跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/06 18:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖婕伶
研究生(外文):Chieh-Ling Liao
論文名稱:探討 Luteibacter sp. PcI1001 耐受鎵、銦和鉈之特性分析
論文名稱(外文):Characterization of gallium, indium and thallium tolerance in Luteibacter sp. PcI1001
指導教授:林乃君林乃君引用關係
指導教授(外文):Nai-Chun Lin
口試委員:鄧文玲吳蕙芬徐駿森
口試委員(外文):Wen-Ling TengHui-Fen WuChun-Sen Hsu
口試日期:2021-10-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:139
中文關鍵詞:金屬耐受性黃桿菌屬生物吸附全基因組定序
外文關鍵詞:GalliumIndiumThalliumMetal toleranceLuteibacter spp.Biosorptionwhole genome sequencing
DOI:10.6342/NTU202104428
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
工業革命後,重金屬被大量利用及排放,加劇了存在已久的重金屬污染 問題。在科學家持續的研究下,對於重金屬對人類及動植物的危害,甚至物 種多樣性的改變,均有較透徹的了解;除此之外,包括生物復育等環境整治 策略也應運而生。然而,隨著光電與半導體產業等科技興起,使用量大增的 技術關鍵元素 (Technology-critical elements, TCE) 因生產過程或衍生的廢 棄物可能造成的污染疑慮,也開始受到人們的注意。其中,半導體產業的重 要原料,如鎵 (Gallium, Ga) 及銦 (Indium, In) 等,對人體及動植物皆具毒 性,但對環境中大量存在的微生物影響為何所知有限。之前的研究透過將平 鎮土系 (Pinchen series; Pc series) 之土樣以 100 mg/L 的銦進行增殖培養後, 分離出一細菌菌株 PcI1001,且發現 PcI1001 同時具有抗鎵、銦以及同屬於 3A 族金屬元素鉈 (Thallium, Tl) 的能力。以 16S rRNA 基因序列初步進行 物種鑑定及經由 PacBio SMRT 技術進行全基因體定序分析,確認其屬於 Luteibacter spp.,基因組大小為 4,550,000 bp,且與 L. rhizovicinus LJ96 的 相似度達 94%。分析添加不同濃度銦土樣中的微生物相發現,PcI1001 所屬 的 Xanthomonadales 目及 Rhodanobacteraceae 科之數量均會隨著添加銦濃 度增加而增加。PcI1001 對鎵、銦及鉈的最小抑制濃度 (Minimal inhibition concentration,MIC) 分別約為 150mg/L、25mg/L 和 1200mg/L。透過穿透 式電子顯微鏡觀察,發現 PcI1001 在鎵、銦和鉈的處理下,其細胞膜變得不 穩定,菌體在分裂時期的狀態也與未處理組不同。利用 ICP-MS 檢測發現, 以 200 mg/L 鎵和銦處理後,PcI1001 的菌體能吸附兩者的量分別為 17.3±1.8mg/kg 和 36.3±10.8mg/kg。接著,以鎵、銦和鉈處理 PcI1001 跳 躍子插入突變庫 (transposon-insertion mutant library),篩選出 6 個對這些 TCE 敏感度改變的突變株,經過定序後發現跳躍子插入的位置分別是在 Spermine/spermidine acetyltransferase (bltD)、DUF4398-domain containing protein、Polyhydroxyalkanoate depolymerase、Phosphoglycerol transferase (MdoB)、Cocaine esterase (cocE_4) 等基因中及 copper resistance/multidrug resistance 基因組的啟動子序列上。透過基因刪除突變株的建構,觀察到 Spermine/spermidine acetyltransferase (bltD) 及 DUF4398-domain containing protein 的突變株對鎵更具耐受性,而 Phosphoglycerol transferase (MdoB) 突 變株則對鉈耐受性有降低的趨勢。基因表現上, bltD 在鎵、銦及鉈的處理 下皆有較高表現量,DUF4398-domain containing protein 和 polyhydroxy- alkanoate depolymerase 的基因在鉈處理下表現量較高,而 mdoB 在銦處理 下有較高的表現量。然而,以上這些基因缺失後的突變株對鎵、銦和鉈的耐 受性改變皆與野生菌株無統計上差異。雖然突變株篩選及分析結果並未得到 PcI1001 耐受鎵、銦或鉈的可能機制,然而本研究所觀察到 PcI1001 受鎵、 銦和鉈處理後的型態變化以及所建立的實驗方法皆有助於日後研究 PcI1001 對鎵、銦或鉈耐受性反應之相關基因上。
Since the first industrial revolution, utilization and discharge of heavy metals have increased dramatically, exacerbating the long-standing problem of heavy metal pollution. Continuous works by the scientists expand our knowledge more profoundly on the detrimental effects of heavy metals to humans, animals and plants, and even alterations of biodivisity. In addition, environmental remediation strategies, including bioremediation, have also been developed. However, with the development of optoelectronic and semiconductor industries, people start to concern about that the technology-critical elements (TCE), which have increased their utilization lately, may cause pollution due to the manufacturing processes or waste derived. Among those TCE, major elements for the semiconductor industry, such as gallium (Ga) and indium (In), are toxic to humans, animals and plants, but there is limited knowledge about their effects on microbiome in the environment. In previous studies, a bacterial strain PcI1001 was isolated from enrichment culture using soil samples of the Pinchen (Pc) series supplemented with 100 mg/L indium. PcI1001 is tolerant to gallium and indium as well as thallium, an element also belonging to the Group 3A in the periodic table. Both 16S rRNA gene sequencing and whole genome sequencing by PacBio SMRT technology indicate PcI1001 belongs to genus Luteibacter. The genome size of PcI1001 is 4,550,000 bp, which shares 94% identity to that of L. rhizovicinus LJ96. Metagenomic analysis using the data obtained from soil samples amended with different concentrations of indium revealed that abundance of Order Xanthomonadales and Family Rhodanobacteracea, which PcI1000 belongs to, increased along with the increased concentrations of indium. The minimum inhibition concentration (MIC) of PcI1001 for Ga, In, and Tl is about 150 mg/L, 25 mg/L, and 1200 mg/L, respectively. Transmission electron microscope observation revealed that cell membrane became unstable and fragile after treatment of Ga, In, and Tl, and the morphology of cells under division was also different from that of the untreated group. After detection by inductively coupled plasma mass spectrometry (ICP- MS), it was found that the adsorption capacity of PcI1001 on Ga and In was 17.3±1.8 mg/kg and 36.3±10.8 mg/kg, respectively, after incubation in 200 mg/L gallium and indium. Using PcI1001 mutant library generated by EZ-Tn5-based transposon insertion, six mutants whose susceptibility to Ga, In or Tl was altered were identified. In these six mutants, EZ-Tn5 inserts at coding sequences for spermine/spermidine acetyltransferase (BltD), DUF4398-domain containing protein, polyhydroxyalkanoate depolymerase, phosphoglycerol transferase (MdoB), Cocaine esterase (CocE_4) and the promoter region of copper resistance/multidrug resistance operon, respectively. Mutants with in-frame deletion of genes coding for BltD and DUF4398-domain containing protein are seemingly more tolerant to gallium. A mutant deleted of mdoB is slightly more sensitive to thallium. Transcriptional analysis showed that the expression of bltD was higher after treatment of gallium, indium and thallium. The expressions of the genes coding for DUF4398-domain containing protein and polyhydroxyalkanoate depolymerase were higher in response to thallium treatment whereas that of mdoB was higher after indium treatment. However, compared to wild type, no statistical difference on tolerance to gallium, indium and thallium can be observed in these in-frame deletion mutants. Nevertheless, the morphological changes observed on gallium, indium or thallium-treated cells and the experimental procedures developed in this study can help us better understand the currently unknown areas on genes involved in bacterial tolerance to gallium, indium, and thallium.
