺菜 (C. bursa-pastoris L.) 與小團扇薺 (L. virginicum L.) 種子發芽與出土之研究. 中華民國雜草學會會刊 37: 163-186.
郭華仁. 2004. 雜草種子生態學. 刊於:楊純明、王慶裕、林俊義主編. 農業試驗所特刊第113號:雜草學與雜草管理. 行政院農業委員會農業試驗所. 臺中. 臺灣. 臺中.
郭鴻裕. 1992. 台灣地區酸性土壤之分布及其利用現況. 刊於:酸性土壤之特性及其改良研討會論文集. 中華土壤肥料學會. 臺北. 臺灣. p. 3-7.
郭鴻裕、朱戩良、江志峰、吳懷國. 1995. 臺灣地區土壤有機質含量及有機資材之施用狀況. 刊於:王鐘和、林毓雯、丘麗蓉、孫希鄉主編. 有機質肥料合理施用技術研討會專刊. 農業試驗所、中華永續農業協會及中華土壤肥料學會. 臺中. 臺灣. p. 72-83.
陳良佐. 1980. 我國歷代輪種制度之研究. 中央研究院歷史語言研究所集刊 51: 281-313.
陳薪喨、林昀蓉、王蓉敏、周培萱、陳美慧、黃敏鳳、洪彰岑、林榮宗、林文傑. 2011. 大花咸豐草超臨界流體萃取物抗氧化、抗發炎能力研究. 加馬 42: 9-17.
曾任森、駱世明. 1993. 香茅、勝紅薊和三葉鬼針草植物他感作用研究. 華南農業大學學報 14: 8-14.
曾任森、駱世明. 1996. 香茅、勝紅薊和三葉鬼針草根分泌物的化感作用研究. 華南農業大學學報 17: 119-120.
楊純明、王慶裕、林俊義. 2004. 農業試驗所特刊第113號:雜草學與雜草管理. 行政院農業委員會農業試驗所. 臺中. 臺灣.
劉明宗. 2002. 除草劑抗性的發展: 抗性雜草和抗性作物. 中華民國雜草學會會刊 23: 53-64.
蔡竹固. 2004. 雜草管理-物理、化學、生物與綜合管理原理及做法. 刊於:楊純明、王慶裕、林俊義主編. 農業試驗所特刊第113號:雜草學與雜草管理. 行政院農業委員會農業試驗所. 臺中. 臺灣.
蔣永正. 1996. 葉菜類蔬菜田雜草之永續管理. 永續農業 5: 28-32.
蔣永正. 2004. 蔬菜田有機栽培的雜草管理與實務. 農友研習會講義:39-50. < https://www.tactri.gov.tw/Uploads/Item/9af54cc2-222b-4e95-96c6-6001e2d17a41.pdf>.
蔣永正、蔣慕琰. 2008. 常用除草劑之特性與應用. 刊於:作物診斷與農藥安全使用技術手冊. 國立中興大學農業暨自然資源學院農業推廣中心. 臺中. 臺灣. p. 205-226.
蔣慕琰、徐玲明、袁秋英、陳富永、蔣永正. 2003. 台灣外來植物之危害與生態. 小花蔓澤蘭危害與管理研討會專刊. 花蓮區農業改良場編印.花蓮. 臺灣. p. 97-109.
蔣慕琰、蔣永正、袁秋英. 2002. 除草劑引起之草相變遷及抗藥性. 刊於:蔣慕琰、蔣永正主編. 除草劑在臺灣四十年回顧與展望研討會專刊.中華民國雜草學會. 臺中. 臺灣. p.25-30.
蕭巧玲. 2017. 高機能性咸豐草之安全生產技術. 農牧旬刊 1908: 43-44.
蕭政弘、邱建中、鍾維榮. 2003. 台灣蔬菜田除草劑之應用與發展. 中華民國雜草學會會刊 24: 99-113.
羅婭婷、王澤明、崔現亮、趙利坤、王桔紅、羅銀玲. 2019. 白花鬼針草的繁殖特性及入侵性. 生態學雜誌 38: 655-662.
Abd-ElGawad, A.M., A.E.G. El Gendy, A.M. Assaeed, S.L. Al-Rowaily, A.S. Alharthi, T.A. Mohamed, M.I. Nassar, Y.H. Dewir, A.I. Elshamy. 2021. Phytotoxic effects of plant essential oils: A systematic review and structure-activity relationship based on chemometric analyses. Plants 10, 36.
Abenavoli, M.R., A. Lupini, S. Oliva, A. Sorgonà. 2010. Allelochemical effects on net nitrate uptake and plasma membrane H+-ATPase activity in maize seedlings. Biologia Plantarum 54, 149-153.
Al-Masoom, A.A., A.R. Saghir, S. Itani. 1993. Soil solarization for weed management in UAE. Weed Technology 7, 507-510.
Alsaadawi, I.S., S.M. Al-Hadithy, M.B. Arif. 1986. Effects of three phenolic acids on chlorophyll content and ions uptake in cowpea seedlings. Journal of Chemical Ecology 12, 221-227.
Alsaadawi, I.S., A.K. Sarbout. 2015. Reducing herbicide rate in combination with allelopathic sunflower residues for weed control in cowpea. Journal of Allelochemical Interactions 2, 9-16.
Alsaadawi, I.S., A.K. Sarbout, L.M. Al-Shamma. 2012. Differential allelopathic potential of sunflower (Helianthus annuus L.) genotypes on weeds and wheat (Triticum aestivum L.) crop. Archives of Agronomy and Soil Science 58, 1139-1148.
Altındal, D., N. Altındal. 2017. Plant volatile compounds in growth. In: Choudhary, D.K., Sharma, A.K., Agarwal, P., Varma, A., Tuteja, N.e. (Eds.), Volatiles and Food Security. Springer. Singapore, pp. 1-13.
Ameena, M., S. George. 2006. Control of purple nutsedge (Cyperus rotundus L.) using glyphosate and 2, 4-D sodium salt. Journal of Tropical Agriculture 42, 49-51.
Andersen, R.N. 1981. Increasing herbicide tolerance of soybeans (Glycine max) by increasing seeding rates. Weed Sci 29, 336-338.
Arimura, G.I., K. Shiojiri, R. Karban. 2010. Acquired immunity to herbivory and allelopathy caused by airborne plant emissions. Phytochemistry 71, 1642-1649.
Arthur, G.D., K.K. Naidoo, R.M. Coopoosamy. 2012. Bidens pilosa L.: agricultural and pharmaceutical importance. Journal of Medicinal Plants Research 6, 3282-3281.
Babu, R.C., O.S. Kandasamy. 1997. Allelopathic effect of Eucalyptus globulus Labill. on Cyperus rotundus L. and Cynodon dactylon L. Pers. Journal of Agronomy and Crop Science 179, 123-126.
Bais, H.P., R. Vepachedu, S. Gilroy, R.M. Callaway, J.M. Vivanco. 2003. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301, 1377-1380.
Baloch, A.H., H. Rehman, Z. Ibrahim, M.A. Buzdar, S. Ahmad. 2015. The biology of Balochistani weed: Cyperus rotundus Linnaeus. A review. Pure and Applied Biology 4, 171-180.
Bangarwa, S.K., J.K. Norsworthy, P. Jha, M. Malik. 2008. Purple nutsedge (Cyperus rotundus) management in an organic production system. Weed Sci 56, 606-613.
Barkosky, R.R., J.L. Butler, F.A. Einhellig. 1999. Mechanisms of hydroquinone-induced growth reduction in leafy spurge. Journal of Chemical Ecology 25, 1611-1621.
Barkosky, R.R., F.A. Einhellig. 1993. Effects of salicylic acid on plant-water relationships. Journal of Chemical Ecology 19, 237-247.
Barkosky, R.R., F.A. Einhellig, J.L. Butler. 2000. Caffeic acid-induced changes in plant–water relationships and photosynthesis in leafy spurge Euphorbia esula. Journal of Chemical Ecology 26, 2095-2109.
Barnes, R.F., D.L. Gustine. 1973. Allelochemistry and forage crops. In: Matches, A.G., Howell, R.W., Fuccillo, D.A., Paskin, L.H.e. (Eds.), Anti‐quality components of forages. Crop Science Society of America, Madison, Wisconsin, Florida, USA., pp. 1-13.
Bartolome, A.P., I.M. Villaseñor, W.C. Yang. 2013. Bidens pilosa L.(Asteraceae): botanical properties, traditional uses, phytochemistry, and pharmacology. Evidence-based Complementary and Alternative Medicine 2013, 51.
Baskin, C.C., J.M. Baskin. 2014. Seeds: Ecology, biogeography, and, evolution of dormancy and germination (2nd). Academic Press. California, U.S.A.
Baskin, C.C., J.M. Baskin, E.W. Chester. 1999. Seed dormancy and germination in Rhexia mariana var. interior (Melastomataceae) and eco-evolutionary implications. Canadian Journal of Botany 77, 488-493.
Baskin, J.M., C.C. Baskin. 1984. Germination ecophysiology of an eastern deciduous forest herb Stylophorum diphyllum. American Midland Naturalist 111, 390-399.
Baskin, J.M., C.C. Baskin. 1990. Germination ecophysiology of seeds of the winter annual Chaerophyllum tainturieri: a new type of morphophysiological dormancy. The Journal of Ecology 78, 993-1004.
Batish, D.R., K. Lavanya, H.P. Singh, R.K. Kohli. 2007. Phenolic allelochemicals released by Chenopodium murale affect the growth, nodulation and macromolecule content in chickpea and pea. Plant Growth Regulation 51, 119-128.
