跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/18 07:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王昱富
研究生(外文):Yu-Fu Wang
論文名稱:大面積鍺錫合金薄膜轉移與能隙控制
論文名稱(外文):Bandgap engineering on large area flip transferred GeSn nanomembrane
指導教授:張子璿
指導教授(外文):Tzu-Hsuan Chang
口試委員:林致廷吳肇欣張俊傑
口試委員(外文):Chih-Ting LinChao-Hsin WuChun-Chieh Chang
口試日期:2021-08-05
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:72
中文關鍵詞:鍺錫合金奈米薄膜應力控制能隙控制
外文關鍵詞:GeSnnanomembranestrain engineeringbandgap engineering
DOI:10.6342/NTU202102623
相關次數:
  • 被引用被引用:0
  • 點閱點閱:18
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Acknowledgements i
Abstract iii
List of Figures vii
List of Tables xi
Chapter 1. Introduction 1
Chapter Overview 1
1.1 All Group IV material: GeSn 1
1.2 Growth of GeSn on Si Substrate 2
1.3 GeSn optoelectronics 5
1.4 Nanomembrane and its applications 8
Chapter 2. Basic concept of strained GeSn membrane analysis 11
Chapter overview 11
2.1 GeSn crystal structure 11
2.1.1 Crystal structure and lattice parameter 11
2.1.2 1st Brillouin zone of GeSn lattice 13
2.1.3 Virtual crystal approximation 14
2.2 Strain and stress in cubic crystal 16
2.2.1 Strain matrix 16
2.2.2 Young’s modulus and Poisson ratio 17
2.3 Optical properties 18
2.3.1 Refractive index 18
2.3.2 Dielectric constant 20
2.3.3 Absorption coefficient 21
2.3.4 Raman scattering 24
Chapter Overview 25
3.1 X-ray diffraction 25
3.1.1 Introduction to High resolution x-ray diffraction 25
3.1.2 Types of XRD scans 26
3.1.3 Reciprocal space mapping of GeSn Lattice 28
3.1.4 Strain and Sn Fraction Analysis of Epitaxial GeSn Thin Film through XRD Measurement 30
3.2 X-ray photoelectron spectroscopy (XPS) 32
3.2.1 Introduction to XPS 32
3.2.2 Interpretation of the XPS spectrum 33
3.2.3 Surface chemical reaction analysis of GeSn/Ge selective etching mechanism using X-ray Photoelectron Spectroscopy (XPS) 34
3.3 Photoluminescence of Ge 39
3.4 Raman spectroscopy 40
Chapter 4. Experiment design and evolution in the early stage 42
Chapter Overview 42
4.1 Nanomembrane undercut by selective wet etch of Ge with H2O2 solution (Stage 1) 42
4.2 Nanomembrane released by selective etch of Si with TMAH solution (Stage 2) 44
4.3 Nanomembrane undercut by alternatively using H2O2 and TMAH selective wet etch (Stage 3) 46
4.4 Adhesive assisted transfer with SF6/O2 selective dry etch (Stage 4 and 5) 49
Chapter 5. Characterization of transferred GeSn Nanomembrane 54
Chapter overview 54
5.1 Large area GeSn nanomembrane transfer (Stage 5) 54
5.2 Strain analysis of relaxed GeSn nanomembrane by X-Ray diffraction (XRD) 57
5.3 Strain analysis of relaxed GeSn nanomembrane by Raman Spectrum 60
5.4 Optical bandgap and strain analysis in photoluminescence (PL) spectrum 62
5.5 Summarization of in-plane strain analysis by different methods 64
5.6 Surface roughness characterization 65
5.7 Conclusion 66
5.8 Future work 66
Reference 68
1Tran, H., Pham, T., Margetis, J., Zhou, Y., Dou, W., Grant, P.C., Grant, J.M., Al-Kabi, S., Sun, G., Soref, R.A., Tolle, J., Zhang, Y.-H., Du, W., Li, B., Mortazavi, M., and Yu, S.-Q.: ‘Si-Based GeSn Photodetectors toward Mid-Infrared Imaging Applications’, ACS Photonics, 2019, 6, (11), pp. 2807-2815
2Gupta, S., Magyari-Köpe, B., Nishi, Y., and Saraswat, K.C.: ‘Achieving direct band gap in germanium through integration of Sn alloying and external strain’, Journal of Applied Physics, 2013, 113, (7), pp. 073707
3Michel, J., Liu, J., and Kimerling, L.C.: ‘High-performance Ge-on-Si photodetectors’, Nature Photonics, 2010, 4, (8), pp. 527-534
4Liu, J., Cannon, D.D., Wada, K., Ishikawa, Y., Jongthammanurak, S., Danielson, D.T., Michel, J., and Kimerling, L.C.: ‘Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications’, Applied Physics Letters, 2005, 87, (1), pp. 011110
5Wirths, S., Tiedemann, A., Ikonic, Z., Harrison, P., Holländer, B., Stoica, T., Mussler, G., Myronov, M., Hartmann, J., and Grützmacher, D.: ‘Band engineering and growth of tensile strained Ge/(Si) GeSn heterostructures for tunnel field effect transistors’, Applied physics letters, 2013, 102, (19), pp. 192103