致謝 i
中文摘要 iii
Abstract v
目錄 viii
表目錄 xii
圖目錄 xiii
附表目錄 xv
附圖目錄 xvi
壹、文獻回顧 1
一、重金屬污染研究之重要性 1
1. 重金屬與科技關鍵元素 1
2. 重金屬之污染之問題 2
二、鎵、銦和鉈的簡介及應用 6
1. 鎵的基本性質介紹與應用 6
2. 銦的基本性質介紹與應用 7
3. 鉈的基本性質介紹與應用 8
三、鎵、銦及鉈對生物的毒害情形 9
1. 鎵對動物之影響: 10
2. 鎵對植物之影響: 11
3. 鎵對微生物之影響: 12
4. 銦對動物之影響 14
5. 銦對植物之影響: 15
6. 銦對微生物之影響: 16
7. 鉈對動物之影響: 16
8. 鉈對植物之影響: 17
9. 鉈對微生物之影響: 17
五、微生物之重金屬抗性的相關機制與應用 19
1. 細菌細胞壁的屏障 20
2. 對金屬離子的主動運輸 22
3. 細胞外的金屬螯合 25
4. 細胞內的金屬螯合 26
5. 金屬離子的還原 27
貳、研究動機與目的 28
參、材料及方法 30
一、細菌菌株與培養條件 30
二、細菌菌株鑑定和全基因體序列分析 30
三、平鎮土系土壤樣品總體基因體數據再分析 31
四、檢測 PcI1001 對重金屬的抗性 31
五、穿透式電子顯微鏡 (Transmission electron microscopy, TEM) 樣品之製備32
六、掃描式電子顯微鏡 (Scanning electron microscopy, SEM) 樣品之製備 33
七、PcI1001 重金屬吸附量分析 34
八、以 PcI1001 突變體庫篩選對鎵、銦和鉈抗性改變之菌株 34
九、鑑定候選突變菌株基因序列中跳躍子插入之位置 35
十、抽取 PcI1001 全基因體 DNA 36
十一、電穿孔法勝任細胞的製備 37
十二、電穿孔轉型 37
十三、小量質體 DNA之萃取 38
十四、膠體內DNA純化 (gel elution) 38
十五、以 GENEzol 抽取細菌之 RNA 39
十六、重金屬壓力下基因表現量測定 40
十七、半定量反轉錄 PCR 40
十八、PcI1001 目標基因剔除突變株之建構 41
十九、目標基因回補株之製備 42
肆、結果 43
一、PcI1001 物種鑑定及全基因體序列分析 43
二、土壤環境微生物總體基因之分析 44
三、測定 PcI1001 對鎵、銦和鉈的最小抑制濃度 (minimum inhibitory concentration, MIC) 46
四、以穿透視顯微鏡觀察 PcI1001 型態及鎵、銦和鉈對細胞之影響 47
五、PcI1001 吸附鎵與銦之能力 48
六、突變株的篩選以及跳躍子插入序列之鑑定 48
七、將目標基因剔除後及將突變菌株基因回補後之抗性狀態 50
八、檢測在重金屬壓力下篩選之目標基因的表現量 50
伍、討論 53
陸、參考文獻 69
柒、圖表 87
捌、附圖表 116
法務部,光電材料及元件製造業放流水標準,民國 101 年 10 月 12 日
法務部,土壤及地下水污染整治法,民國 89 年 2 月 2 日
Adler, R. A., Claassen, M., Godfrey, L.& Turton, A. R. (2007). Water, mining, and waste: an historical and economic perspective on conflict management in South Africa. The Economics of Peace and Security Journal, 2: 33-41.
Agarwal, M., Rathore, R. S.& Chauhan, A. (2020). A Rapid and High Throughput MIC Determination Method to Screen Uranium Resistant Microorganisms. Methods and Protocols, 3: 21.
Alfantazi, A. M.& Moskalyk, R. R. (2003). Processing of indium: a review. Minerals Engineering, 16: 687-694.
Ali, S. a. K., J. (2020). Technology critical elements and their relevance to the global environment facility. Scientific and Technical Advisory Panel to the Global Environment Facility. Washington, DC.
Alikhan, N. F., Petty, N. K., Ben Zakour, L., N.& Beatson, S. A. (2011). BLAST ring image generator (BRIG): simple prokaryote genome comparisons. BMC Genomics, 12: 402.
Anderson, S.& Appanna, V. D. (1993). Indium detoxification in Pseudomonas fluorescens. Environmental Pollution, 82: 33-37.
Andrews, J. M. (2001). Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy, 48: 5-16.
Anjana, K., Kaushik, A., Kiran, B.& Nisha, R. (2007). Biosorption of Cr(VI) by immobilized biomass of two indigenous strains of cyanobacteria isolated from metal contaminated soil. Journal of Hazardous Materials, 148: 383-386.
Asante, K. A., Agusa, T., Biney, C. A., Agyekum, W. A., Bello, M., Otsuka, M., Itai, T., Takahashi, S.& Tanabe, S. (2012). Multi-trace element levels and arsenic speciation in urine of e-waste recycling workers from Agbogbloshie, Accra in Ghana. Science of The Total Environment, 424: 63-73.
Auger, C., Lemire, J., Appanna, V.& Appanna, V. D. (2013). Gallium in bacteria, metabolic and medical implications. In Kretsinger, Robert H., Uversky, Vladimir N., & Permyakov, Eugene A. (Eds.), Encyclopedia of Metalloproteins (pp. 800-807). New York, NY: Springer New York.