Batlla, D., R.L. Benech‐Arnold. 2014. Weed seed germination and the light environment: Implications for weed management. Weed Biology and Management 14, 77-87.
Baziramakenga, R., G.D. Leroux, R.R. Simard. 1995. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots. Journal of Chemical Ecology 21, 1271-1285.
Baziramakenga, R., R.R. Simard, G.D. Leroux. 1994. Effects of benzoic and cinnamic acids on growth, mineral composition, and chlorophyll content of soybean. Journal of Chemical Ecology 20, 2821-2833.
Beckman, C.H. 2000. Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Physiological and Molecular Plant Pathology 57, 101-110.
Ben-Gal, A., H. Borochov-Neori, U. Yermiyahu, U. Shani. 2009. Is osmotic potential a more appropriate property than electrical conductivity for evaluating whole-plant response to salinity? Environmental and Experimental Botany 65, 232-237.
Bendixen, L.E., U.B. Nandihalli. 1987. Worldwide distribution of purple and yellow nutsedge (Cyperus rotundus and C. esculentus). Weed Technology 1, 61-65.
Bergmark, C.L., W.A. Jackson, R.J. Volk, U. Blum. 1992. Differential inhibition by ferulic acid of nitrate and ammonium uptake in Zea mays L. Plant Physiol 98, 639-645.
Bertin, C., L.A. Weston, T.C. Huang, G. Jander, T. Owens, J. Meinwald, F.C. Schroeder. 2007. Grass roots chemistry: meta-tyrosine, an herbicidal nonprotein amino acid. Proceedings of the National Academy of Sciences, pp. 16964-16969.
Bertin, C., X. Yang, L.A. Weston. 2003. The role of root exudates and allelochemicals in the rhizosphere. Plant and Soil 256, 67-83.
Bewley, J.D., K.J. Bradford, H.W.M. Hilhorst, H. Nonogaki. 2013. Seeds: Physiology of development, germination and dormancy. Springer Science & Business Media. New York, U.S.A.
Blum, U. 1998. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. Journal of Chemical Ecology 24, 685-708.
Blum, U. 2004. Fate of phenolic allelochemicals in soils–the role of soil and rhizosphere microorganisms. In: Macias, F.A., Galindo, J.C.G., Molinillo, J.M.G., Cutler, H.G.e. (Eds.), Allelopathy: Chemistry and mode of action of allelochemicals. CRC Press. Florida, U.S.A., pp. 57-76.
Blum, U. 2006. Allelopathy: A soil system perspective. In: Reigosa, M.J., Pedrol, N., Gonzalez, L.e. (Eds.), Allelopathy: A physiological process with ecological implications. Springer. Dordrecht, The Netherlands, pp. 299-340.
Blum, U. 2011. Plant-plant allelopathic interactions: Phenolic acids, crop cover and weed emergence. Springer. Dordrecht, The Netherlands.
Blum, U. 2014. Plant-plant allelopathic interactions II: Laboratory bioassays for water-soluble compounds with an emphasis on phenolic acids. Springer Science & Business Media. New York, U.S.A.
Blum, U., L.D. King, T.M. Gerig, M.E. Lehman, A.D. Worsham. 1997. Effects of clover and small grain cover crops and tillage techniques on seedling emergence of some dicotyledonous weed species. American Journal of Alternative Agriculture 12, 146-161.
Blum, U., E.L. Rice. 1969. Inhibition of symbiotic nitrogen-fixation by gallic and tannic acid, and possible roles in old-field succession. Bulletin of the Torrey Botanical Club 96, 531-544.
Blum, U., S.R. Shafer, M.E. Lehman. 1999. Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. an experimental model. Critical Reviews in Plant Sciences 18, 673-693.
Blum, U., S.B. Weed, B.R. Dalton. 1987. Influence of various soil factors on the effects of ferulic acid on leaf expansion of cucumber seedlings. Plant and Soil 98, 111-130.
Bohlman, F., T. Burkhardt, C. Zdero. 1973. Naturally occurring acetylenes. Academic. New York, U.S.A.
Börner, H. 1960. Liberation of organic substances from higher plants and their role in the soil sickness problem. The Botanical Review 26, 393-424.
Botto, J.F., A.L. Scopel, C.L. Ballaré, R.A. Sánchez. 1998. The effect of light during and after soil cultivation with different tillage implements on weed seedling emergence. Weed Sci 46, 351-357.
Boz, O. 2003. Allelopathic effects of wheat and rye straw on some weeds and crops. Asian Journal of Plant Sciences 2, 772-778.
Brecke, B.J. 1995. Wild poinsettia (Euphorbia heterophylla) germination and emergence. Weed Sci 43, 103-106.
Brecke, B.J., D.O. Stephenson, J.B. Unruh. 2005. Control of purple nutsedge (Cyperus rotundus) with herbicides and mowing. Weed Technology 19, 809-814.
Brooks, M. 1951. Effect of black walnut trees and their products on other vegetation. West Virginia University. West Virginia, U.S.A.
Buhler, D.D. 1997. Effects of tillage and light environment on emergence of 13 annual weeds. Weed Technology 11, 496-501.
Callaway, R.M., E.T. Aschehoug. 2000. Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290, 521-523.
Campbell, G., J.D.H. Lambert, T. Arnason, G.H.N. Towers. 1982. Allelopathic properties of α-terthienyl and phenylheptatriyne, naturally occurring compounds from species of Asteraceae. Journal of Chemical Ecology 8, 961-972.
Campiglia, E., R. Mancinelli, E. Radicetti, F. Caporali. 2010. Effect of cover crops and mulches on weed control and nitrogen fertilization in tomato (Lycopersicon esculentum Mill.). Crop Protection 29, 354-363.
Chachalis, D., K.N. Reddy. 2000. Factors affecting Campsis radicans seed germination and seedling emergence. Weed Sci 48, 212-216.
Chauhan, B.S., H.H. Ali, S. Florentine. 2019. Seed germination ecology of Bidens pilosa and its implications for weed management. Scientific Reports 9, 1-9.
Chauhan, B.S., G. Gill, C. Preston. 2006. Influence of environmental factors on seed germination and seedling emergence of Oriental mustard (Sisymbrium orientale). Weed Sci 54, 1025-1031.
Chauhan, B.S., D.E. Johnson. 2008a. Germination ecology of goosegrass (Eleusine indica): an important grass weed of rainfed rice. Weed Sci 56, 699-706.
Chauhan, B.S., D.E. Johnson. 2008b. Germination ecology of southern crabgrass (Digitaria ciliaris) and India crabgrass (Digitaria longiflora): two important weeds of rice in tropics. Weed Sci 56, 722-728.
Chauhan, B.S., D.E. Johnson. 2008c. Seed germination and seedling emergence of giant sensitiveplant (Mimosa invisa). Weed Sci 56, 244-248.
Chauhan, B.S., D.E. Johnson. 2009a. Ecological studies on Cyperus difformis, Cyperus iria and Fimbristylis miliacea: three troublesome annual sedge weeds of rice. Annals of Applied Biology 155, 103-112.
Chauhan, B.S., D.E. Johnson. 2009b. Germination ecology of spiny (Amaranthus spinosus) and slender amaranth (A. viridis): troublesome weeds of direct-seeded rice. Weed Sci 57, 379-385.
Chauhan, B.S., D.E. Johnson. 2009c. Germination, emergence, and dormancy of Mimosa pudica. Weed Biology and Management 9, 38-45.
Chauhan, B.S., D.E. Johnson. 2009d. Seed germination ecology of Portulaca oleracea L.: an important weed of rice and upland crops. Annals of Applied Biology 155, 61-69.
Chauhan, B.S., D.E. Johnson. 2010. The role of seed ecology in improving weed management strategies in the tropics. Advances in Agronomy 105, 221-262.
Cheema, Z.A., A. Khaliq, S. Saeed. 2004. Weed control in maize (Zea mays L.) through sorghum allelopathy. Journal of Sustainable Agriculture 23, 73-86.
Cheema, Z.A., A. Khaliq, M. Tariq. 2002. Evaluation of concentrated sorgaab alone and in combination with reduced rates of three preemergence herbicides for weed control in cotton (Gossypium hirsutum L.). International Journal of Agriculture Biology 4, 549-552.
Chen, Y.J., C.Y. Lin, H.W. Hsu, C.Y. Yeh, Y.H. Chen, T.F. Yeh, S.T. Chang. 2019. Seasonal variations in emission rates and composition of terpenoids emitted from Chamaecyparis formosensis (Cupressaceae) of different ages. Plant Physiology and Biochemistry 142, 405-414.
Chen, Y.J., C.Y. Lin, S.S. Cheng, S.T. Chang. 2011. Phylogenetic relationships of the genus Chamaecyparis inferred from leaf essential oil. Chemistry & Biodiversity 8, 1083-1097.
Chen, Y.J., C.Y. Lin, S.S. Cheng, S.T. Chang. 2015. Rapid Discrimination and Feature Extraction of Three Chamaecyparis Species by Static-HS/GC–MS. Journal of Agricultural and Food Chemistry 63, 810-820.
Cheng, S.S., M.T. Chua, E. Chang, H., C.G. Huang, W.J. Chen, S.T. Chang. 2009. Variations in insecticidal activity and chemical compositions of leaf essential oils from Cryptomeria japonica at different ages. Bioresource Technology 100, 465-470.
Chetram, R.S., L.E. Bendixen. 1974. Phytochrome controlled basal bulb formation in purple nutsedge. Weed Sci 22, 269-272.
