跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/05 21:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁睿甜
研究生(外文):Ruei-Tian Wong
論文名稱:具週期性表面起伏結構之有機發光二極體元件
論文名稱(外文):Investigation of Corrugation Organic Light Emitting Diodes
指導教授:吳忠幟
指導教授(外文):Chung-Chih Wu
口試委員:陳俐吟蔡志宏
口試委員(外文):Li-Yin ChenChih-Hung Tsai
口試日期:2021-09-11
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:58
中文關鍵詞:高指向性有機發光元件光場顯示奈米結構週期性結構基板角度分布特性
外文關鍵詞:High directivity OLEDsLight-field displayNano-structuresPeriodic corrugated structuresAngular characteristics
DOI:10.6342/NTU202103199
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文首先簡介有機發光二極體(Organic light emitting diode, OLED)的歷史與原理,並且介紹光場立體顯示技術的幾種常見作法與優缺點,接著提出一個奠基於有機發光二極體之上的光場顯示架構,其中包含兩大部分,分別為高指向性光源與光線偏折結構。本研究主要聚焦在第一部分高指向性光源,介紹以週期性結構實現高指向性有機發光二極體元件的原理,即設計OLED結構將能量集中於某一高波向量(k)值模態,接著以週期性結構的基板來將高波向量(high-k)模態轉換到低波向量(low-k)模態,並透過初步模擬驗證其可行性。接下來以三種不同方法實作週期性結構基板,包含加熱融化奈米小球、在圖案化藍寶石基板上沉積SiO2以及在圖案化藍寶石基板上旋轉塗佈透明光阻,以光學顯微鏡、掃描式電子顯微鏡與原子力顯微鏡觀察結果,並比較它們各自的優缺點。接著以時域有限差分法(Finite-difference time-domain, FDTD)模擬探討在圖案化藍寶石基板與ITO電極之間插入SiO2層的厚度與電子傳輸層(Electron-transport layer, ETL)厚度對指向性的影響,並且實作完整的OLED元件,透過量測其發光場型與變角度頻譜,並與平面元件做比較,成功得到場型更為集中的元件,初步驗證了週期性結構的基板能夠將高波向量模態轉換到低波向量模態,但其仍與模擬結果以及能實際應用於光場顯示的要求有些差距,因此也探討了造成這些差距的可能原因。最後對於未來能夠進一步改進和發展的方向提出討論。
This thesis first introduced the history and principles of organic light emitting diodes as well as light-field displays. We then proposed a configuration for OLED light-field displays which consists of two main parts, including high directivity OLED light source and beam deflection structures. This research focused on the first part, the high directivity OLED light source. Firstly, we introduced the theory of achieving high directivity OLED light source with periodic nano-corrugation structures. Then we fabricated nano-structured and corrugated substrates with three different methods, including melting self-assembled polystyrene nanospheres, sputtering SiO2 on patterned sapphire substrates (PSS) and spin-coating transparent photoresist on patterned sapphire substrates. By comparing the pros and cons of these three methods with optical microscopy, scanning electron microscopy and atomic force microscopy, we decided to fabricate complete OLED device on the patterned sapphire substrate overcoated with the transparent photoresist. With the aid of finite-difference time-domain (FDTD) simulation, we investigated the influence of the thickness of SiO2 interlayer between PSS and ITO electrode as well as the thickness of electron-transport layer (ETL). We then fabricated complete OLED devices based on the simulation results. By measuring the emission pattern and angle-resolved EL spectra, we verified that periodically nano-structured substrates could yield OLEDs with enhanced directionality. Compared to planar devices, PSS devices showed better directivity. However, when considering practical light-field displays, the results were not satisfactory enough. Therefore, we discussed possible reasons that might cause non-ideal effects. Lastly, we proposed some future works that may further improve the work.
誌謝………………………………………………………………………………… i
中文摘要………………………………………………………………………………ii
ABSTRACT……………………………………………………………………………iii
目錄……………………………………………………………………………………iv
圖目錄………………………………………………………………………………vi
第一章 緒論………………………………………………………………………… 1
1.1 有機發光二極體簡介…………………………………………………………1
1.2 光場立體顯示技術簡介………………………………………………………2
1.3 研究動機與論文架構…………………………………………………………3
第一章圖表………………………………………………………………………5
第二章 OLED光場顯示架構與高指向性元件…………………………………11
2.1 OLED光場顯示架構………………………………………………11
2.2 高指向性元件原理…………………………………………………………12
2.3 初步模擬與討論……………………………………………………………13
第二章圖表……………………………………………………………………15
第三章 週期性奈米起伏結構基板製作……………………………………………21
3.1 加熱融化自組裝奈米小球陣列……………………………………………21
3.2 加工商用圖案化藍寶石基板………………………………………………24
3.3 結果與討論………………………………………………………26
第三章圖表……………………………………………………………………27
第四章 週期性奈米起伏結構OLED模擬設計與實驗……………………………40
4.1 模擬設計方法與結果………………………………………………………40
4.2 元件製作與量測方法………………………………………………………41
4.3 結果與討論…………………………………………………………………41
第四章圖表……………………………………………………………………43
第五章 總結與未來展望……………………………………………………………55
5.1 總結…………………………………………………………………………55
5.2 未來展望……………………………………………………………………55
參考文獻…………………………………………………………………………56
[1]M. Pope, H. P. Kallmann, and P. Magnante, “Electroluminescence in Organic Crystals,” J. Chem. Phys., vol. 38, no. 8, p. 2042-2043, Apr. 1963.