Ayangbenro, A. S.& Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14: 94.
Bachmann, K., Frenzel, M., Krause, J.& Gutzmer, J. (2017). Advanced identification and quantification of In-bearing minerals by scanning electron microscope-based image analysis. Microscopy and Microanalysis, 23: 527-537.
Baker-Austin, C., Wright, M. S., Stepanauskas, R.& Mcarthur, J. V. (2006). Co-selection of antibiotic and metal resistance. Trends in Microbiology, 14: 176-182.
Bao, Z., Sato, Y., Fujimura, R.& Ohta, H. (2014). Alsobacter metallidurans gen. nov., sp. nov., a thallium-tolerant soil bacterium in the order Rhizobiales. International Journal of Systematic and Evolutionary Microbiology, 64: 775-780.
Baranova, N. N., Danchin, A.& Neyfakh, A. A. (1999). Mta, a global MerR-type regulator of the Bacillus subtilis multidrug-efflux transporters. Molecular Microbiology, 31: 1549-1559.
Barrientos-Moreno, L., Molina-Henares, M. A., Pastor-García, M., Ramos-González, M. I.& Espinosa-Urgel, M. (2019). Arginine biosynthesis modulates pyoverdine production and release in Pseudomonas putida as part of the mechanism of adaptation to oxidative stress. Journal of Bacteriology, 201: e00454-19
Beni, A. A.& Esmaeili, A. (2020). Biosorption, an efficient method for removing heavy metals from industrial effluents: A review. Environmental Technology & Innovation, 17: 100503.
Bériault, R., Hamel, R., Chenier, D., Mailloux, R. J., Joly, H.& Appanna, V. D. (2007). The overexpression of NADPH-producing enzymes counters the oxidative stress evoked by gallium, an iron mimetic. BioMetals, 20: 165-176.
Blattner, F. R., Plunkett, G., Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K., Mayhew, G. F., Gregor, J., Davis, N. W., Kirkpatrick, H. A., Goeden, M. A., Rose, D. J., Mau, B.& Shao, Y. (1997). The complete genome sequence of Escherichia coli K-12. Science, 277: 1453-1462.
Bondarczuk, K.& Piotrowska-Seget, Z. (2013). Molecular basis of active copper resistance mechanisms in Gram-negative bacteria. Cell biology and toxicology, 29: 397-405.
Booth, I. R., Edwards, M. D., Black, S., Schumann, U.& Miller, S. (2007). Mechanosensitive channels in bacteria: signs of closure? Nature Reviews Microbiology, 5: 431-440.
Böttcher, T., Kolodkin-Gal, I., Kolter, R., Losick, R.& Clardy, J. (2013). Synthesis and activity of biomimetic biofilm disruptors. Journal of the American Chemical Society, 135: 2927-2930.
Boughriet, A., Proix, N., Billon, G., Recourt, P.& Ouddane, B. (2007). Environmental Impacts of Heavy Metal Discharges from a Smelter in Deûle-canal Sediments (Northern France): Concentration Levels and Chemical Fractionation. Water, Air, and Soil Pollution, 180: 83-95.
Bremer, E.& Krämer, R. (2019). Responses of microorganisms to osmotic stress. Annual Review of Microbiology, 73: 313-334.
Britt, A. J., Bruce, N. C.& Lowe, C. R. (1992). Identification of a cocaine esterase in a strain of Pseudomonas maltophilia. Journal of bacteriology, 174: 2087-2094.
Brown, R. J. C.& Milton, M. J. T. (2005). Analytical techniques for trace element analysis: an overview. Trends in Analytical Chemistry, 24: 266-274.
Burkes, S.& Mccleskey, C. (1947). The bacteriostatic activity of cerium, lanthanum, and thallium. Journal of Bacteriology, 54: 417-424.
Caldeira, J. B., Chung, A. P., Morais, P. V.& Branco, R. (2021). Relevance of FeoAB system in Rhodanobacter sp. B2A1Ga4 resistance to heavy metals, aluminium, gallium, and indium. Applied Microbiology and Biotechnology, 105: 3301-3314.
Caldeira, J. B., Morais, P. V.& Branco, R. (2020). Exploiting the biological response of two Serratia fonticola strains to the critical metals, gallium and indium. Scientific Reports, 10: 20348.
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K.& Madden, T. L. (2009). BLAST+: architecture and applications. BMC Bioinformatics, 10: 421.
Cananagh, J. B., Fuller, N. H., Johnson, H. R. M.& Rudge, P. (1974). The affects of thallium salts, with particular reference to the nervous system changes: a report of three cases. Quarterly Journal of Medicine, 43: 293-319.
Capdevila, M.& Atrian, S. (2011). Metallothionein protein evolution: a miniassay. Journal of Biological Inorganic Chemistry, 16: 977-989.
Chang, H.-F., Wang, S.-L., Lee, D.-C., Hsiao, S. S.-Y., Hashimoto, Y.& Yeh, K.-C. (2020). Assessment of indium toxicity to the model plant Arabidopsis. Journal of Hazardous Materials, 387: 121983.
Chang, H.-F., Wang, S.-L.& Yeh, K.-C. (2017). Effect of gallium exposure in Arabidopsis thaliana is similar to aluminum stress. Environmental Science & Technology, 51: 1241-1248.
Chaturvedi, A. D., Pal, D., Penta, S.& Kumar, A. (2015). Ecotoxic heavy metals transformation by bacteria and fungi in aquatic ecosystem. World Journal of Microbiology and Biotechnology, 31: 1595-1603.
Chen, H. W. (2006). Gallium, indium, and arsenic pollution of groundwater from a semiconductor manufacturing area of Taiwan. Bulletin of Environmental Contamination and Toxicology, 77: 289-296.
Chenier, D., Beriault, R., Mailloux, R., Baquie, M., Abramia, G., Lemire, J.& Appanna, V. (2008). Involvement of fumarase c and NADH oxidase in metabolic adaptation of Pseudomonas fluorescens cells evoked by aluminum and gallium toxicity. Applied and Environmental Microbiology, 74: 3977-3984.
Chibuike, G. U.& Obiora, S. C. (2014). Heavy metal polluted soils: effect on plants and bioremediation methods. Applied and Environmental Soil Science, 2014: 752708
Chonan, T., Taguchi, O.& Omae, K. (2007). Interstitial pulmonary disorders in indium-processing workers. European Respiratory Journal, 29: 317.
Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahal, D. R., Da Costa, M. S., Rooney, A. P., Yi, H., Xu, X. W., De Meyer, S.& Trujillo, M. E. (2018). Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. International Journal of Systematic and Evolutionary Microbiology 68: 461-466.
