跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 08:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:袁祥程
研究生(外文):Hsiang-Cheng Yuan
論文名稱:應用於物聯網之低功率低面積甦醒接收機
論文名稱(外文):An Ultra-low-power Low-area Wake-up Receiver for IoT Applications
指導教授:林宗賢林宗賢引用關係
指導教授(外文):Tsung-Hsien Lin
口試委員:劉深淵李泰成
口試委員(外文):Shen-Iuan LiuTai-Cheng Lee
口試日期:2021-06-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:76
中文關鍵詞:低功率接收機甦醒接收機直接能量檢測接收機偏移校正機制
外文關鍵詞:Low-power receiverWake-up radioDirect energy-detection receiverOffset compensation
DOI:10.6342/NTU202101082
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:1
隨著先進技術的發展,用於無線通信的智能傳感測器已成為物聯網應用中的關鍵組成部分。部署在環境中的大量感測節點使得更換電池變得難以執行。對於低吞吐量的應用,利用喚醒接收器(wake-up receiver)在需要時喚醒主收發器是個有效的方法。因此,高性能和高功率的主收發器可以在大多數時間保持睡眠模式以節省功率,而使用能量檢測(energy detection)實現的喚醒接收器是此類低功耗操作的最佳選擇。
本文提出了一種基於能量檢測的喚醒接收機的設計,並採用台積電90奈米CMOS技術製造。在RF前端皆為被動電路的情況下,所有電路均以基帶頻率工作,因此在0.5 V電源電壓下的總功耗為3.6 nW。透過使用開關電容器積分器(switched-capacitor integrator)代替交流耦合電阻和電容進行偏移補償來減小面積,而晶片面積為0.84 mm2。該接收器以427.8-MHz ISM頻段和100 b/s的數據速率運行,靈敏度為75.3 dBm 時延遲為110毫秒,適合短距離IoT應用。
Smart sensors for wireless communication is a key building block in IoT applications. A large number of sensor nodes deployed in the environment makes battery replacement impracticable. Utilizing wake-up receiver to wake up the main transceiver when required is an efficient way for low-throughput applications. Thus, the high-performance and high-power main transceiver can maintain at sleeping mode most of the time to save power. Wake-up receivers realized using energy-detection are the best choice for such low-power operations.
This thesis presents the design of a wake-up receiver based on energy detection. The proposed chip is fabricated in TSMC 90-nm CMOS technology. With a passive front end, all the circuits are operating at baseband frequency, leading to a total power consumption of 3.6 nW under a 0.5-V supply voltage. The chip occupies 0.84-mm2 area, which is reduced by using switched-capacitor integrator instead of ac-coupling resistors and capacitors for offset compensation. Operating at 427.8-MHz ISM-band and 100-b/s data rate, the receiver has a sensitivity of −75.3 dBm with a 110-ms latency, which is suitable for short-range IoT applications.
中文審定書 i
英文審定書 ii
摘要 v
Abstract vi
List of Figures ix
List of Tables xiii
Chapter 1 Introduction 1
1.1 Wake-Up Receivers 2
1.1.1 Battery Lifetime 3
1.1.2 False-Alarm Rate 3
1.1.3 Wake-Up Latency 4
1.1.4 Carrier Frequency and Link Budget 4
1.2 Architectures of Sub-μW Wake-Up Radios 5
1.2.1 Heterodyne Receiver 5
1.2.2 Mixer-based Uncertain-IF Receiver 6
1.2.3 Tuned-RF Receiver 7
1.2.4 Direct Energy-Detecting Receiver 8
1.3 Operation Scheme 9
1.3.1 Bit-Level Duty-Cycling 9
1.3.2 Packet-Level Duty-Cycling 10
1.3.3 Always-On Wake-Up Receivers 11
1.4 Thesis Organization 11
Chapter 2 Noise and Sensitivity Analysis for Energy-detecting Receivers 12
2.1 SNR Analysis 12
2.2 Envelope Detector Model 15
2.3 Sensitivity Analysis 17
2.3.1 Self-Mixing of Antenna Noise Dominates 17
2.3.2 Antenna Noise Mixed with Input Signal Dominates 18
2.3.3 Sensitivity and Front-end Gain 18
