跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 16:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇恩培
研究生(外文):Yan-Pui Nixon So
論文名稱:微陣列數據中基因的協同作用和特異性綜合分析
論文名稱(外文):Integrated analysis of microarray data to investigate gene synergy and specificity
指導教授:劉力瑜
指導教授(外文):Li-Yu Liu
口試委員:蔡政安陳虹諺
口試委員(外文):CHEN-AN TSAIHung-yen CHEN
口試日期:2021-08-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農藝學研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:57
中文關鍵詞:植物荷爾蒙加權基因共表達網絡子組本質相關係數雙標圖基因協同作用和特異性
外文關鍵詞:Plant hormoneweighted gene co-expression network analysissubgroup of coefficient of intrinsic dependencebiplotgene specificity and synergy
DOI:10.6342/NTU202104281
相關次數:
  • 被引用被引用:0
  • 點閱點閱:34
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
抵禦農業中的天氣不穩定性是農業的主要任務之一,為了最大程度地減少收成損失,了解計劃生長,新陳代謝和抵抗環境的機制非常重要。在環境壓力下,在不同濃度植物激素下植物細胞的代謝和生理調節中起著至關重要的作用。
為了全面了解基因的功能(特異性)和基因之間的關係(協同作用),在不同植物激素下進行基因網絡研究非常重要。在這項研究中,從網絡開源數據庫下載的不同植物激素下的微陣列基因表達數據,並構建了加權基因共表達網絡。此外,為了研究基因模塊和植物激素之間的非線性關係,在使用奇異值分解和雙標圖之前,使用子組本質相關係數(subCID)來代替了先前研究所使用取特徵基因模塊表現量的平均。為了清楚的觀察基因模塊在不同植物激素下在不同組織部位中表達水平的變化,計算在雙標圖中基因模塊和不同植物激素處理之間的角度,並進行統計檢驗。
研究結果發現,大多數基因模塊對根和芽組織中植物激素的反應均不同,而相同基因模塊對根和芽組織中植物激素的反應也不同,也在基因本體分析和文獻研究中得到證實。此外,利用subCID還發現了不同植物激素下基因模塊之間的基因協同作用。因此,依據本研究的分析結果,可提供跟先前研究不同的統計方法,用於研究微陣列數據中更準確的基因協同作用和特異性。
Resisting the atmospheric instability in agriculture is one of the major missions in agriculture. In order to minimize the loss of harvest, understanding the mechanism of plan growth, metabolism and resistance to environmental stress is of great importance. During environmental stresses, plant hormones play a critical role in the metabolism and physiological regulation of plant cells in different concentrations.
In order to understand comprehensively the functions of genes (specificity) and relationships between genes (synergy), genes network studies under different plant hormones is of great importance. In this study, the microarray expression data under plant hormones was downloaded from public available database and to construct the weighted gene co-expression network. Furthermore, in order to study the non-linear relationships between genes modules and plant hormones, the subgroup of coefficient of intrinsic dependence (subCID) was also used instead of taking average expression levels of eigengenes modules before singular value decomposition and biplot. The biplot was plotted for clearly visualizing the gene modules changing their expression levels under different conditions in different tissue parts. The angles between genes modules and treatments in biplot were calculated and tested with statistical significance.
Results show that most genes modules response specifically to hormone treatments and same gene modules response differently to plant hormones in root and shoot tissues and the fact that suggests their different roles in different tissues are validated in gene ontology analysis and literature research. In addition, the synergies of genes among genes modules under plant hormones were also found by subCID.
口試委員會審定書………………………………………….………….………....…#
誌謝………………………………………………….………….……..…………………i
摘要………………………………………………………………..…………………….ii
Abstract...…………………………………………………………………………..…...iii
Table of Contents…………...………………………………………………………......iv
List of Figures……….…………………………….……................................................vi
List of Tables……….…………………………….……................................................vii
Chapter1 Introduction…………………………………………………….……………...1
1.1 Plant hormones and Oryza sativa……………………………..…………………..1
1.2 Relation between plant hormones and gene expressions……..…………......…….3
1.3 Microarray gene expression platform…….……………………….………..……..3
1.4 Applications of microarrays…..………………………..……………………...….4
1.5 Weighed gene co-expression network analysis and gene modules……………….5
1.6 Specificity and synergy of gene modules………………………………..……......5
1.7 Objective of this study………………………..…………………………………...6
Chapter 2 Methods of Analysis…………………………………………….....................7
2.1 Data processing before analysis……......................................................................7
2.2 Differential expression genes selection...................................................................7
2.3 WGCNA and subCID……………………………………………...……………...8
2.3.1 Weighted correlation network analysis (WGCNA)…………………..…....…....9
2.3.2 subCID (subgroup of coefficient of intrinsic dependence (CID))……………..11
2.3.3 Inner product of biplot…………………………………………………………12
2.4 Gene Ontology Analysis…………………………..……………………………..13
Chapter 3 Results……………..………………………………………..…….................15
3.1 Data processing and differential expression genes selection…….........................15
3.2 Identification of gene modules by WGCNA and subCID.....................................15
3.3.1 Non-subCID part: comparison of p-values of inner products between each gene modules and each plant hormone treatment between root and shoot……….……….16
3.3.2 subCID part: comparison of p-values of inner products between each gene modules and each plant hormone treatment between root and shoot……………......17
3.3.3 Comparison between gene modules response to plant hormones in different tissues in WGCNA versus subCID………………………………………………......18
3.4 Gene Ontology study on gene modules…………………………………….........19
3.4.1 Comparison between subCID and nonsubCID in root and shoot tissue in terms of gene ontology……………………………………………………………..………20
Chapter 4 Discussion…………………………………...................................................21
Chapter 5 Conclusion…………………………………………………………..............27
Reference…………….…………………………………………....................................29
Supplementary files……….…………………………….…….......................................43
Reference