Clarkson, D. T. (1965). The effect of aluminium and some other trivalent metal cations on cell division in the root apices of Allium cepa. Annals of Botany, 29: 309-315.
Cobelo-García, A., Filella, M., Croot, P., Frazzoli, C., Du Laing, G., Ospina-Alvarez, N., Rauch, S., Salaun, P., Schäfer, J.& Zimmermann, S. (2015). COST action TD1407: network on technology-critical elements (NOTICE)--from environmental processes to human health threats. Environmental Science and Pollution Research International, 22: 15188-15194.
Conner, E. A., Yamauchi, H.& Fowler, B. A. (1995). Alterations in the heme biosynthetic pathway from the III-V semiconductor metal, indium arsenide (InAs). Chemico-Biological Interactions, 96: 273-285.
Davidson, A. L.& Chen, J. (2004). ATP-binding cassette transporters in bacteria. Annual Review of Biochemistry, 73: 241-268.
Delmar, J. A., Su, C.-C.& Yu, E. W. (2015). Heavy metal transport by the CusCFBA efflux system. Protein Science, 24: 1720-1736.
Dhankher, O. P., Pilon-Smits, E. a. H., Meagher, R. B.& Doty, S. (2012). Biotechnological approaches for phytoremediation. In Altman, Arie & Hasegawa, Paul Michael (Eds.), Plant Biotechnology and Agriculture (pp. 309-328). San Diego: Academic Press.
Doe, U. (2011). Critical materials strategy 2011.
Douglas, K. T., Bunni, M. A.& Baindur, S. R. (1990). Thallium in biochemistry. International Journal of Biochemistry, 22: 429-438.
Dudley, H. C.& Levine, M. D. (1949). Studies of the toxie action of gallium. Journal of Pharmacology and Experimental Therapeutics, 95: 487-493.
Duffus, J. H. (2002). "Heavy metals" a meaningless term? (IUPAC Technical Report). Pure and Applied Chemistry, 74: 793-807.
El Baz, S., Baz, M., Barakate, M., Hassani, L., El Gharmali, A.& Imziln, B. (2015). Resistance to and accumulation of heavy metals by actinobacteria isolated from abandoned mining areas. The Scientific World Journal, 2015: 761834.
Fashola, M. O., Ngole-Jeme, V. M.& Babalola, O. O. (2016). Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. International Journal of Environmental Research and Public Health, 13: 1047.
Feng, G., Xie, T., Wang, X., Bai, J., Tang, L., Zhao, H., Wei, W., Wang, M.& Zhao, Y. (2018). Metagenomic analysis of microbial community and function involved in cd-contaminated soil. BMC Microbiology, 18: 11.
Figurski, D. H.& Helinski, D. R. (1979). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proceedings of the National Academy of Sciences, 76: 1648-1652.
Flemming, H.-C., Neu, T. R.& Wozniak, D. J. (2007). The EPS matrix: the “house of biofilm cells”. Journal of Bacteriology, 189: 7945-7947.
Font, O., Querol, X., Juan, R., Casado, R., Ruiz, C. R., López-Soler, Á., Coca, P.& Peña, F. G. (2007). Recovery of gallium and vanadium from gasification fly ash. Journal of Hazardous Materials, 139: 413-423.
Forouhar, F., Lee, I. S., Vujcic, J., Vujcic, S., Shen, J., Vorobiev, S. M., Xiao, R., Acton, T. B., Montelione, G. T., Porter, C. W.& Tong, L. (2005). Structural and functional evidence for Bacillus subtilis PaiA as a novel N1-spermidine/spermine acetyltransferase. Journal of Biological Chemistry, 280: 40328-40336.
Forti, V., Balde, C. P., Kuehr, R.& Bel, G. (2020). The global e-waste monitor 2020.
Gadd, G. M. (1992). Metals and microorganisms: A problem of definition. FEMS Microbiology Letters, 100: 197-203.
Gadd, G. M. (2009). Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology & Biotechnology, 84: 13-28.
Galván-Arzate, S.& Santamarı́A, A. (1998). Thallium toxicity. Toxicology Letters, 99: 1-13.
García-Contreras, R., Lira-Silva, E., Jasso-Chávez, R., Hernández-González, I. L., Maeda, T., Hashimoto, T., Boogerd, F. C., Sheng, L., Wood, T. K.& Moreno-Sánchez, R. (2013). Isolation and characterization of gallium resistant Pseudomonas aeruginosa mutants. International Journal of Medical Microbiology, 303: 574-582.
Goering, P. L., Maronpot, R. R.& Fowler, B. A. (1988). Effect of intratracheal gallium arsenide administration on δ-aminolevulinic acid dehydratase in rats: Relationship to urinary excretion of aminolevulinic acid. Toxicology and Applied Pharmacology, 92: 179-193.
Gómez-Sanz, E., Kadlec, K., Feßler, A. T., Zarazaga, M., Torres, C.& Schwarz, S. (2013). Novel ermT carrying multiresistance plasmids from porcine and human isolates of methicillin-resistant Staphylococcus aureus ST398 that also harbor cadmium and copper resistance determinants. Antimicrobial Agents and Chemotherapy, 57: 3275-3282.
Goryshin, I. Y.& Reznikoff, W. S. (1998). Tn5 in vitro transposition. Journal of Biological Chemistry, 273: 7367-7374.
Graves, J. L., Jr, Ewunkem, A. J., Ward, J., Staley, C., Thomas, M. D., Rhinehardt, K. L., Han, J.& Harrison, S. H. (2019). Experimental evolution of gallium resistance in Escherichia coli. Evolution, Medicine, and Public Health, 2019: 169-180.
Greber, J. F. (2000). Gallium and gallium compounds. In Ullmann's Encyclopedia of Industrial Chemistry.
Greber, J. F. (2014). Gallium and gallium compounds. In Ullmann's Encyclopedia of Industrial Chemistry.
Guo, Y., Huo, X., Li, Y., Wu, K., Liu, J., Huang, J., Zheng, G., Xiao, Q., Yang, H., Wang, Y., Chen, A.& Xu, X. (2010). Monitoring of lead, cadmium, chromium and nickel in placenta from an e-waste recycling town in China. Science of The Total Environment, 408: 3113-3117.
Gupta, V., Nayak, A.& Agarwal, S. (2015). Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environmental Engineering Research, 20: 1-18.
Gupta, V. K.& Rastogi, A. (2008). Equilibrium and kinetic modelling of cadmium(II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. Journal of Hazardous Materials, 153: 759-766.
Gupta, V. K.& Rastogi, A. (2009). Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. Journal of Hazardous Materials, 163: 396-402.