2.4 Impact of Insufficient Front-End Gain 20
2.5 Optimizing for Sensitivity 21
Chapter 3 Envelope Detectors 23
3.1 Conventional Envelope Detectors 23
3.1.1 Active Detector Modeling 24
3.1.2 Passive Detector Modeling 25
3.1.3 Passive vs. Active Envelope Detectors 28
3.2 Satisfying the Design Requirements 29
3.2.1 Achieving Desired Resistance 30
3.2.2 Minimizing Capacitance 31
3.3 Multi-Stage Design 32
3.3.1 Characteristic of Multi-Stage Envelope Detector 32
3.3.2 Conversion Gain Enhancement 34
3.3.3 Sensitivity 35
3.3.4 Bandwidth 36
3.3.5 Biasing Circuit 37
Chapter 4 Proposed Low-power Wake-up Receiver Based on Energy Detection 38
4.1 Design Challenge 38
4.2 Receiver Architecture 40
4.3 Circuit Implementation 42
4.3.1 RF Front End 42
4.3.2 Baseband Voltage Amplifier 44
4.3.3 Comparator Design 46
4.3.4 Digital Correlator 50
4.3.5 Bias Circuits and Clock Source 51
4.3.6 Switched-Capacitor Integrator for DC Feedback 53
4.4 System Analysis 55
4.4.1 Offset 55
4.4.2 Sensitivity 56
Chapter 5 Measurement Results and Future Works 62
5.1 Measurement Environment Setup 62
5.2 Measurement Results 63
5.3 Conclusion and Comparison Table 68
5.4 Future Works 70
References 71
[1]M. Gorlatova, P. Kinget, I. Kymissis, D. Rubenstein, X. Wang and G. Zussman, "Energy harvesting active networked tags (EnHANTs) for ubiquitous object networking," IEEE Wireless Communications, 2010, pp. 18-25.
[2]A. Kutbee, R. Bahabry, K. Alamoudi, M. T. Ghoneim, M. D. Cordero, A. S. Almuslem, A. Gumus, E. Diallo, J. Nassar, A. Hussain, N. Khashab, and M. Hussain, “Flexible and biocompatible high-performance solid-state micro-battery for implantable orthodontic system,” Nature Partner Journals Flexible Electronics, 2017.
[3]P. Schulz, M. Matthe, H. Klessig, M. Simsek, G. Fettweis, J. Ansari, S. A. Ashraf, B. Almeroth, J. Voigt, I. Riedel, A. Puschmann, A. Mitschele-Thiel, M. Muller, T. Elste, and M. Windisch, “Latency critical IoT applications in 5G: Perspective on the design of radio interface and network architecture,” IEEE Communications Magazine, 2017, pp. 70–78.
[4]C. Salazar, A. Kaiser, A. Cathelin and J. Rabaey, "A −97 dBm-sensitivity interferer-resilient 2.4 GHz wake-up receiver using dual-IF multi-N-Path architecture in 65nm CMOS," IEEE International Solid-State Circuits Conference, 2015, pp. 1-3.
[5]S. Drago, D. M. W. Leenaerts, F. Sebastiano, L. J. Breems, K. A. A. Makinwa and B. Nauta, "A 2.4GHz 830pJ/bit duty-cycled wake-up receiver with −82dBm sensitivity for crystal-less wireless sensor nodes," IEEE International Solid-State Circuits Conference, 2010, pp. 224-225.
[6]N. M. Pletcher, S. Gambini and J. Rabaey, "A 52 μW wake-up receiver with 72 dBm sensitivity using an uncertain-IF architecture," IEEE Journal of Solid-State Circuits, 2009, pp. 269-280.
[7]C. Bryant and H. Sjöland, "A 2.45GHz, 50uW wake-up receiver front-end with −88dBm sensitivity and 250kbps data rate," IEEE European Solid-State Circuits Conference, 2014, pp. 235-238.
[8]J. Moody et al., "A -106dBm 33nW bit-level duty-cycled tuned RF wake-up receiver," IEEE Symposium on VLSI Circuits, 2019, pp. C86-C87.