Chien, S.C., P.H. Young, Y.J. Hsu, C.H. Chen, Y.J. Tien, S.Y. Shiu, T.H. Li, C.W. Yang, P. Marimuthu, L.F.L. Tsai. 2009. Anti-diabetic properties of three common Bidens pilosa variants in Taiwan. Phytochemistry 70, 1246-1254.
Chou, C.H. 1975. Leaching of cations from Miscanthus floridulus and its associated soil. Botanical Bulletin of Academia Sinica 16, 10-18.
Chou, C.H. 1977. Phytotoxic substances in twelve subtropical grasses. I. Additional evidences of phytotoxicity in the aqueous fractions of grass extracts. Botanical Bulletin of Academia Sinica 18, 131-141.
Chou, C.H. 1989. Allelopathic research of subtropical vegetation in Taiwan. IV. Comparative phytotoxic nature of leachate from four subtropical grasses. Journal of Chemical Ecology 15, 2149-2159.
Chou, C.H. 2006. Introduction to allelopathy. In: Reigosa, M.J., Pedrol, N., Gonzalez, L.e. (Eds.), Allelopathy: A physiological process with ecological implications. Springer. Dordrecht, The Netherlands, pp. 1-9.
Chou, C.H., S.J. Chang, C.M. Cheng, Y.C. Wang, F.H. Hsu, W.H. Den. 1989. The selective allelopathic interaction of a pasture-forest intercropping in Taiwan II. Interaction between kikuyu grass and three hardwood plants. Plant and Soil 116, 207-215.
Chou, C.H., Y.C. Chiang, H.H. Cheng. 1981. Autointoxication mechanism of Oryza sativa. III. Effect of temperature on phytotoxin production during rice straw decomposition in soil. Journal of Chemical Ecology 7, 741-752.
Chou, C.H., S.J. Chiou. 1979. Autointoxication mechanism of Oryza sativa. II. Effects of culture treatments on the chemical nature of paddy soil and on rice productivity. Journal of Chemical Ecology 5, 839-859.
Chou, C.H., Y.T. Chung. 1974. The allelopathic potential of Miscanthus floridulus. Botanical Bulletin of Academia Sinica 15, 14-27.
Chou, C.H., M.H. Hou. 1981. Allelopathic researches of subtropical vegetations in Taiwan. I. Evaluation of allelopathic potential of bamboo vegetation. Proceedings of the National Science Council, pp. 284-292.
Chou, C.H., S.Y. Hwang, C.I. Peng, Y.C. Wang, F.H. Hsu, N.J. Chung. 1987. The selective allelopathic interaction of a pasture-forest intercropping in Taiwan. Plant and Soil 98, 31-41.
Chou, C.H., Y.L. Kuo. 1986. Allelopathic research of subtropical vegetation in Taiwan III. Allelopathic exclusion of understory by Leucaena leucocephala (Lam.) de Wit. Journal of Chemical Ecology 12, 1431-1448.
Chou, C.H., H.J. Lin. 1976. Autointoxication mechanism of Oryza sativa. I. Phytotoxic effects of decomposing rice residues in soil. Journal of Chemical Ecology 2, 353-367.
Chou, C.H., G.R. Waller. 1983. Proceedings of the Seminar on Allelochemicals & Pheromones. In: Chou, C.H., Waller, G.R.e. (Eds.), Proceedings of the Seminar on Allelochemicals & Pheromones. Institute of Botany, Academia Sinica, Taipei, Taiwan.
Chou, C.H., C.M. Yang. 1982. Allelopathic research of subtropical vegetation in Taiwan II. Comparative exclusion of understory by Phyllostachys edulis and Cryptomeria japonica. Journal of Chemical Ecology 8, 1489-1507.
Chou, C.H., C.C. Young. 1975. Phytotoxic substances in twelve subtropical grasses. Journal of Chemical Ecology 1, 183-193.
Chung, C.Y., W.C. Yang, C.L. Liang, H.Y. Liu, S.K. Lai, C.L.T. Chang. 2016. Cytopiloyne, a polyacetylenic glucoside from Bidens pilosa, acts as a novel anticandidal agent via regulation of macrophages. Journal of Ethnopharmacology 184, 72-80.
Cirujeda, A., A. Anzalone, J. Aibar, M.M. Moreno, C. Zaragoza. 2012. Purple nutsedge (Cyperus rotundus L.) control with paper mulch in processing tomato. Crop Protection 39, 66-71.
Clough, R.C., R.D. Vierstra. 1997. Phytochrome degradation. Plant, Cell and Environment 20, 713-721.
Connelly, P. 2009. Horrible weed or miracle herb?: A review of Bidens pilosa. Journal of the Australian Traditional-Medicine Society 15, 77.
Cronan, C.S., W.A. Reiners. 1983. Canopy processing of acidic precipitation by coniferous and hardwood forests in New England. Oecologia 59, 216-223.
Czarnota, M.A., R.N. Paul, F.E. Dayan, C.I. Nimbal, L.A. Weston. 2001. Mode of action, localization of production, chemical nature, and activity of sorgoleone: a potent PSII inhibitor in Sorghum spp. root exudates. Weed Technology 15, 813-825.
Daglish, C. 1950. The isolation and identification of a hydrojuglone glycoside occurring in the walnut. Biochemical Journal 47, 452-457.
Davis, E.F. 1928. The toxic principle of Juglans nigra as identified with synthetic juglone and its toxic effects on tomato and alfalfa plants. American Journal of Botany 15, 620.
de Albuquerque, M.B., R.C. dos Santos, L.M. Lima, P. de Albuquerque Melo Filho, R.J.M.C. Nogueira, C.A.G. Da Câmara, A. de Rezende Ramos. 2010. Allelopathy, an alternative tool to improve cropping systems. A review. Agronomy for Sustainable Development 31.
Deba, F., T.D. Xuan, M. Yasuda, S. Tawata. 2007. Herbicidal and fungicidal activities and identification of potential phytotoxins from Bidens pilosa L. var. radiata Scherff. Weed Biology and Management 7, 77-83.
Dekker, J.H., W.F. Meggitt, A.R. Putnam. 1983. Experimental methodologies to evaluate allelopathic plant interactions. Journal of Chemical Ecology 9, 945-981.
Del Moral, R., C.H. Muller. 1969. Fog drip: a mechanism of toxin transport from Eucalyptus globulus. Bulletin of the Torrey Botanical Club 96, 467-475.
Del Moral, R., C.H. Muller. 1970. The allelopathic effects of Eucalyptus camaldulensis. American Midland Naturalist 83, 254-282.
Del Moral, R., R.J. Willis, D.H. Ashton. 1978. Suppression of coastal heath vegetation by Eucalyptus baxteri. Australian Journal of Botany 26, 203-219.
Delory, B.M., P. Delaplace, M.L. Fauconnier, P. du Jardin. 2016. Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions? Plant and Soil 402, 1-26.
Dornbos, D.L., G.F. Spencer. 1990. Natural products phytotoxicity a bioassay suitable for small quantities of slightly water-soluble compounds. Journal of Chemical Ecology 16, 339-352.
Downum, K., E. Rodriguez. 1986. Toxicological action and ecological importance of plant photosensitizers. Journal of Chemical Ecology 12, 823-834.
Downum, K.R. 1992. Tansley review no. 43. Light-activated plant defence. New Phytologist 122, 401-420.
Downum, K.R., S. Villegas, E. Rodriguez, D.J. Keil. 1989. Plant photosensitizers: A survey of their occurrence in arid and semiarid plants from North America. Journal of Chemical Ecology 15, 345-355.
Duke, S.O. 2015. Proving allelopathy in crop–weed interactions. Weed Sci 63, 121-132.
Duke, S.O., N. Cedergreen, E.D. Velini, R.G. Belz. 2006. Hormesis: is it an important factor in herbicide use and allelopathy? Outlooks on Pest Management 17, 29-33.
Duke, S.O., A. Oliva. 2004. Mode of action of phytotoxic terpenoids. In: Macias, F.A., Galindo, J.C.G., Molinillo, J.M.G., Cutler, H.G.e. (Eds.), Allelopathy: Chemistry and mode of action of allelochemicals. CRC Press. Florida, U.S.A.
Dunn, G.M., B.J. Long, D.G. Routley. 1981. Inheritance of cyclic hydroxamates in Zea mays L. Canadian Journal of Plant Science 61, 583-593.
Edenfield, M.W., B.J. Brecke, D.L. Colvin, J.A. Dusky, D.G. Shilling. 2005. Purple nutsedge (Cyperus rotundus) control with glyphosate in soybean and cotton. Weed Technology 19, 947-953.
Einhellig, F.A. 1995. Mechanism of action of allelochemicals in allelopathy. In: Inderjit, Dakshini, K.M.M., (eds.), E.F.A. (Eds.), Allelopathy, organisms, processes and applications. ACS Publications. Washington, DC, U.S.A, , pp. 96-116.
Einhellig, F.A. 2004. Mode of allelochemical action of phenolic compounds. In: Macias, F.A., Galindo, J.C.G., Molinillo, J.M.G., Cutler, H.G.e. (Eds.), Allelopathy: Chemistry and mode of action of allelochemicals. CRC Press. Florida, USA, pp. 217-238.
El-Gawad, A.M.A., I.A. Mashaly, M.E. Abu Ziada, M.R. Deweeb. 2015. Phytotoxicity of three Plantago species on germination and seedling growth of hairy beggarticks (Bidens pilosa L.). Egyptian Journal of Basic and Applied Sciences 2, 303-309.