Ha, N. N., Agusa, T., Ramu, K., Tu, N. P. C., Murata, S., Bulbule, K. A., Parthasaraty, P., Takahashi, S., Subramanian, A.& Tanabe, S. (2009). Contamination by trace elements at e-waste recycling sites in Bangalore, India. Chemosphere, 76: 9-15.
Harrison, J. J., Ceri, H.& Turner, R. J. (2007). Multimetal resistance and tolerance in microbial biofilms. Nature Reviews Microbiology, 5: 928-938.
Hart, M. M.& Adamson, R. H. (1971). Antitumor activity and toxicity of salts of inorganic group lIIa metals: aluminum, gallium, indium, and thallium. Proceedings of the National Academy of Sciences, 68: 1623-1626.
Hassan, S. H. A., Abskharon, R. N. N., Gad El-Rab, S. M. F.& Shoreit, A. a. M. (2008). Isolation, characterization of heavy metal resistant strain of Pseudomonas aeruginosa isolated from polluted sites in Assiut city, Egypt. Journal of Basic Microbiology, 48: 168-176.
Hlihor, R. M., Figueiredo, H., Tavares, T.& Gavrilescu, M. (2017). Biosorption potential of dead and living Arthrobacter viscosus biomass in the removal of Cr(VI): Batch and column studies. Process Safety and Environmental Protection, 108: 44-56.
Hubbard, J. A., Lewandowska, K. B., Hughes, M. N.& Poole, R. K. (1986). Effects of iron-limitation of Escherichia coli on growth, the respiratory chains and gallium uptake. Archives of Microbiology, 146: 80-86.
Ianeva, O. D. (2009). [Mechanisms of bacteria resistance to heavy metals]. Mikrobiolohichnyi zhurnal (Kiev, Ukraine : 1993), 71: 54-65.
Ivanoff, C. S., Ivanoff, A. E.& Hottel, T. L. (2012). Gallium poisoning: A rare case report. Food and Chemical Toxicology, 50: 212-215.
Jackson, B. J., Bohin, J. P.& Kennedy, E. P. (1984). Biosynthesis of membrane-derived oligosaccharides: characterization of mdoB mutants defective in phosphoglycerol transferase I activity. Journal of Bacteriology, 160: 976-981.
Jensen, H., Gaw, S., Lehto, N. J., Hassall, L.& Robinson, B. H. (2018). The mobility and plant uptake of gallium and indium, two emerging contaminants associated with electronic waste and other sources. Chemosphere, 209: 675-684.
Johansen, J. E., Binnerup, S. J., Kroer, N.& Mølbak, L. (2005). Luteibacter rhizovicinus gen. nov., sp. nov., a yellow-pigmented gammaproteobacterium isolated from the rhizosphere of barley (Hordeum vulgare L.). International Journal of Systematic and Evolutionary Microbiology, 55: 2285-2291.
Johnston, G. S. (1981). Clinical applications of gallium in oncology. International Journal of Nuclear Medicine and Biology, 8: 249-255.
Jorgensen, P. L., Hakansson, K. O.& Karlish, S. J. (2003). Structure and mechanism of Na,K-ATPase: functional sites and their interactions. Annual Review of Physiology, 65: 817-849.
Kaneko, Y., Thoendel, M., Olakanmi, O., Britigan, B. E.& Singh, P. K. (2007). The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. Journal of Clinical Investigation 117: 877-888.
Kaufmann, S. H. E., Olakanmi, O., Britigan, B. E.& Schlesinger, L. S. (2000). Gallium disrupts iron metabolism of mycobacteria residing within human macrophages. Infection and Immunity, 68: 5619-5627.
Kaur, S., Kamli, M. R.& Ali, A. (2009). Diversity of arsenate reductase genes (arsC Genes) from arsenic-resistant environmental isolates of E. coli. Current Microbiology, 59: 288-294.
Kaur, U. J., Preet, S.& Rishi, P. (2018). Augmented antibiotic resistance associated with cadmium induced alterations in Salmonella enterica serovar Typhi. Scientific Reports, 8: 12818.
Kazantzis, G. (2000). Thallium in the environment and health effects. Environmental Geochemistry and Health, 22: 275-280.
Kelly, J. J., Häggblom, M.& Tate, R. L. (1999). Changes in soil microbial communities over time resulting from one time application of zinc: a laboratory microcosm study. Soil Biology and Biochemistry, 31: 1455-1465.
Kim, S. H., Wang, Y., Khomutov, M., Khomutov, A., Fuqua, C.& Michael, A. J. (2016). The essential role of spermidine in growth of Agrobacterium tumefaciens Is determined by the 1,3-diaminopropane Moiety. ACS Chemical Biology, 11: 491-499.
King, E. O., Ward, M. K.& Raney, D. E. (1954). Two simple media for the demonstration of pyocyanin and fluorescin. The Journal of Laboratory and Clinical Medicine, 44: 301-307.
Kobayashi, K., Kubo, Y., Horii, Y., Nishiwaki, T., Kamiyama, S., Sone, H.& Watanabe, S. (2017). Bacterial degradation of spermine and expression of spermidine/spermine acetyltransferase in Bacillus subtilise under liquid cultivation. The Journal of General and Applied Microbiology, 63: 373-376.
Koller, M., Maršálek, L., De Sousa Dias, M. M.& Braunegg, G. (2017). Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnology, 37: 24-38.
Kopittke, P. M., Mckenna, B. A., Blamey, F. P. C., Wehr, J. B.& Menzies, N. W. (2009). Metal-induced cell rupture in elongating roots is associated with metal ion binding strengths. Plant and Soil, 322: 303-315.
Ladenberger, A., Demetriades, A., Reimann, C., Birke, M., Sadeghi, M., Uhlbäck, J., Andersson, M.& Jonsson, E. (2015). GEMAS: Indium in agricultural and grazing land soil of Europe — Its source and geochemical distribution patterns. Journal of Geochemical Exploration, 154: 61-80.
Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L.& Pace, N. R. (1985). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences of the United States of America, 82: 6955-6959.
Lee, I., Ouk Kim, Y., Park, S. C.& Chun, J. (2016). OrthoANI: An improved algorithm and software for calculating average nucleotide identity. International Journal of Systematic and Evolutionary Microbiology 66: 1100-1103.
Lenart-Boroń, A.& Boroń, P. (2014). The effect of industrial heavy metal pollution on microbial abundance and diversity in soils—a review. Environmental Risk Assessment of Soil Contamination
Li, B., Maezato, Y., Kim, S. H., Kurihara, S., Liang, J.& Michael, A. J. (2019). Polyamine-independent growth and biofilm formation, and functional spermidine/spermine N-acetyltransferases in Staphylococcus aureus and Enterococcus faecalis. Molecular Microbiology, 111: 159-175.