1.Vogel, C. & Marcotte, E. M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Gen. 13, 227–232 (2012).

2.Koussounadis, A., Langdon, S., Um, I. et al. Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Sci Rep 5, 10775 (2015).

3.Hansen, K. D., Irizarry, R. A., Wu, Z. (2012). Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 13 (2), 204–216. doi: 10.1093/biostatistics/kxr054

4.Orly Alter, Patrick O. Brown, and David Botstein. (2000). Singular value decomposition for genome-wide expression data processing and modeling. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA ‏Volume: ‏ 97 Issue: ‏ 18 Pages: ‏10101-10106

5.National Taiwan University, Taipei, Institute of Agronomy (2017, July). cidr: A Package of Coefficient of Intrinsic Dependence (CID) and its Application of Finding the Abiotic Stress-specific Gene Modules in Arabidopsis (Po-Chih Shen, Li-Yu Liu)

6.B. Zhang and S. Horvath, "A General Framework for Weighted Gene Co-Expression Network Analysis," Statistical Applications in Genetics and Molecular Biology, 2005.

7.Liu W, Tu W, Li L, Liu Y, Wang S, Li L, Tao H and He H: Revisiting Connectivity Map from a gene co‑expression network analysis. Exp Ther Med 16: 493-500, 2018

8.Chen, J., Yu, L., Zhang, S., Chen, X. (2016). Network analysis-based approach for exploring the potential diagnostic biomarkers of acute myocardial infarction. Front. Physiol. 7, 615. doi: 10.3389/fphys.2016.00615

9.Li, Y., He, X. N., Li, C., Gong, L., Liu, M. (2019b). Identification of candidate genes and microRNAs for acute myocardial infarction by weighted gene coexpression network analysis. BioMed. Res. Int. 2019, 5742608. doi: 10.1155/2019/5742608

10.Wang, C. H., Shi, H. H., Chen, L. H., Li, X. L., Cao, G. L., Hu, X. F. (2019). Identification of key lncRNAs associated with atherosclerosis progression based on public datasets. Front. Genet. 10, 123. doi: 10.3389/fgene.2019.00123

11.Garg R, Tyagi AK, Jain M. Microarray analysis reveals overlapping and specific transcriptional responses to different plant hormones in rice. Plant Signal Behav. 2012;7(8):951–956. doi: 10.4161/psb.20910.

12.Nemhauser JL, Hong F, Chory J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell. 2006; 126:467–75. doi: 10.1016/j.cell.2006.05.050.

13.Galbraith D, Edwards J (2010) Applications of Microarrays for Crop Improvement: Here, There, and Everywhere. Bioscience 60: 337–348.

14. Chapman EJ, Estelle M (2009) Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 43:265–285. https://doi.org/10.1146/annurev-genet-102108-134148

15. The RiceXPro / RiceFREND Team. About Rice 44K Microarray. Retrieved July 20, 2021, from https://ricexpro.dna.affrc.go.jp/rice-44k-microarray.html
16. Cao H, Chen S. Brassinosteroid-induced rice lamina joint inclination and its relation to indole-3-acetic acid and ethylene. Plant Growth Regul, 1995, 16(2): 189-196

17. Davies, P.J. (1995) The Plant Hormones: Their Nature, Occurrence, and Functions. In: Davies, P.J., Ed., Plant Hormones: Physiology, Biochemistry, and Molecular Biology, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1-5.