[9]N. Pletcher, S. Gambini and J. Rabaey, "A 65 μW, 1.9 GHz RF to digital baseband wakeup receiver for wireless sensor nodes," IEEE Custom Integrated Circuits Conference, 2007, pp. 539-542.
[10]X. Huang, A. Ba, P. Harpe, G. Dolmans, H. De Groot and J. Long, "A 915MHz 120μW-RX/900μW-TX envelope-detection transceiver with 20dB in-band interference tolerance," IEEE International Solid-State Circuits Conference, 2012, pp. 454-456.
[11]P. P. Wang et al., "A near-zero-power wake-up receiver achieving −69-dBm sensitivity," IEEE Journal of Solid-State Circuits, 2018, pp. 1640-1652.
[12]P. P. Wang et al., "A 6.1-nW wake-up receiver achieving −80.5-dBm sensitivity via a passive pseudo-balun envelope detector," IEEE Solid-State Circuits Letters, 2018, pp. 134-137.
[13]P. P. Wang et al., "A 400 MHz 4.5 nW −63.8 dBm sensitivity wake-up receiver employing an active pseudo-balun envelope detector," IEEE European Solid-State Circuits Conference, 2017, pp. 35-38.
[14]J. Moody et al., "An 8.3 nW −72 dBm event driven IoE wake up receiver RF front end," IEEE European Microwave Integrated Circuits Conference, 2017, pp. 77-80.
[15]J. Moody et al., "Interference robust detector-first near-zero power wake-up receiver," IEEE Journal of Solid-State Circuits, 2019, pp. 2149-2162.
[16]V. Mangal and P. R. Kinget, "A -80.9dBm 450MHz wake-up receiver with code-domain matched filtering using a continuous-time analog correlator," IEEE Radio Frequency Integrated Circuits Symposium, 2019, pp. 259-262.
[17]V. Mangal and P. R. Kinget, "Clockless, continuous-time analog correlator using time-encoded signal processing demonstrating asynchronous CDMA for wake-up receivers," IEEE Journal of Solid-State Circuits, 2020, pp. 2069-2081.
[18]P. P. Wang and P. P. Mercier, "A 220μW -85dBm sensitivity BLE-compliant wake-up receiver achieving -60dB SIR via single-die multi-channel FBAR-based filtering and a 4-Dimentional wake-up signature," IEEE International Solid-State Circuits Conference, 2019, pp. 440-442.
[19]P. P. Wang and P. P. Mercier, "An interference-resilient BLE-compatible wake-up receiver employing single-die multi-channel FBAR-based filtering and a 4-D wake-up signature," IEEE Journal of Solid-State Circuits, 2021, pp. 416-426.
[20]P. P. Wang and P. P. Mercier, "A 4.4μW −92/−90.3dBm sensitivity dual-mode BLE/Wi-Fi wake-up receiver," IEEE Symposium on VLSI Circuits, 2020, pp. 1-2.
[21]X. Huang, G. Dolmans, H. de Groot and J. R. Long, "Noise and sensitivity in RF envelope detection receivers," IEEE Transactions on Circuits and Systems II, 2013, pp. 637-641.
[22]Y. Tsividis and C. McAndrew, Operation and modeling of the MOS transistor (The oxford series in electrical and computer engineering). New York, NY, USA: Oxford University Press, Inc., 2011, ISBN: 0195170156.
[23]J. F. Dickson, "On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique," IEEE Journal of Solid-State Circuits, 1976, pp. 374-378.
[24]S. Oh and D. D. Wentzloff, "A −32dBm sensitivity RF power harvester in 130nm CMOS," IEEE Radio Frequency Integrated Circuits Symposium, 2012, pp. 483-486.
[25]V. Mangal and P. R. Kinget, "A wake-up receiver with a multi-stage self-mixer and with enhanced sensitivity when using an interferer as local oscillator," IEEE Journal of Solid-State Circuits, 2019, pp. 808-820.
[26]J. Moody and S. M. Bowers, "Triode-mode envelope detectors for near zero power wake-up receivers," IEEE MTT-S International Microwave Symposium, 2019, pp. 1499-1502.