Li, D., Xu, X., Yu, H.& Han, X. (2017). Characterization of Pb2+ biosorption by psychrotrophic strain Pseudomonas sp. I3 isolated from permafrost soil of Mohe wetland in Northeast China. Journal of Environmental Management, 196: 8-15.
Lima, A. I. G., Corticeiro, S. C.& De Almeida Paula Figueira, E. M. (2006). Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum. Enzyme and Microbial Technology, 39: 763-769.
Lin, H. C.& Hwang, P. P. (1998). Acute and chronic effects of gallium chloride (GaCl3) on tilapia (Oreochromis mossambicus) larvae. Bulletin of Environmental Contamination and Toxicology, 60: 931-935.
Liu, L., Li, W., Song, W.& Guo, M. (2018). Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of The Total Environment, 633: 206-219.
Lu, W.-B., Shi, J.-J., Wang, C.-H.& Chang, J.-S. (2006). Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. Journal of Hazardous Materials, 134: 80-86.
M. K. Wallwork-Barber, K. Lyall& R. W. Ferenbaugh. (1985). Thallium movement in a simple aquatic ecosystem. Journal of Environmental Science and Health 20: 689-700.
Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A. R. N., Potter, S. C., Finn, R. D.& Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 47: W636-W641.
Martínez, V., Herencias, C., Jurkevitch, E.& Prieto, M. A. (2016). Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: The case of the polyhydroxyalkanoates. Scientific Reports, 6: 24381.
Mayes, W. M., Jarvis, A. P., Burke, I. T., Walton, M., Feigl, V., Klebercz, O.& Gruiz, K. (2011). Dispersal and attenuation of trace contaminants downstream of the Ajka auxite residue (red mud) depository failure, hungary. Environmental Science & Technology, 45: 5147-5155.
Mccollum, C. R., Bertram, J. R., Nagpal, P.& Chatterjee, A. (2021). Photoactivated indium phosphide quantum dots treat multidrug-resistant bacterial abscesses in vivo. ACS Applied Materials & Interfaces, 13: 30404-30419.
Meier-Kolthoff, J. P., Auch, A. F., Klenk, H.-P.& Göker, M. (2013). Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics, 14: 60.
Meier-Kolthoff, J. P., Hahnke, R. L., Petersen, J., Scheuner, C., Michael, V., Fiebig, A., Rohde, C., Rohde, M., Fartmann, B., Goodwin, L. A., Chertkov, O., Reddy, T. B. K., Pati, A., Ivanova, N. N., Markowitz, V., Kyrpides, N. C., Woyke, T., Göker, M.& Klenk, H.-P. (2014). Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Standards in Genomic Sciences, 9: 2.
Moeschlin, S. (1980). Thallium poisoning. Clinical Toxicology, 17: 133-146.
Mohite, B. V., Koli, S. H.& Patil, S. V. (2018). Heavy metal stress and its consequences on exopolysaccharide (EPS)-producing Pantoea agglomerans. Applied Biochemistry and Biotechnology, 186: 199-216.
Monachese, M., Burton, J. P.& Reid, G. (2012). Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Applied and Environmental Microbiology, 78: 6397-6404.
Mugwar, A. J.& Harbottle, M. J. (2016). Toxicity effects on metal sequestration by microbially-induced carbonate precipitation. Journal of Hazardous Materials, 314: 237-248.
Mulrooney, S. B.& Hausinger, R. P. (2003). Nickel uptake and utilization by microorganisms. FEMS Microbiology Reviews, 27: 239-261.
Naik, M. M., Pandey, A.& Dubey, S. K. (2012). Pseudomonas aeruginosa strain WI-1 from Mandovi estuary possesses metallothionein to alleviate lead toxicity and promotes plant growth. Ecotoxicology and Environmental Safety, 79: 129-133.
Nakajima, M., Takahashi, H., Sasaki, M., Kobayashi, Y., Ohno, Y.& Usami, M. (2000). Comparative developmental toxicity study of indium in rats and mice. Teratog Carcinog Mutagen, 20: 219-227.
Nies, D. H. (1999). Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51: 730-750.
Nogami, H., Shimoda, T., Shoji, S.& Nishima, S. (2008). Pulmonary disorders in indium-processing workers. Nihon Kokyuki Gakkai Zasshi, 46: 60-64.
Noinaj, N., Guillier, M., Barnard, T. J.& Buchanan, S. K. (2010). TonB-dependent transporters: regulation, structure, and function. Annual review of microbiology, 64: 43-60.
Norris, P., Man, W. K., Hughes, M. N.& Kelly, D. P. (1976). Toxicity and accumulation of thallium in bacteria and yeast. Archives of microbiology, 110: 279-286.
Oberdörster, G. (1986). Airborne cadmium and carcinogenesis of the respiratory tract. Scandinavian Journal of Work, Environment & Health, 12: 523-537.
Ohyama, S., Ishinishi, N., Hisanaga, A.& Yamamoto, A. (1988). Comparative chronic toxicity, including tumorigenicity, of gallium arsenide and arsenic trioxide intratracheally instilled into hamsters. Applied Organometallic Chemistry, 2: 333-337.
Omura, M., Hirata, M., Tanaka, A., Zhao, M., Makita, Y., Inoue, N., Gotoh, K.& Ishinishi, N. (1996). Testicular toxicity evaluation of arsenic-containing binary compound semiconductors, gallium arsenide and indium arsenide, in hamsters. Toxicology Letters, 89: 123-129.
Omura, M., Tanaka, A., Hirata, M., Zhao, M., Makita, Y., Inoue, N., Gotoh, K.& Ishinishi, N. (1996). Testicular toxicity of gallium arsenide, indium arsenide, and arsenic oxide in rats by repetitive intratracheal instillation. Fundamental and Applied Toxicology, 32: 72-78.
Omura, M., Yamazaki, K., Tanaka, A., Hirata, M., Makita, Y.& Inoue, N. (2000). Changes in the Testicular Damage Caused by Indium Arsenide and Indium Phosphide in Hamsters during Two Years after Intratracheal Instillations. Journal of Occupational Health, 42: 196-204.
Påhlsson, A.-M. B. (1989). Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water, Air, and Soil Pollution, 47: 287-319.
Pal, A.& Paul, A. K. (2008). Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian Journal of Medical Microbiology, 48: 49-64.
Pal, C., Asiani, K., Arya, S., Rensing, C., Stekel, D. J., Larsson, D. G. J.& Hobman, J. L. (2017). Chapter seven - metal resistance and its association with antibiotic resistance. In Poole, Robert K. (Ed.), Advances in Microbial Physiology (Vol. 70, pp. 261-313): Academic Press.