[2]C. W. Tang and S. A. VanSlyke , "Organic electroluminescent diodes," Appl. Phys. Lett., vol. 51, no. 12, p. 913-915, Sep. 1987.
[3]M. S. Lin, S. J. Yang, H. W. Chang, Y. H. Huang, Y. T. Tsai, C. C. Wu, S. H. Chou, E. Mondal, and K. T. Wong, “Incorporation of a CN group into mCP: a new bipolar host material for highly efficient blue and white electrophosphorescent devices,” J. Mater. Chem., vol. 22, no. 31, 16114, Jul. 2012.
[4]D. Gabor, “Microscopy by reconstructed wave-fronts,” Proc. R. Soc. Lond. A., vol. 197, p. 454-487, Jul. 1949.
[5]F. E. Ives, “A novel stereogram,” J. Franklin Inst., vol. 153, no. 1, p. 51–52, 1902.
[6]W. Hess, “Stereoscopic picture,” U.S. patent 1,128,979, Feb. 1915.
[7]M. Minami, K. Yokomizo, and Y. Shimpuku, “Glasses-free 2D/3D switchable display,” SID Symposium Digest of Technical Papers, p. 468-471, 2011.
[8]H. Takahashi, H. Fujinami, and K. Yamada, “Holographic lens array increases the viewing angle of 3D displays,” SPIE Newsroom, Jun. 2006.
[9]D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature, vol. 495, p. 348-351, Mar. 2013.
[10]R. Mertens. (2013). LG Display shows a bendable 5" AMOLED panel at SID, from https://www.oled-info.com/lg-display-shows-bendable-5-amoled-panel-sid
[11]LG Display showcases innovative OLED displays at SID 2019, (2019), from https://news.lgdisplay.com/global/2019/05/lg-display-showcases-innovative-oled-displays-at-sid-2019
[12]Y. Chen. (2019). Industry Players Demonstrate Display Technology Breakthroughs, from https://www.ledinside.com/showreport/2019/5/sid_display_week_2019_industry_players_demonstrate_display_technology_breakthroughs
[13]R. Mertens. (2021). Samsung Display shows new rollable and foldable OLED technologies at SID DIsplayweek 2021, from https://www.oled-info.com/samsung-display-unveiles-new-rollable-and-foldable-oled-technologies-sid
[14]S. Tokito, T. Tsutsui, and Y. Taga, “Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions,” J. Appl. Phys., vol. 86(5) , p. 2407-2411, Aug. 1999.
[15]F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, “Multiwavelength achromatic metasurfaces by dispersive phase compensation,” Science, vol. 347(6228), p. 1342-1345, Mar. 2015.
[16]M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. OH, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,” Science, vol. 352(6290), p. 1190-1194, Jun. 2016.
[17]C. Liu, Y. Bai, Q. Zhao, Y. Yang, H. Chen, J. Zhou, and L. Qiao, “Fully controllable Pancharatnam-Berry metasurface array with high conversion efficiency and broad bandwidth,” Sci. Rep., vol.6, no. 34819, Oct. 2016.
[18]A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science, vol. 339, no. 6125, Mar. 2013.
[19]X. Fu, C. Peng, M. Samal, N. Barange, Y. A. Chen, D.H. Shin, Y. Mehta, A. Rozelle, C. H. Chang, and F. So, “Mode dispersion in photonic crystal organic light-emitting diodes,” ACS Appl. Electron. Mater., vol. 2(6), p. 1759-1767, Jun. 2020.
[20]B. Park, S. Y. Na, and IG. Bae, “Uniform two-dimensional crystals of polystyrene nanospheres fabricated by a surfactant-assisted spin-coating method with polyoxyethylene tridecyl ether,” Sci. Rep., vol. 9, no. 11453, Aug. 2019.
[21]J. Chen, P. Dong, D. Di, C. Wang, H. Wang, J. Wang, and X. Wu, “Controllable fabrication of 2D colloidal-crystal films with polystyrene nanospheres of various diameters by spin-coating,” Appl. Surf. Sci., vol. 270, p. 6-15, 2013.
[22]A. Chandramohan, N. Sibirev, and V.Dubrovskii, “Model for large-area monolayer coverage of polystyrene nanospheres by spin coating,” Sci. Rep., vol. 7, no. 40888, Jan. 2017.
[23]Y. Cheng, P. G. Jönsson, and Z. Zhao, “Controllable fabrication of large-area 2D colloidal crystal masks with large size defect-free domains based on statistical experimental design,” Appl. Surf. Sci., vol. 313, p. 144-151, May. 2014.
[24]C. Zhang, S. Cvetanovic, J. M. Pearce, “Fabricating ordered 2-D nano-structured arrays using nanosphere lithography,” MethodsX, vol. 4, p. 229-242, Jul. 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top