[27]V. Mangal and P. R. Kinget, "A 0.42nW 434MHz -79.1dBm wake-up receiver with a time-domain integrator," IEEE International Solid-State Circuits Conference, 2019, pp. 438-440.
[28]V. Mangal and P. R. Kinget, "Sub-nW wake-up receivers with gate-biased self-mixers and time-encoded signal processing," IEEE Journal of Solid-State Circuits, 2019, pp. 3513-3524.
[29]E. Cheever. Calculation of a step input into an infinite RC transmission line, Swarthmore College.
[30]H. Jiang et al., "A 22.3-nW, 4.55 cm2 temperature-robust wake-up receiver achieving a sensitivity of −69.5 dBm at 9 GHz," IEEE Journal of Solid-State Circuits, 2020, pp. 1530-1541.
[31]S. Dai and J. K. Rosenstein, "A 14.4nW 122KHz dual-phase current-mode relaxation oscillator for near-zero-power sensors," IEEE Custom Integrated Circuits Conference, 2015, pp. 1-4.
[32]Molex-204287: ISM 433 MHz Flex Antenna. Accessed: May 8, 2019. [Online]. Available: https://www.molex.com/molex/products/datasheet.jsp
[33]A. Dissanayake, H. L. Bishop, J. Moody, H. Muhlbauer, B. H. Calhoun and S. M. Bowers, "A multichannel, MEMS-less −99dBm 260nW bit-level duty cycled wakeup receiver," IEEE Symposium on VLSI Circuits, 2020, pp. 1-2.
[34]H. L. Bishop, A. Dissanayake, S. M. Bowers and B. H. Calhoun, "An integrated 2.4GHz -91.5dBm-sensitivity within-packet duty-cycled wake-up receiver achieving 2μW at 100ms latency," IEEE International Solid-State Circuits Conference, 2021, pp. 310-312.
[35]J. Moody et al., "A −76dBm 7.4nW wakeup radio with automatic offset compensation," IEEE International Solid-State Circuits Conference, 2018, pp. 452-45.
[36]H. Jiang et al., "A 4.5nW wake-up radio with −69dBm sensitivity," IEEE International Solid-State Circuits Conference, 2017, pp. 416-417.
[37]S.-H. Oh, N. E. Roberts, and David D. Wentzloff “A 98nW wake-up radio for wireless body area networks,” IEEE Radio Frequency Integrated Circuits Symposium, 2012, pp. 373-376.
[38]K. R. Sadagopan, K. R. Sadagopan, J. Kang, S. Jain, Y. Ramadass, and A. Natarajan, “A 365 nW -61.5 dBm sensitivity, 1.875 cm2 2.4 GHz wake-up receiver with rectifier-antenna co-design for passive gain,” IEEE Radio Frequency Integrated Circuits Symposium, 2017, pp. 180-183.
[39]A. S. Sedra and K.C. Smith, Microelectronic Circuits, 2nd ed., New York: Oxford University Press, 2011.
[40]A. S. Rekhi and A. Arbabian, “A 14.5 mm2 8nW -59.7dBm-sensitivity ultrasonic wake-up receiver for power, area, and interference-constrained applications,” IEEE International Solid-State Circuits Conference, 2018, pp. 454-455.
[41]I. Demirkol, C. Ersoy, and E. Onur, “Wake-up receivers for wireless sensor networks: benefits and challenges,” IEEE Wireless Communications, 2009, pp. 88-96.
[42]S.-H. Oh, N. E. Roberts, and David D. Wentzloff, “A 116nW multi-band wake-up receiver with 31-bit correlator and interference rejection,” IEEE Custom Integrated Circuits Conference, 2013, pp. 591-594.
[43]B. P. Lathi, Modern Digital and Analog Communication Systems. New York: Oxford University Press, 1998.
[44]Flaticon [Online]. Available: https://www.flaticon.com/
[45]Coilcraft, Inc., Cary, IL, USA. Air Core Inductors 132-xxSM. [Online]. Available: https://www.coilcraft.com/en-us/products/rf/air-core-inductors/maxi-spring/132-xxsm/
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top