El-Rokiek, K.G., R.R. El-Masry, N.K. Messiha, S.A. Ahmed. 2010. The allelopathic effect of mango leaves on the growth and propagative capacity of purple nutsedge (Cyperus rotundus L.). Journal of American Science 6, 151-159.
Enache, A.J., R.D. Ilnicki. 1990. Weed control by subterranean clover (Trifolium subterraneum) used as a living mulch. Weed Technology 4, 534-538.
Ens, E.J., J.B. Bremner, K. French, J. Korth. 2009. Identification of volatile compounds released by roots of an invasive plant, bitou bush (Chrysanthemoides monilifera spp. rotundata), and their inhibition of native seedling growth. Biological Invasions 11, 275-287.
Evetts, L.L., O.C. Burnside. 1972. Germination and seedling development of common milkweed and other species. Weed Sci 20, 371-378.
Fay, P.K., W.B. Duke. 1977. An assessment of allelopathic potential in Avena germ plasm. Weed Sci 25, 224-228.
Fenner, M. 1980a. Germination tests on thirty‐two East African weed species. Weed Research 20, 135-138.
Fenner, M. 1980b. The induction of a light requirement in Bidens pilosa seeds by leaf canopy shade. New Phytologist 84, 103-106.
Fenner, M. 1980c. The inhibition of germination of Bidens pilosa seeds by leaf canopy shade in some natural vegetation types. New Phytologist 84, 95-101.
Finney, D.M., N.G. Creamer, J.R. Schultheis, M.G. Wagger, C. Brownie. 2009. Sorghum sudangrass as a summer cover and hay crop for organic fall cabbage production. Renewable Agriculture and Food Systems 24, 225-233.
Fitter, A. 2003. Making allelopathy respectable. Science 301, 1337-1338.
Flann, C. 2009. Global Compositae Checklist Accessed: [2017/9/9]. <http://compositae.landcareresearch.co.nz/Default.aspx.>.
Forcella, F., K. Eradat-Oskoui, S.W. Wagner. 1993. Application of weed seedbank ecology to low‐input crop management. Ecological Applications 3, 74-83.
Forsyth, C., N.A.C. Brown. 1982. Germination of the dimorphic fruits of Bidens pilosa L. New Phytologist 90, 151-164.
Fragasso, M., A. Iannucci, R. Papa. 2013. Durum wheat and allelopathy: toward wheat breeding for natural weed management. Frontiers in Plant Science 4, 375.
Friedman, J., G.R. Waller. 1985. Allelopathy and autotoxicity. Trends in Biochemical Sciences 10, 47-50.
Fuerst, E.P., A.R. Putnam. 1983. Separating the competitive and allelopathic components of interference. Journal of Chemical Ecology 9, 937-944.
Fujii, Y., S. Hiradate. 2007. Allelopathy: new concepts & methodology. Science Publishers. New Hampshire, U.S.A.
Fujii, Y., S.S. Parvez, M.M. Parvez, Y. Ohmae, O. Iida. 2003. Screening of 239 medicinal plant species for allelopathic activity using the sandwich method. Weed Biology and Management 3, 233-241.
Fujii, Y., T. Shibuya, K. Nakatani, T. Itani, S. Hiradate, M.M. Parvez. 2004. Assessment method for allelopathic effect from leaf litter leachates. Weed Biology and Management 4, 19-23.
Gallagher, R.S., J. Cardina. 1998. Phytochrome-mediated Amaranthus germination II: development of very low fluence sensitivity. Weed Sci 46, 53-58.
Gallet, C. 1994. Allelopathic potential in bilberry-spruce forests: influence of phenolic compounds on spruce seedlings. Journal of Chemical Ecology 20, 1009-1024.
Geretharan, T., U.R. Sangakkara, V. Arulnandhy. 2012. Competitive performance of purple nutsedge (Cyperus rotundus L.) and onion (Allium cepa L.) as affected by different sources of nitrogen. Tropical Agricultural Research 23, 290-299.
Gershenzon, J., J.E. Engelberth. 2010. Secondary Metabolites and plant defens. In: Taiz, L., Zeiger, E.e. (Eds.), Plant physiology and development. Sinauer Associates Inc. Massachusetts, U.S.A.
Gibson, D.J., J. Connolly, D.C. Hartnett, J.D. Weidenhamer. 1999. Designs for greenhouse studies of interactions between plants. Journal of Ecology 87, 1-16.
Glass, A.D.M., J. Dunlop. 1974. Influence of phenolic acids on ion uptake: IV. Depolarization of membrane potentials. Plant Physiol 54, 855-858.
Gorham, E. 1979. Shoot height, weight and standing crop in relation to density of monospecific plant stands. Nature 279, 148-150.
Hall, A.B., U. Blum, R.C. Fites. 1982. Stress modification of allelopathy of Helianthus annuus L. debris on seed germination. American Journal of Botany 69, 776-783.
Hanson, A.D., P.L. Traynor, K.M. Ditz, D.A. Reicosky. 1981. Gramine in barley forage‐Effects of genotype and environment. Crop Science 21, 726-730.
Haugland, E., L.O. Brandsaeter. 1996. Experiments on bioassay sensitivity in the study of allelopathy. Journal of Chemical Ecology 22, 1845-1859.
Henson, I.E., E.C.S. Little. 1969. Penetration of polyethylene film by the shoots of Cyperus rotundus. PANS 15, 64-66.
Holmes, M.G., H. Smith. 1977. The function of phytochrome in the natural environment—II. The influence of vegetation canopies on the spectral energy distribution of natural daylight. Photochemistry and Photobiology 25, 539-545.
Holt, J.S., D.R. Orcutt. 1996. Temperature thresholds for bud sprouting in perennial weeds and seed germination in cotton. Weed Sci 44, 523-533.
Hong, N.H., T.D. Xuan, T. Eiji, T.D. Khanh. 2004. Paddy weed control by higher plants from Southeast Asia. Crop Protection 23, 255-261.
Horowitz, M. 1973. Competitive effects of three perennial weeds, Cynodon dactylon (L.) Pers., Cyperns rotundus L. and Sorghum halepense (L.) Pers., on young citrus. Journal of Horticultural Science 48, 135-147.
Hsiao, A.I. 1980. The effect of sodium hypochlorite, gibberellic acid and light on seed dormancy and germination of stinkweed and wild mustard. Canadian Journal of Plant Science 60, 643-649.
Hsiung, Y.C., Y.A. Chen, S.Y. Chen, W.C. Chi, R.H. Lee, T.Y. Chiang, H.J. Huang. 2013. Volatilized myrcene inhibits growth and activates defense responses in rice roots. Acta Physiologiae Plantarum 35, 2475-2482.
Hsu, H.M., W.Y. Kao. 2009. Contrasting effects of aqueous tissue extracts from an invasive plant, Bidens pilosa L. var. radiata, on the performance of its sympatric plant species. Taiwania 54, 255-260.
Hsu, H.M., W.Y. Kao. 2014. Vegetative and reproductive growth of an invasive weed Bidens pilosa L. var. radiata and its noninvasive congener Bidens bipinnata in Taiwan. Taiwania 59, 119-126.
Huang, L.F., L.X. Song, X.J. Xia, W.H. Mao, K. Shi, Y.H. Zhou, J.Q. Yu. 2013. Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. Journal of Chemical Ecology 39, 232-242.
Huang, Y.L., W.Y. Kao. 2014. Different breeding systems of three varieties of Bidens pilosa in Taiwan. Weed Research 54, 162-168.
Huang, Y.L., W.Y. Kao. 2016. Comparisons of growth, biomass allocation, and morphology of an invasive and two non-invasive varieties of Bidens pilosa in Taiwan. Taiwania 61, 288-294.
Hyder, P.W., E.L. Fredrickson, R.E. Estell, M.E. Lucero. 2002. Transport of phenolic compounds from leaf surface of creosotebush and tarbush to soil surface by precipitation. Journal of Chemical Ecology 28, 2475-2482.
Ichihara, K.I., T. Kawai, M. Kaji, M. Noda. 1976. A new polyacetylene from Solidago altissima L. Agricultural and Biological Chemistry 40, 353-358.
Ichihara, K.I., T. Kawai, M. Noda. 1978. Polyacetylenes of Solidago altissima L. Agricultural and Biological Chemistry 42, 427-431.
Inderjit, R.M. Callaway. 2003. Experimental designs for the study of allelopathy. Plant and soil 256, 1-11.
Inderjit, R. del Moral. 1997. Is separating resource competition from allelopathy realistic? The Botanical Review 63, 221-230.
Iqbal, J., Z.A. Cheema, M. An. 2007. Intercropping of field crops in cotton for the management of purple nutsedge (Cyperus rotundus L.). Plant and Soil 300, 163-171.
Iqbal, J., S. Hussain, A. Ali, A. Javaid. 2012. Biology and management of purple nutsedge (Cyperus rotundus L.). The Journal of Animal & Plant Sciences 22, 384-389.
Irons, S.M., O.C. Burnside. 1982. Competitive and allelopathic effects of sunflower (Helianthus annuus). Weed Sci 30, 372-377.
Jabran, K., Z.A. Cheema, M. Farooq, S.M.A. Basra, M. Hussain, H. Rehman. 2008. Tank mixing of allelopathic crop water extracts with pendimethalin helps in the management of weeds in canola (Brassica napus) field. International Journal of Agriculture Biology 10, 293-296.