Peralta-Videa, J. R., Lopez, M. L., Narayan, M., Saupe, G.& Gardea-Torresdey, J. (2009). The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. The International Journal of Biochemistry & Cell Biology, 41: 1665-1677.
Peter, A. L. J.& Viraraghavan, T. (2005). Thallium: a review of public health and environmental concerns. Environment International, 31: 493-501.
Petering, H. G.& Tepper, L. B. (1976). Pharmacology and toxicology of heavy metals: Mercury. Pharmacology & Therapeutics, 1: 131-151.
Piddock, L. J. V. (2006). Multidrug-resistance efflux pumps ? not just for resistance. Nature Reviews Microbiology, 4: 629-636.
Planet, P. J., Larussa, S. J., Dana, A., Smith, H., Xu, A., Ryan, C., Uhlemann, A.-C., Boundy, S., Goldberg, J., Narechania, A., Kulkarni, R., Ratner, A. J., Geoghegan, J. A., Kolokotronis, S.-O., Prince, A.& Shuman, H. A. (2013). Emergence of the epidemic methicillin-resistant Staphylococcus aureus strain USA300 coincides with horizontal transfer of the arginine catabolic mobile element and speG-mediated adaptations for survival on skin. mBio, 4: e00889-00813.
Połedniok, J., Kita, A.& Zerzucha, P. (2012). Spectrophotometric and inductively coupled plasma–optical emission spectroscopy determination of gallium in natural soils and soils polluted by industry: relationships between elements. Communications in Soil Science and Plant Analysis, 43: 1121-1135.
Prabhakaran, P., Ashraf, M. A.& Aqma, W. S. (2016). Microbial stress response to heavy metal in the environment. Rsc Advances, 6: 109862-109877.
Pradhan, J. K.& Kumar, S. (2014). Informal e-waste recycling: environmental risk assessment of heavy metal contamination in Mandoli industrial area, Delhi, India. Environmental Science and Pollution Research, 21: 7913-7928.
Racki, L. R., Tocheva, E. I., Dieterle, M. G., Sullivan, M. C., Jensen, G. J.& Newman, D. K. (2017). Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 114: E2440-E2449.
Radić, S., Cvjetko, P., Glavas, K., Roje, V., Pevalek-Kozlina, B.& Pavlica, M. (2009). Oxidative stress and DNA damage in broad bean (Vicia faba L.) seedlings induced by thallium. Environmental Toxicology and Chemistry, 28: 189-196.
Ralph, L.& Twiss, M. R. (2002). Comparative toxicity of thallium(I), thallium(III), and cadmium(II) to the unicellular Alga chlorella isolated from lake Erie. Bulletin of Environmental Contamination and Toxicology, 68: 261-268.
Reed, D., Crawley, J., Faro, S. N., Pieper, S. J.& Kurland, L. T. (1963). Thallotoxicosis: acute manifestations and sequelae. JAMA, 183: 516-522.
Robinson, N. J. (2008). A bacterial copper metallothionein. Nature Chemical Biology, 4: 582-583.
Rodelo, G., Gómez, A.& Manríquez, A. R. (2002). Biosorption of Pb (II) by Thiobacillus ferrooxidans. Revista Internacional de Contaminación Ambiental, 18: 33-37.
Rodríguez-Mercado, J. J.& Altamirano-Lozano, M. A. (2013). Genetic toxicology of thallium: a review. Drug and Chemical Toxicology, 36: 369-383.
Romero-Freire, A., Santos-Echeandía, J., Neira, P.& Cobelo-García, A. (2019). Less-studied technology-critical elements (Nb, Ta, Ga, In, Ge, Te) in the marine environment: review on their concentrations in water and organisms. Frontiers in Marine Science, 6: 532.
Rouch, D. A., Lee, B. T. O.& Morby, A. P. (1995). Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance. Journal of Industrial Microbiology, 14: 132-141.
Rudnick, R. L.& Gao, S. (2003). 3.01 - Composition of the continental crust. In Holland, Heinrich D. & Turekian, Karl K. (Eds.), Treatise on Geochemistry (pp. 1-64). Oxford: Pergamon.
Sahonero-Canavesi, D. X., López-Lara, I. M.& Geiger, O. (2019). Membrane lipid degradation and lipid cycles in microbes. Aerobic Utilization of Hydrocarbons, Oils, and Lipids, 10: 978-973.
Sandaa, R.-A., Torsvik, V., Enger, Ø., Daae, F. L., Castberg, T.& Hahn, D. (1999). Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiology Ecology, 30: 237-251.
Schäfer, A., Tauch, A., Jäger, W., Kalinowski, J., Thierbach, G.& Pühler, A. (1994). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene, 145: 69-73.
Schalk, I. J. (2008). Metal trafficking via siderophores in gram-negative bacteria: Specificities and characteristics of the pyoverdine pathway. Journal of Inorganic Biochemistry, 102: 1159-1169.
Sedlacek, P., Slaninova, E., Koller, M., Nebesarova, J., Marova, I., Krzyzanek, V.& Obruca, S. (2019). PHA granules help bacterial cells to preserve cell integrity when exposed to sudden osmotic imbalances. New Biotechnology, 49: 129-136.
Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics, 30: 2068-2069.
Sharma, A.& Talukder, G. (1987). Effects of metals on chromosomes of higher organisms. Environmental Mutagenesis, 9: 191-226.
Sleator, R. D.& Hill, C. (2002). Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiology Reviews, 26: 49-71.
Smith, A. T., Barupala, D., Stemmler, T. L.& Rosenzweig, A. C. (2015). A new metal binding domain involved in cadmium, cobalt and zinc transport. Nature Chemical Biology, 11: 678-684.
Smith, A. T., Smith, K. P.& Rosenzweig, A. C. (2014). Diversity of the metal-transporting P1B-type ATPases. Journal of Biological Inorganic Chemistry 19: 947-960.
Srinath, T., Verma, T., Ramteke, P. W.& Garg, S. K. (2002). Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere, 48: 427-435.
Studier, F. W.& Moffatt, B. A. (1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. Journal of Molecular Biology, 189: 113-130.
Su, J. Y., Syu, C. H.& Lee, D. Y. (2018). Growth inhibition of rice (Oryza sativa L.) seedlings in Ga- and In-contaminated acidic soils is respectively caused by Al and Al+In toxicity. Journal of Hazardous Materials, 344: 274-282.
Suhadolc, M., Schroll, R., Gattinger, A., Schloter, M., Munch, J. C.& Lestan, D. (2004). Effects of modified Pb-, Zn-, and Cd- availability on the microbial communities and on the degradation of isoproturon in a heavy metal contaminated soil. Soil Biology and Biochemistry, 36: 1943-1954.