18. Yazaki J., Kishimoto N., Nagata Y., Ishikawa M., Fujii F., Hashimoto A., Shimbo K., Shimatani Z., Kojima K., Suzuki K., Yamamoto M., Honda S., Endo A., Yoshida Y., Sato Y., Takeuchi K., Toyoshima K., Miyamoto C., Wu J., Sasaki T., Sakata K., Yamamoto K., Iba K., Oda T., Otomo Y., Murakami K., Matsubara K., Kawai J., Carninci P., Hayashizaki Y., Kikuchi S. Genomics approach to abscisic acid- and gibberellin-responsive genes in rice. DNA Res. 2003;10:249–261.

19. Yang GX, Jan A, Shen SH, Yazaki J, Ishikawa M, Shimatani Z, Kishimoto N, Kikuchi S, Matsumoto H, Komatsu S. Microarray analysis of brassinosteroids- and gibberellin-regulated gene expression in rice seedlings. Mol Genet Genomics. 2004;271:468–478. doi: 10.1007/s00438-004-0998-4.

20. D.-L. Yang, Y. Yang, Z. He. Roles of plant hormones and their interplay in rice immunity. Mol. Plant, 6 (2013), pp. 675-685

21. Shih-Feng Fu, Jyuan-Yu Wei, Hung-Wei Chen, Yen-Yu Liu, Hsueh-Yu Lu & Jui-Yu Chou (2015) Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms, Plant Signaling & Behavior, 10:8,
e1048052, DOI: 10.1080/15592324.2015.1048052

22. Zubo, Y., Blakley, I. C., Yamburenko, M., Worthen, J. M., Street, I., Franco-Zorrilla, J. M., Zhang, W., Hill, K., Raines, T., Solano, R., et al. (2017). Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis. Proc. Natl. Acad. Sci. USA 114, E5995-E6004. https://doi.org/10.1073/pnas.1620749114

23. Abbasi F, Onodera H, Toki S, Tanaka H, Komatsu S. OsCDPKI3, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. Plant Mol Biol. 2004;55(4):541–52.

24. Wang Y, Hou Y, Qiu J, Wang H, Wang S, Tang L, et al. Abscisic acid promotes jasmonic acid biosynthesis via a 'SAPK10-bZIP72-AOC' pathway to synergistically inhibit seed germination in rice (Oryza sativa). New Phytol. 2020;228(4):1336–53. https://doi.org/10.1111/nph.16774.

25. Anwar, A., Liu, Y., Dong, R. et al. The physiological and molecular mechanism of brassinosteroid in response to stress: a review. Biol Res 51, 46 (2018). https://doi.org/10.1186/s40659-018-0195-2

26. Yudina, L.; Sukhova, E.; Sherstneva, O.; Grinberg, M.; Ladeynova, M.; Vodeneev, V.; Sukhov, V. Exogenous Abscisic Acid Can Influence Photosynthetic Processes in Peas through a Decrease in Activity of H+-ATP-ase in the Plasma Membrane. Biology 2020, 9, 324. https://doi.org/10.3390/biology9100324

27. Liu, C.Y.; Rao, X.L.; Li, L.G.; Dixon, R.A. Abscisic acid regulates secondary cell-wall formation and lignin deposition in Arabidopsis thaliana through phosphorylation of NST1. Proc. Natl. Acad. Sci. USA 2021, 118, e2010911118.

28. Alazem, M., & Lin, N. S. (2017). Antiviral Roles of Abscisic Acid in Plants. Frontiers in plant science, 8, 1760. https://doi.org/10.3389/fpls.2017.01760

29. Wang, T., Li, C., Wu, Z., Jia, Y., Wang, H., Sun, S., Mao, C., & Wang, X. (2017). Abscisic Acid Regulates Auxin Homeostasis in Rice Root Tips to Promote Root Hair Elongation. Frontiers in plant science, 8, 1121. https://doi.org/10.3389/fpls.2017.01121

30. Kyndt, T., Nahar, K., Haeck, A., Verbeek, R., Demeestere, K., & Gheysen, G. (2017). Interplay between Carotenoids, Abscisic Acid and Jasmonate Guides the Compatible Rice-Meloidogyne graminicola Interaction. Frontiers in plant science, 8, 951. https://doi.org/10.3389/fpls.2017.00951
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top