Jabran, K., Z.A. Cheema, M. Farooq, M. Hussain. 2010. Lower doses of pendimethalin mixed with allelopathic crop water extracts for weed management in canola (Brassica napus). International Journal of Agriculture Biology 12, 335-340.
Jain, R., M. Singh. 1989. Factors affecting goatweed (Scoparia dulcis) seed germination. Weed Sci 37, 766-770.
Jassbi, A.R., S. Zamanizadehnajari, I.T. Baldwin. 2010. Phytotoxic volatiles in the roots and shoots of Artemisia tridentata as detected by headspace solid-phase microextraction and gas chromatographic-mass spectrometry analysis. Journal of Chemical Ecology 36, 1398-1407.
Jensen, P.K. 1995. Effect of light environment during soil disturbance on germination and emergence pattern of weeds. Annals of Applied Biology 127, 561-571.
Jobbágy, E.G., R.B. Jackson. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10, 423-436.
Justice, O.L., M.H. Reece. 1954. A review of literature and investigation on the effects of hydrogen-ion concentration on the germination of seeds. Proceedings of the Association of Official Seed Analysts, vol. 44, pp. 144–149., pp. 144-149.
Kabera, J.N., E. Semana, A.R. Mussa, X. He. 2014. Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. Journal of Pharmacy and Pharmacology 2, 377-392.
Kanchan, S.D., Jayachandra. 1979. Allelopathic effects of Parthenium hysterophorus L. I. Exudation of inhibitors through roots. Plant and Soil 53, 27-35.
Kanchan, S.D., Jayachandra. 1980a. Allelopathic effects of Parthenium hysterophorus L. II. Leaching of inhibitors from aerial vegetative parts. Plant and Soil 55, 61-66.
Kanchan, S.D., Jayachandra. 1980b. Allelopathic effects of Parthenium hysterophorus L. IV. Identification of inhibitors. Plant and Soil 55, 67-75.
Kegge, W., R. Pierik. 2010. Biogenic volatile organic compounds and plant competition. Trends in Plant Science 15, 126-132.
Khaliq, A., A. Matloob, M.S. Irshad, A. Tanveer, M.S.I. Zamir. 2010. Organic weed management in maize (Zea mays L.) through integration of allelopathic crop residues. Pakistan Journal of Weed Science Research 16, 409-420.
Khanh, T.D., M.I. Chung, T.D. Xuan, S. Tawata. 2005. The exploitation of crop allelopathy in sustainable agricultural production. Journal of Agronomy and Crop Science 191, 172-184.
Khanh, T.D., L.C. Cong, T.D. Xuan, Y. Uezato, F. Deba, T. Toyama, S. Tawata. 2009. Allelopathic plants: 20. hairy beggarticks (Bidens pilosa L.). Allelopathy Journal 24, 243-254.
Khasabulli, B.D., D.M. Musyimi, O. George, M.N. Gichuhi. 2018. Allelopathic effect of Bidens pilosa on seed germination and growth of Amaranthus dubius. Journal of Asian Scientific Research 8, 103.
Kobayashi, A., S. Morimoto, Y. Shibata, K. Yamashita, M. Numata. 1980. C 10-polyacetylenes as allelopathic substances in dominants in early stages of secondary succession. Journal of Chemical Ecology 6, 119-131.
Kobe, R.K., M. Iyer, M.B. Walters. 2010. Optimal partitioning theory revisited: nonstructural carbohydrates dominate root mass responses to nitrogen. Ecology 91, 166-179.
Kong, C.H., X.H. Chen, F. Hu, S.Z. Zhang. 2011. Breeding of commercially acceptable allelopathic rice cultivars in China. Pest Management science 67, 1100-1106.
Kong, C.H., F. Hu, T. Xu, Y.H. Lu. 1999. Allelopathic potential and chemical constituents of volatile oil from Ageratum conyzoides. Journal of Chemical Ecology 25, 2347-2356.
Kong, C.H., W. Liang, F. Hu, X.H. Xu, P. Wang, Y. Jiang, B.H. Xing. 2004a. Allelochemicals and their transformations in the Ageratum conyzoides intercropped citrus orchard soils. Plant and Soil 264, 149-157.
Kong, C.H., W. Liang, X.H. Xu, F. Hu, P. Wang, Y. Jiang. 2004b. Release and activity of allelochemicals from allelopathic rice seedlings. Journal of Agricultural and Food Chemistry 52, 2861-2865.
Kong, C.H., P. Wang, C.X. Zhang, M.X. Zhang, F. Hu. 2006. Herbicidal potential of allelochemicals from Lantana camara against Eichhornia crassipes and the alga Microcystis aeruginosa. Weed Research 46, 290-295.
Kong, C.H., T.D. Xuan, T.D. Khanh, H.D. Tran, N.T. Trung. 2019. Allelochemicals and signaling chemicals in plants. Molecules 24, 2737.
Krumsri, R., U. Suwunnamek, W. Homhaul, C. Laosinwattana, T. Poonpaiboonpipattana. 2015. Allelopathic effects of Bidens pilosa var. radiata and its preliminary utilization to control weeds in rice. Journal of Agricultural Technology 11, 1875-1886.
Kuzyakov, Y., G. Domanski. 2000. Carbon input by plants into the soil. Review. Journal of Plant Nutrition and Soil Science 163, 421-431.
Latif, S., G. Chiapusio, L.A. Weston. 2017. Allelopathy and the role of allelochemicals in plant defence. In: Becard, G.e. (Ed.), Advances in Botanical Research, Volume 82. Academic Press. London, U.K, pp. 19-54.
Leather, G.R. 1983. Sunflowers (Helianthus annuus) are allelopathic to weeds. Weed Sci 31, 37-42.
Leather, G.R., F.A. Einhellig. 1988. Bioassay of naturally occurring allelochemicals for phytotoxicity. Journal of Chemical Ecology 14, 1821-1828.
Lebecque, S., J.M. Crowet, L. Lins, B.M. Delory, P. du Jardin, M.L. Fauconnier, M. Deleu. 2018. Interaction between the barley allelochemical compounds gramine and hordenine and artificial lipid bilayers mimicking the plant plasma membrane. Scientific Reports 8, 1-13.
Liebl, R.A., A.D. Worsham. 1983. Inhibition of pitted morning glory (Ipomoea lacunosa L.) and certain other weed species by phytotoxic components of wheat (Triticum aestivum L.) straw. Journal of Chemical Ecology 9, 1027-1043.
Liebman, M., E. Dyck. 1993. Crop rotation and intercropping strategies for weed management. Ecological Applications 3, 92-122.
Lin, C.Y., Y.J. Chen, S.S. Cheng, S.T. Chang. 2011. Rapid differentiation of three Chamaecyparis species (Cupressaceae) grown in Taiwan using solid-phase microextraction–gas chromatography/mass spectrometry, cluster analysis, and principal component analysis. Journal of Agricultural and Food Chemistry 59, 10854-10859.
Litts, J.C., J.M. Kelly, J.C. Lagarias. 1983. Structure-function studies on phytochrome. Preliminary characterization of highly purified phytochrome from Avena sativa enriched in the 124-kilodalton species. Journal of Biological Chemistry 258, 11025-11031.
Liu, C., X. Liu, X. Tian, J. Zhang, Z. Zhang, J. Shi, J. Xu, X. Ren. 2020. Determination of volatile profiles inside apple fruit storage facilities using MonoTrap™ monolithic silica adsorbent and GC–MS. Horticultural Plant Journal (In Press).
Lok, A.F.S.L., K.-x. Tan, H.T.W. Tan. 2010. The ecology and distribution in Singapore of Bidens pilosa L.(Asteraceae). COSMOS 6, 39-44.
Lorenzo, P., E. Pazos-Malvido, L. González, M.J. Reigosa. 2008. Allelopathic interference of invasive Acacia dealbata: physiological effects. Allelopathy Journal (Allelopath. J.) 22, 64-76.
Lovett, J. 2007. Hans Molisch' legacy. Allelopathy Journal 19, 49-60.
Maguire, J.D. 1962. Speed of germination—Aid in selection and evaluation for seedling emergence and vigor. Crop Science 2, 176-177.
Mahmood, A.R.I.F., Z.A. Cheema. 2004a. Influence of sorghum mulch on purple nutsedge (Cyperus rotundus L.). Int. J. Agric. Biol 6, 86-88.
Mahmood, A.R.I.F., Z.A. Cheema. 2004b. Influence of sorghum mulch on purple nutsedge (Cyperus rotundus L.). International Journal of Agriculture and Biology 6, 86-88.
Mahmood, A.R.I.F., Z.A. Cheema, M.N. Mushtaq, M. Farooq. 2013. Maize–sorghum intercropping systems for purple nutsedge management. Archives of Agronomy and Soil Science 59, 1279-1288.
Masiunas, J.B. 1998. Production of vegetables using cover crop and living mulches—a review. Journal of Vegetable Crop Production 4, 11-31.
Matloob, A., A. Khaliq, M. Farooq, Z.A. Cheema. 2010. Quantification of allelopathic potential of different crop residues for the purple nutsedge suppression. Pakistan Journal of Weed Science Research 16, 1-12.
McPherson, J.K., C.H. Chou, C.H. Muller. 1971. Allelopathic constituents of the chaparral shrub Adenostoma fasciculatum. Phytochemistry 10, 2925-2933.
McPherson, J.K., C.H. Muller. 1969. Allelopathic effects of Adenostoma fasciculatum," chamise", in the California chaparral. Ecological Monographs 39, 177-198.