U.S. Geological Survey (2020). Mineral commodity summaries 2020. Reston, VA
U.S. Geological Survey (2021). Mineral commodity summaries 2021. Reston, VA
Syu, C.-H., Chen, L.-Y.& Lee, D.-Y. (2021). The growth and uptake of gallium (Ga) and indium (In) of wheat seedlings in Ga- and In-contaminated soils. Science of The Total Environment, 759: 143943.
Syu, C.-H., Chen, P.-W., Huang, C.-C.& Lee, D.-Y. (2020). Accumulation of gallium (Ga) and indium (In) in rice grains in Ga- and In-contaminated paddy soils. Environmental Pollution, 261: 114189.
Syu, C.-H., Chien, P.-H., Huang, C.-C., Jiang, P.-Y., Juang, K.-W.& Lee, D.-Y. (2017). The growth and uptake of Ga and In of rice (Oryza sative L.) seedlings as affected by Ga and In concentrations in hydroponic cultures. Ecotoxicology and Environmental Safety, 135: 32-39.
Tanaka, A., Hirata, M.& Omura, M. (2003). Pulmonary squamous cyst induced by exposure to indium arsenide in hamsters. Journal of Occupational Health, 45: 405-407.
Tanaka, A., Hirata, M., Omura, M., Zhao, M., Makita, Y., Yamazaki, K., Inoue, N.& Gotoh, K. (2000). Comparative study of the toxic effects of gallium arsenide, indium arsenide and arsenic trioxide following intratracheal instillations to the lung of Syrian golden hamsters. Fukuoka igaku zasshi = Hukuoka acta medica, 91: 21-33.
Tanaka, A., Hisanaga, A., Hirata, M., Omura, M., Inoue, N.& Ishinishi, N. (1994). Pulmonary toxicity of indium arsenide and arsenic selenide following repeated intratracheal instillations to the lungs of hamsters. Applied Organometallic Chemistry, 8: 265-271.
Tokumaru, T., Ozaki, H., Onwona-Agyeman, S., Ofosu-Anim, J.& Watanabe, I. (2017). Determination of the extent of trace metals pollution in soils, sediments and human hair at e-waste recycling site in Ghana. Archives of Environmental Contamination and Toxicology, 73: 377-390.
Tsang, J. (2017). Bacterial plasmid addiction systems and their implications for antibiotic drug development. Journal of Postdoctoral Research 5: 3-9.
Van Amsterdam, J. H. G., Kluin-Nelemans, J. C., Van Eck-Smit, B. L. F.& Pauwels, E. K. J. (1996). Role of 67Ga scintigraphy in localization of lymphoma. Annals of Hematology, 72: 202-207.
Verma, N.& Singh, M. (2005). Biosensors for Heavy Metals. Biometals, 18: 121-129.
Vicentin, R. P., Santos, J. V. D., Labory, C. R. G., Costa, A. M. D., Moreira, F. M. D. S.& Alves, E. (2018). Tolerance to and accumulation of cadmium, copper, and zinc by Cupriavidus necator. Revista Brasileira de Ciência do Solo, 42: e0170080
Wallwork‐Barber, M. K., Lyall, K.& Ferenbaugh, R. W. (1985). Thallium movement in a simple aquatic ecosystem. Journal of Environmental Science & Health Part A, 20: 689-700.
Wang, Y., Han, B., Xie, Y., Wang, H., Wang, R., Xia, W., Li, H.& Sun, H. (2019). Combination of gallium (iii) with acetate for combating antibiotic resistant Pseudomonas aeruginosa. Chemical Science, 10: 6099-6106.
Webb, D. R., Sipes, I. G.& Carter, D. E. (1984). In vitro solubility and in vivo toxicity of gallium arsenide. Toxicology and Applied Pharmacology, 76: 96-104.
Webb, D. R., Wilson, S. E.& Carter, D. E. (1986). Comparative pulmonary toxicity of gallium arsenide, gallium(III) oxide, or arsenic(III) oxide intratracheally instilled into rats. Toxicology and Applied Pharmacology, 82: 405-416.
Webb, D. R., Wilson, S. E.& Carter, D. E. (1987). Pulmonary clearance and toxicity of respirable gallium arsenide particulates intratracheally instilled into rats. American Industrial Hygiene Association Journal, 48: 660-667.
Wheeler, D. M.& Power, I. L. (1995). Comparison of plant uptake and plant toxicity of various ions in wheat. Plant and Soil, 172: 167-173.
Wong, M. H., Wu, S. C., Deng, W. J., Yu, X. Z., Luo, Q., Leung, A. O. W., Wong, C. S. C., Luksemburg, W. J.& Wong, A. S. (2007). Export of toxic chemicals – A review of the case of uncontrolled electronic-waste recycling. Environmental Pollution, 149: 131-140.
Wu, K., Xu, X., Liu, J., Guo, Y., Li, Y.& Huo, X. (2010). Polybrominated diphenyl ethers in umbilical cord blood and relevant factors in neonates from Guiyu, China. Environmental Science & Technology, 44: 813-819.
Xiao, E., Ning, Z., Sun, W., Jiang, S., Fan, W., Ma, L.& Xiao, T. (2021). Thallium shifts the bacterial and fungal community structures in thallium mine waste rocks. Environmental Pollution, 268: 115834.
Yazdi, S.& Ardekani, A. M. (2012). Bacterial aggregation and biofilm formation in a vortical flow. Biomicrofluidics, 6: 044114.
Yoon, S. H., Ha, S. M., Lim, J., Kwon, S.& Chun, J. (2017). A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek, 110: 1281-1286.
Yu, X.-Z., Feng, X.-H.& Feng, Y.-X. (2015). Phytotoxicity and transport of gallium (Ga) in rice seedlings for 2-day of exposure. Bulletin of Environmental Contamination and Toxicology, 95: 122-125.
Zampieri, B. D. B., Pinto, A. B., Schultz, L., De Oliveira, M. A.& De Oliveira, A. J. F. C. (2016). Diversity and distribution of heavy metal-resistant bacteria in polluted sediments of the Araça Bay, São Sebastião (SP), and the relationship between heavy metals and organic matter concentrations. Microbial Ecology, 72: 582-594.
Zhang, T., Zhou, L., Yang, L., Wang, Q., Feng, L.-P.& Liu, Y.-S. (2016). High precision measurements of gallium isotopic compositions in geological materials by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 31: 1673-1679.
Ziagova, M., Dimitriadis, G., Aslanidou, D., Papaioannou, X., Litopoulou Tzannetaki, E.& Liakopoulou-Kyriakides, M. (2007). Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresource Technology, 98: 2859-2865.
Zitko, V. (1975). Toxicity and pollution potential of thallium. Science of The Total Environment, 4: 185-192.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