Mennan, H., K. Jabran, B.H. Zandstra, F. Pala. 2020. Non-chemical weed management in vegetables by using cover crops: A review. Agronomy 10, 257.
Minto, R.E., B.J. Blacklock. 2008. Biosynthesis and function of polyacetylenes and allied natural products. Progress in Lipid Research 47, 233-306.
Molina, A., M.J. Reigosa, A. Carballeira. 1991. Release of allelochemical agents from litter, throughfall, and top soil in plantations of Eucalyptus globulus Labill in Spain. Journal of Chemical Ecology 17, 147-160.
Molisch, H. 1937. Der Einfluss einer Pflanze auf die andere – Allelopathie. Gustav Fischer, Jena.
Morales-Payan, J.P., B.M. Santos, W.M. Stall, T.A. Bewick. 1997. Effects of purple nutsedge (Cyperus rotundus) on tomato (Lycopersicon esculentum) and bell pepper (Capsicum annuum) vegetative growth and fruit yield. Weed Technology 11, 672-676.
Muller, C.H. 1965. Inhibitory terpenes volatilized from Salvia shrubs. Bulletin of the Torrey Botanical Club 92, 38-45.
Muller, C.H. 1966. The role of chemical inhibition (allelopathy) in vegetational composition. Bulletin of the Torrey Botanical Club 93, 332-351.
Muller, C.H. 1969. Allelopathy as a factor in ecological process. Vegetatio 18, 348-357.
Muller, C.H., R. del Moral. 1966. Soil toxicity induced by terpenes from Salvia leucophylla. Bulletin of the Torrey Botanical Club 93, 130-137.
Muller, C.H., W.H. Muller, B.L. Haines. 1964. Volatile growth inhibitors produced by aromatic shrubs. Science 143, 471-473.
Muller, W.H. 1986. Allelochemical mechanisms in the inhibition of herbs by chaparral shrubs. In: Putnam, A.R., Tang, C.S.e. (Eds.), The science of allelopathy. John Wiley & Sons, Inc., New York, U.S.A.
Muller, W.H., R. Hauge. 1967. Volatile growth inhibitors produced by Salvia leucophylla: effect on seedling anatomy. Bulletin of the Torrey Botanical Club 94, 182-191.
Muller, W.H., C.H. Muller. 1964. Volatile growth inhibitors produced by Salvia species. Bulletin of the Torrey Botanical Club 91, 327-330.
Nakamura, I., M.A. Hossain. 2009. Factors affecting the seed germination and seedling emergence of redflower ragleaf (Crassocephalum crepidioides). Weed Biology and Management 9, 315-322.
Nakano, H., Y. Fujii, K. Yamada, S. Kosemura, S. Yamamura, K. Hasegawa, T. Suzuki. 2002. Isolation and identification of plant growth inhibitors as candidate(s) for allelopathic substance(s), from aqueous leachate from mesquite (Prosopis juliflora (Sw.) DC.) leaves. Plant Growth Regulation 37, 113-117.
Nakano, H., E. Nakajima, Y. Fujii, K. Yamada, H. Shigemori, K. Hasegawa. 2003. Leaching of the allelopathic substance,L-tryptophan from the foliage of mesquite (Prosopis juliflora (Sw.) DC.) plants by water spraying. Plant Growth Regulation 40, 49-52.
Netzly, D.H., L.G. Butler. 1986. Roots of sorghum exude hydrophobic droplets containing biologically active components. Crop Science 26, 775-778.
Ng, C.C., S.J. Wu, C.Y. Wang, W.S. Tzeng, Y.T. Shyu. 2011. Emergence and growth of beggarticks (Bidens pilosa var. radiata) in different plant communities under experimental field conditions. Journal of Agricultural Science and Technology A 1, 950-962.
Ngouajio, M., J. Ernest. 2004. Light transmission through colored polyethylene mulches affects weed populations. HortScience 39, 1302-1304.
Ngouajio, M., H. Mennan. 2005. Weed populations and pickling cucumber (Cucumis sativus) yield under summer and winter cover crop systems. Crop Protection 24, 521-526.
Nilsson, M.C. 1994. Separation of allelopathy and resource competition by the boreal dwarf shrub Empetrum hermaphroditum Hagerup. Oecologia 98, 1-7.
Nilsson, M.C., P. Högberg, O. Zackrisson, W. Fengyou. 1993. Allelopathic effects by Empetrum hermaphroditum on development and nitrogen uptake by roots and mycorrhizae of Pinus silvestris. Canadian Journal of Botany 71, 620-628.
Nilsson, M.C., O. Zackrisson, O. Sterner, A. Wallstedt. 2000. Characterisation of the differential interference effects of two boreal dwarf shrub species. Oecologia 123, 122-128.
Nimbal, C.I., J.F. Pedersen, C.N. Yerkes, L.A. Weston, S.C. Weller. 1996. Phytotoxicity and distribution of sorgoleone in grain sorghum germplasm. Journal of Agricultural and Food Chemistry 44, 1343-1347.
Nishida, N., S. Tamotsu, N. Nagata, C. Saito, A. Sakai. 2005. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. Journal of Chemical Ecology 31, 1187-1203.
Nishimoto, R.K. 2001. Purple nutsedge tuber sprouting. Weed Biology and Management 1, 203-208.
Nyasembe, V.O., X. Cheseto, F. Kaplan, W.A. Foster, P.E.A. Teal, J.H. Tumlinson, C. Borgemeister, B. Torto. 2015. The invasive American weed Parthenium hysterophorus can negatively impact malaria control in Africa. PLoS One 10, e0137836.
Olofsdotter, M., D. Navarez, K. Moody. 1995. Allelopathic potential in rice (Oryza sativa L.) germplasm. Annals of Applied Biology 127, 543-560.
Patterson, D.T. 1998. Suppression of purple nutsedge (Cyperus rotundus) with polyethylene film mulch. Weed Technology 12, 275-280.
Peerzada, A.M. 2017. Biology, agricultural impact, and management of Cyperus rotundus L.: the world’s most tenacious weed. Acta Physiologiae Plantarum 39, 270.
Peng, C.I., k.F. Chung, H.L. Li. 1998. Compositae. In: Huang, T.C.a.E.C.o.t.F.o.T.e. (Ed.), Flora of Taiwan (2nd), National Taiwan University. Taipei, Taiwan., pp. 868-870.
Petersen, J., R. Belz, F. Walker, K. Hurle. 2001. Weed suppression by release of isothiocyanates from turnip‐rape mulch. Agronomy Journal 93, 37-43.
Picman, J., A.K. Picman. 1984. Autotoxicity in Parthenium hysterophorus and its possible role in control of germination. Biochemical Systematics and Ecology 12, 287-292.
Politycka, B. 2005. Soil sickness and allelopathy. Allelopathy Journal 16, 77-84.
Politycka, B., D. Adamska. 2003. Release of phenolic compounds from apple residues decomposing in soil and the influence of temperature on their degradation. Polish Journal of Environmental Studies 12, 95-98.
Poonpaiboonpipat, T., S. Poolkum. 2019. Utilization of Bidens pilosa var. radiata (Sch. Bip.) Sherff integrated with water irrigation for paddy weed control and rice yield production. Weed Biology and Management 19, 31-38.
Putnam, A.R., W.B. Duke. 1974. Biological suppression of weeds: evidence for allelopathy in accessions of cucumber. Science 185, 370-372.
Qasem, J.R. 2017. A new technology separating allelopathy from competition in pot experiments. International Journal of Agricultural Science and Food Technology 3, 019-025.
Qi, S.S., Z.C. Dai, S.L. Miao, D.L. Zhai, C.C. Si, P. Huang, R.P. Wang, D.L. Du. 2014. Light limitation and litter of an invasive clonal plant, Wedelia trilobata, inhibit its seedling recruitment. Annals of botany 114, 425-433.
Ramana, S., A.K. Biswas, S. Kundu, J.K. Saha, R.B.R. Yadava. 2002. Effect of distillery effluent on seed germination in some vegetable crops. Bioresource Technology 82, 273-275.
Rani, K., S.S. Arya, S. Devi, V. Kaur. 2017. Plant volatiles and defense. In: Choudhary, D.K., Sharma, A.K., Agarwal, P., Varma, A., Tuteja, N.e. (Eds.), Volatiles and food security. Springer, Singapore, pp. 113-134.
Rashid, M.H., T. Asaeda, M.N. Uddin. 2010. Litter‐mediated allelopathic effects of kudzu (Pueraria montana) on Bidens pilosa and Lolium perenne and its persistence in soil. Weed Biology and Management 10, 48-56.
Rasouli, H., M.H. Farzaei, K. Mansouri, S. Mohammadzadeh, R. Khodarahmi. 2016. Plant cell cancer: May natural phenolic compounds prevent onset and development of plant cell malignancy? A literature review. Molecules 21, 1104.
Ravlić, M., R. Baličević, M. Nikolić, A. Sarajlić. 2016. Assessment of allelopathic potential of fennel, rue and sage on weed species hoary cress (Lepidium draba). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 44, 48-52.
Reddy, K.N., M. Singh. 1992. Germination and emergence of hairy beggarticks (Bidens pilosa). Weed Sci 40, 195-199.
Rice, E.L. 1964. Inhibition of nitrogen‐fixing and nitrifying bacteria by seed plants (I.). Ecology 45, 824-837.
Rice, E.L. 1965a. Inhibition of nitrogen-fixing and nitrifying bacteria by seed plants III. Comparison of three species of Euphorbia. Proceedings of the Oklahoma Academy of Science, pp. 43-44.
Rice, E.L. 1965b. Inhibition of nitrogen-fixing and nitrifying bacteria by seed plants IV. The inhibitors produced by Ambrosia elatior and A. psilostachya. The Southwestern Naturalist 10, 248-255.
Rice, E.L. 1965c. Inhibition of nitrogen‐fixing and nitrifying bacteria by seed plants II. Characterization and identification of inhibitors. Physiologia Plantarum 18, 255-268.
Rice, E.L. 1969. Inhibition of nitrogen‐fixing and nitrifying bacteria by seed plants: VI. Inhibitors from Euphorbia supina. Physiologia Plantarum 22, 1175-1183.
Rice, E.L. 1974. Allelopathy. Academic press. New York, U.S.A.
Rice, E.L. 1984. Allelopathy (2nd). Academic Press. New York, U.S.A.
Rice, E.L., R.L. Parenti. 1967. Inhibition of nitrogen-fixing and nitrifying bacteria by seed plants. V. Inhibitors produced by Bromus japonicus Thunb. The Southwestern Naturalist 12, 97-103.
Rice, E.L., W.T. Penfound, L.M. Rohrbaugh. 1960. Seed dispersal and mineral nutrition in succession in abandoned fields in central Oklahoma. Ecology 41, 224-228.
Ridenour, W.M., R.M. Callaway. 2001. The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia 126, 444-450.
Rietveld, W.J. 1983. Allelopathic effects of juglone on germination and growth of several herbaceous and woody species. Journal of Chemical Ecology 9, 295-308.
Romagni, J.G., S.N. Allen, F.E. Dayan. 2000. Allelopathic effects of volatile cineoles on two weedy plant species. Journal of Chemical Ecology 26, 303-313.
Sasamoto, H., Y. Azumi, M. Shimizu, Y.K. Hachinohe, S. Suzuki. 2018. In vitro bioassay of allelopathy of Arabidopsis thaliana by sandwich method and protoplast co-culture method with digital image analysis. Plant Biotechnology 34, 199-202.
Scavo, A., C. Abbate, G. Mauromicale. 2019a. Plant allelochemicals: agronomic, nutritional and ecological relevance in the soil system. Plant and Soil 442, 23-48.
Scavo, A., A. Restuccia, C. Abbate, G. Mauromicale. 2019b. Seeming field allelopathic activity of Cynara cardunculus L. reduces the soil weed seed bank. Agronomy for Sustainable Development 39, 41.
Schenk, H.J. 2006. Root competition: beyond resource depletion. Journal of Ecology 94, 725-739.
Schenk, S.U., D. Werner. 1991. β-(3-isoxazolin-5-on-2-yl)-alanine from Pisum: allelopathic properties and antimycotic bioassay. Phytochemistry 30, 467-470.
Schmidt, S., R.E. Ley. 1994. Microbial competition and soil structure limit the expression of allelochemicals in nature. In: Inderjit, Dakshini, K.M.M., Foy, C.L.e. (Eds.), Principles and practices in plant ecology: Allelochemical interactions. CRC Press. Florida, U.S.A, pp. 339-351.
Schreiber, M.M. 1992. Influence of tillage, crop rotation, and weed management on giant foxtail (Setaria faberi) population dynamics and corn yield. Weed Sci, 645-653.
Scopel, A.L., C.L. Ballaré, R.A. Sánchez. 1991. Induction of extreme light sensitivity in buried weed seeds and its role in the perception of soil cultivations. Plant, Cell & Environment 14, 501-508.
Seigler, D.S. 2006. Basic pathways for the origin of allelopathic compounds. In: Reigosa, M.J., Pedrol, N., Gonzalez, L.e. (Eds.), Allelopathy: A physiological process with ecological implications. Springer. Dordrecht, The Netherlands, pp. 11-61.
Shah, A.N., J. Iqbal, S. Fahad, M. Tanveer, G. Yang, E.A. Khan, B. Shahzad, M. Yousaf, W. Hassan, A. Ullah. 2017. Allelopathic influence of sesame and green gram intercrops on cotton in a replacement series. CLEAN–Soil, Air, Water 45.
Shamsi, S.R.A., F.H. Whitehead. 1974. Comparative eco-physiology of Epilobium hirsutum L. and Lythrum salicaria L.: I. General biology, distribution and germination. Journal of Ecology 62, 279-290.
Shen, S., G. Xu, D. Li, D.R. Clements, G. Jin, X. Yin, R. Gao, F. Zhang. 2017. Occurrence and damage of invasive alien plants in Dehong Prefecture, western of Yunnan Province. Acta Ecologica Sinica 37, 195-200.
Sherff, E.E., B.E. Dahlgren. 1937. The genus Bidens. Field Museum of Natural History. Chicago, U.S.A, Chicago.
Shilling, D.G., J.A. Dusky, M.A. Mossier, T.A. Bewick. 1992. Allelopathic potential of celery residues on lettuce. Journal of the American Society for Horticultural Science 117, 308-312.
Shimamoto, Y., N. Nomura, T. Takaso, H. Setoguchi. 2011. Overcompensation of seed production caused by clipping of Bidens pilosa var. radiata (Compositae): Implications for weed control on Iriomote‐Jima Island, Japan. Weed Biology Management 11, 118-126.
Silva, F.L., D.C.H. Fischer, J.F. Tavares, M.S. Silva, P.F. de Athayde-Filho, J.M. Barbosa-Filho. 2011. Compilation of secondary metabolites from Bidens pilosa L. Molecules 16, 1070-1102.
Singh, H., D.R. Batish, R. Kohli. 1999. Autotoxicity: concept, organisms, and ecological significance. Critical Reviews in Plant Sciences 18, 757-772.
Singh, H.P., D.R. Batish, R.K. Kohli. 2003. Allelopathic interactions and allelochemicals: new possibilities for sustainable weed management. Critical Reviews in Plant Sciences 22, 239-311.
Singh, H.P., D.R. Batish, R.K. Kohli. 2006. Handbook of sustainable weed management. Food Products Press. New York, U.S.A.
Singh, R., U.K. Hazarika. 1996. Allelopathic effects of Galinsoga parviflora Car. and Bidens pilosa L. on germination and seedling growth of soybean and groundnut. Allelopathy Journal 3, 89-92.
Snaydon, R.W. 1971. An analysis of competition between plants of Trifolium repens L. populations collected from contrasting soils. Journal of Applied Ecology 8, 687-697.
Soderquist, C.J. 1973. Juglone and allelopathy. Journal of Chemical Education 50, 782.
Song, Q., F. Qin, H. He, H. Wang, S. Yu. 2019. Allelopathic potential of rain leachates from Eucalyptus urophylla on four tree species. Agroforestry Systems 93, 1307-1318.
Soteres, J.K., D.S. Murray. 1981. Germination and development of honeyvine milkweed (Ampelamus albidus) seed. Weed Sci 29, 625-628.
Standifer, L., P. Wilson. 1988. A high temperature requirement for after ripening of imbibed dormant Poa annua L. seeds. Weed Research 28, 365-371.
Stevens, G.A., C.S. Tang. 1985. Inhibition of seedling growth of crop species by recirculating root exudates of Bidens pilosa L. Journal of Chemical Ecology 11, 1411-1425.
Stevens, G.A., C.S. Tang. 1987. Inhibition of crop seedling growth by hydrophobic root exudates of the weed Bidens pilosa. Journal of Tropical Ecology 3, 91-94.
Stevens, K.L. 1986. Polyacetylenes as allelochemicals. In: A.R., P., (eds.), T.C.S. (Eds.), The science of allelopathy. John Wiley & Sons, Inc., New York, U.S.A, New York, USA, pp. 219-228.
Suthar, A.C., V.R. Naik, R.M. Mulani. 2009. Seed and seed germination in Solanum nigrum Linn. American-Eurasian Journal of Agricultural and Environmental Sciences 5, 179-183.
Tahir, M., M.R. Javed, A. Tanveer, M.A. Nadeem, A. Wasaya, S.A.H. Bukhari, J.U. Rehman. 2009. Effect of different herbicides on weeds, growth and yield of spring planted maize (Zea mays L.). Pakistan Journal of Life and Social Sciences 7, 168-174.
Teasdale, J.R., C.E. Beste, W.E. Potts. 1991. Response of weeds to tillage and cover crop residue. Weed Sci 39, 195-199.
Tembo, Y., A.G. Mkindi, P.A. Mkenda, N. Mpumi, R. Mwanauta, P.C. Stevenson, P.A. Ndakidemi, S.R. Belmain. 2018. Pesticidal plant extracts improve yield and reduce insect pests on legume crops without harming beneficial arthropods. Frontiers in Plant Science 9, 1425.
Teuton, T.C., B.J. Brecke, J.B. Unruh, G.E. MacDonald, G.L. Miller, J.T. Ducar. 2004. Factors affecting seed germination of tropical signalgrass (Urochloa subquadripara). Weed Sci 52, 376-381.
Thijs, H., J.R. Shann, J.D. Weidenhamer. 1994. The effect of phytotoxins on competitive outcome in a model system. Ecology 75, 1959-1964.
Tseng, M.H., C.H. Chou, Y.M. Chen, Y.H. Kuo. 2001. Allelopathic prenylflavanones from the fallen leaves of Macaranga tanarius. Journal of Natural Products 64, 827-828.
Tseng, M.H., Y.H. Kuo, Y.M. Chen, C.H. Chou. 2003. Allelopathic Potential of Macaranga tanarius (L.) Muell.–Arg. Journal of Chemical Ecology 29, 1269-1286.
Tukey, H.B. 1969. Implications of allelopathy in agricultural plant science. The Botanical Review 35, 1-16.
Tukey, H.B. 1970. The leaching of substances from plants. Annual Review of Plant Physiology 21, 305-324.
Tuor, F.A., R.J. Froud-Williams. 2002. Influence of nitrogen on competition between purple nutsedge, maize and soybean. International Journal of Pest Management 48, 73-79.
Uddin, M.N., R.W. Robinson. 2017. Allelopathy and resource competition: the effects of Phragmites australis invasion in plant communities. Botanical studies 58, 29.
Uddin, M.R., S.U. Park, F.E. Dayan, J.Y. Pyon. 2014. Herbicidal activity of formulated sorgoleone, a natural product of sorghum root exudate. Pest Management Science 70, 252-257.
Vaccarini, C.E., S.M. Palacios, K.M. Meragelman, V.E. Sosa. 1999. Phytogrowth-inhibitory activities of a clerodane from Viguiera tucumanensis. Phytochemistry 50, 227-230.
Vaid, S., D.R. Batish, H.P. Singh, R.K. Kohli. 2011. Phytotoxicity of limonene against Amaranthus viridis L. Bioscan 6, 163-165.
Van Rooden, J., L.M.A. Akkermans, R. Van Der Veen. 1970. A study on photoblastism in seeds of some tropical weeds. Acta Botanica Neerlandica 19, 257-264.
Viji, N., C.R. Chinnamuthu. 2015. Breaking dormancy and inducing germination of the world worst weed the Cyperus rotundus using nanoparticles. Annals of Plant and Soil Research 17, 361-363.
Viji, N., C.R. Chinnamuthu. 2019. Nanoparticle effect on degradation of vanillic acid, a germination inhibiting dormancy factor present in Cyperus rotundus. Indian Journal of Weed Science 51, 98-100.
Vyvyan, J.R. 2002. Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 58, 1631-1646.
Walck, J.L., C.C. Baskin, J.M. Baskin. 2000. Seeds of Thalictrum mirabile (Ranunculaceae) require cold stratification for loss of nondeep simple morphophysiological dormancy. Canadian Journal of Botany 77, 1769-1776.
Wang, G., M.E. McGiffen Jr, E.J. Ogbuchiekwe. 2008. Crop rotation effects on Cyperus rotundus and C. esculentus population dynamics in southern California vegetable production. Weed Research 48, 420-428.
Wang, G., M.E. McGiffen Jr, E.J. Ogbuchiekwe, L.G. Butler. 2009a. Economic return of purple and yellow nutsedge management in vegetable production of southern California. Crop Protection 28, 319-326.
Wang, J., H. Yang, Z.W. Lin, H.D. Sun. 1997. Flavonoids from Bidens pilosa var. radiata. Phytochemistry 46, 1275-1278.
Wang, R., Z. Feng, X. Liang, W. Xu, Y. Su, Y. Song, R. Zeng. 2012. Comparative allelopathic and competitive abilities of 3-native forage legumes and the invasive weed Bidens pilosa L. Allelopathy Journal 29, 297-306.
Wang, R.L., S.L. Peng, R.S. Zeng, L.W. Ding, Z.F. Xu. 2009b. Cloning, expression and wounding induction of β-caryophyllene synthase gene from Mikania micrantha H.B.K. and allelopathic potential of β-caryophyllene. Allelopathy Journal 24, 35-44.
Wat, C.K., R.K. Biswas, E.A. Graham, L. Bohm, G.H.N. Towers, E.R. Waygood. 1979. Ultraviolet-mediated cytotoxic activity of phenylheptatriyne from Bidens pilosa L. Journal of Natural Products 42, 103-111.
Webster, T.M. 2003. High temperatures and durations of exposure reduce nutsedge (Cyperus spp.) tuber viability. Weed Sci 51, 1010-1015.
Webster, T.M., T.L. Grey. 2014. Halosulfuron reduced purple nutsedge (Cyperus rotundus) tuber production and viability. Weed Sci 62, 637-646.
Webster, T.M., T.L. Grey, J.W. Davis, A.S. Culpepper. 2008. Glyphosate hinders purple nutsedge (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus) tuber production. Weed Sci 56, 735-742.
Weidenhamer, J.D. 1996. Distinguishing resource competition and chemical interference: overcoming the methodological impasse. Agronomy Journal 88, 866-875.
Weidenhamer, J.D. 2006. Distinguishing allelopathy from resource competition: the role of density. In: Reigosa, M.J., Pedrol, N., Gonzalez, L.e. (Eds.), Allelopathy: A physiological process with ecological implications. Springer. Dordrecht, The Netherlands, pp. 85-103.
Weidenhamer, J.D., D.C. Hartnett, J.T. Romeo. 1989. Density-dependent phytotoxicity: distinguishing resource competition and allelopathic interference in plants. Journal of Applied Ecology 26, 613-624.
Weidenhamer, J.D., F.A. Macias, N.H. Fischer, G.B. Williamson. 1993. Just how insoluble are monoterpenes? Journal of Chemical Ecology 19, 1799-1807.
Weiner, J. 1990. Asymmetric competition in plant populations. Trends in Ecology & Evolution 5, 360-364.
Weston, L.A. 1996. Utilization of allelopathy for weed management in agroecosystems. Agronomy Journal 88, 860-866.
Weston, L.A., C.I. Nimbal, P. Jeandet. 1999. Allelopathic potential of grain sorghum [Sorghum bicolor (L.) Moench] and related species. In: Inderjit, Dakshini, K.M.M., Foy, C.L.e. (Eds.), Principles and practices in plant ecology: allelochemicals interactions, CRC Press. Florida, U.S.A, pp. 467-477.
White, J., J.L. Harper. 1970. Correlated changes in plant size and number in plant populations. Journal of Ecology 58, 467-485.
Whittaker, R.H., P.P. Feeny. 1971. Allelochemics: chemical interactions between species. Science 171, 757-770.
William, R.D., G.F. Warren. 1975. Competition between purple nutsedge and vegetables. Weed Sci 23, 317-323.
Williams, R.D., P.C. Quimby, K.E. Frick. 1977. Intraspecific competition of purple nutsedge (Cyperus rotundus) under greenhouse conditions. Weed Sci 25, 477-481.
Willis, R.J. 2007. The history of allelopathy. Springer Science & Business Media. Dordrecht, Netherlands.
Wilson, R.E., E.L. Rice. 1968. Allelopathy as expressed by Helianthus annuus and its role in old-field succession. Bulletin of the Torrey Botanical Club 95, 432-448.
Wink, M. 1983. Inhibition of seed germination by quinolizidine alkaloids. Planta 158, 365-368.
Wink, M. 1993. Allelochemical properties or the raison d'etre of alkaloids. In: Cordell, G.A. (Ed.), The alkaloids: chemistry and pharmacology. Elsevier. New York, U.S.A, pp. 1-118.
Wink, M., T. Hartmann. 1981. Sites of enzymatic synthesis of quinolizidine alkaloids and their accumulation in Lupinus polyphyllus. Zeitschrift für Pflanzenphysiologie 102, 337-344.
Wu, H., J. Pratley, D. Lemerle, T. Haig. 2000. Evaluation of seedling allelopathy in 453 wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum) by the equal-compartment-agar method. Australian Journal of Agricultural Research 51, 937-944.
Xuan, T.D., L.H. Anh, D.T. Khang, P.T. Tuyen, T.N. Minh, K. T.D., K.H. Trung. 2016. Weed allelochemicals and possibility for pest management. International Letters of Natural Sciences 56, 25-39.
Xuan, T.D., T.D. Khanh. 2016. Chemistry and pharmacology of Bidens pilosa: an overview. Journal of Pharmaceutical Investigation 46, 91-132.
Yamane, A., J. Fujikura, H. Ogawa, J. Mizutani. 1992. Isothiocyanates as alleopathic compounds from Rorippa indica Hiern.(Cruciferae) roots. Journal of chemical ecology 18, 1941-1954.
Yang, W.C., C.Y. Yang, Y.C. Liang, C.W. Yang, W.Q. Li, C.Y. Chung, M.T. Yang, T.F. Kuo, C.F. Lin, C.L. Liang. 2019. Anti-coccidial properties and mechanisms of an edible herb, Bidens pilosa, and its active compounds for coccidiosis. Scientific Reports 9, 1-11.
Zackrisson, O., M.C. Nilsson, D.A. Wardle. 1996. Key ecological function of charcoal from wildfire in the Boreal forest. Oikos 77, 10-19.
Zhang, K.M., Y. Shen, Y.M. Fang, Y. Liu. 2016. Changes in gametophyte physiology of Pteris multifida induced by the leaf leachate treatment of the invasive Bidens pilosa. Environmental Science and Pollution Research 23, 3578-3585.
Zhao, J., L. Yang, L. Zhou, Y. Bai, B. Wang, P. Hou, Q. Xu, W. Yang, Z. Zuo. 2016. Inhibitory effects of eucalyptol and limonene on the photosynthetic abilities in Chlorella vulgaris (Chlorophyceae). Phycologia 55, 696-702.
Zungsontiporn, S. 2007. Some characteristics of Bidens pilosa L. var. radiata Scheff., a new invasive species in Thailand. Proceedings of the 21st Asian Pacific Weed Science Society (APWSS) Conference, 2-6 October 2007, Colombo, Sri Lanka. Asian Pacific Weed Science Society, pp. 558-564.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top