6Ghetmiri, S.A., Du, W., Margetis, J., Mosleh, A., Cousar, L., Conley, B.R., Domulevicz, L., Nazzal, A., Sun, G., and Soref, R.A.: ‘Direct-bandgap GeSn grown on silicon with 2230 nm photoluminescence’, Applied Physics Letters, 2014, 105, (15), pp. 151109
7Lan, H.S., Chang, S.T., and Liu, C.W.: ‘Semiconductor, topological semimetal, indirect semimetal, and topological Dirac semimetal phases of Ge1-xSnx alloys’, Physical Review B, 2017, 95, (20), pp. 201201
8Zaima, S., Nakatsuka, O., Taoka, N., Kurosawa, M., Takeuchi, W., and Sakashita, M.: ‘Growth and applications of GeSn-related group-IV semiconductor materials’, Science and Technology of Advanced Materials, 2015, 16, (4), pp. 043502
9Aubin, J., Hartmann, J., Gassenq, A., Rouviere, J., Robin, E., Delaye, V., Cooper, D., Mollard, N., Reboud, V., and Calvo, V.: ‘Growth and structural properties of step-graded, high Sn content GeSn layers on Ge’, Semiconductor Science and Technology, 2017, 32, (9), pp. 094006
10Millar, R.W., Dumas, D.C.S., Gallacher, K.F., Jahandar, P., MacGregor, C., Myronov, M., and Paul, D.J.: ‘Mid-infrared light emission>3um wavelength from tensile strained GeSn microdisks’, Opt. Express, 2017, 25, (21), pp. 25374-25385
11Ring, E., and Ammer, K.: ‘Infrared thermal imaging in medicine’, Physiological measurement, 2012, 33, (3), pp. R33
12Waxman, A.M., Gove, A.N., Fay, D.A., Racamato, J.P., Carrick, J.E., Seibert, M.C., and Savoye, E.D.: ‘Color Night Vision: Opponent Processing in the Fusion of Visible and IR Imagery’, Neural Networks, 1997, 10, (1), pp. 1-6
13Kaufhold, S., Hein, M., Dohrmann, R., and Ufer, K.: ‘Quantification of the mineralogical composition of clays using FTIR spectroscopy’, Vibrational Spectroscopy, 2012, 59, pp. 29-39
14Movasaghi, Z., Rehman, S., and ur Rehman, D.I.: ‘Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues’, Applied Spectroscopy Reviews, 2008, 43, (2), pp. 134-179
15Gupta, S., Chen, R., Magyari-Kope, B., Lin, H., Bin, Y., Nainani, A., Nishi, Y., Harris, J.S., and Saraswat, K.C.: ‘GeSn technology: Extending the Ge electronics roadmap’, in Editor (Ed.)^(Eds.): ‘Book GeSn technology: Extending the Ge electronics roadmap’ (2011, edn.), pp. 16.16.11-16.16.14
16Moutanabbir, O., Assali, S., Gong, X., O'Reilly, E., Broderick, C., Marzban, B., Witzens, J., Du, W., Yu, S.-Q., and Chelnokov, A.: ‘Monolithic infrared silicon photonics: the rise of (Si) GeSn semiconductors’, Applied Physics Letters, 2021, 118, (11), pp. 110502
17Mathews, J., Roucka, R., Xie, J., Yu, S.-Q., Menéndez, J., and Kouvetakis, J.: ‘Extended performance GeSn/Si (100) p-i-n photodetectors for full spectral range telecommunication applications’, Applied physics letters, 2009, 95, (13), pp. 133506
18Wirths, S., Geiger, R., von den Driesch, N., Mussler, G., Stoica, T., Mantl, S., Ikonic, Z., Luysberg, M., Chiussi, S., Hartmann, J.M., Sigg, H., Faist, J., Buca, D., and Grützmacher, D.: ‘Lasing in direct-bandgap GeSn alloy grown on Si’, Nature Photonics, 2015, 9, (2), pp. 88-92
19Stange, D., von den Driesch, N., Zabel, T., Armand-Pilon, F., Rainko, D., Marzban, B., Zaumseil, P., Hartmann, J.-M., Ikonic, Z., Capellini, G., Mantl, S., Sigg, H., Witzens, J., Grützmacher, D., and Buca, D.: ‘GeSn/SiGeSn Heterostructure and Multi Quantum Well Lasers’, ACS Photonics, 2018, 5, (11), pp. 4628-4636
20Scott, S.A., and Lagally, M.G.: ‘Elastically strain-sharing nanomembranes: flexible and transferable strained silicon and silicon–germanium alloys’, Journal of Physics D: Applied Physics, 2007, 40, (4), pp. R75-R92
21Mosleh, A., Benamara, M., Ghetmiri, S.A., Conley, B.R., Alher, M.A., Du, W., Sun, G., Soref, R., Margetis, J., and Tolle, J.: ‘Investigation on the formation and propagation of defects in GeSn thin films’, ECS Transactions, 2014, 64, (6), pp. 895
22Yang, H., Zhao, D., Chuwongin, S., Seo, J.-H., Yang, W., Shuai, Y., Berggren, J., Hammar, M., Ma, Z., and Zhou, W.: ‘Transfer-printed stacked nanomembrane lasers on silicon’, Nature Photonics, 2012, 6, (9), pp. 615-620
23Roberts, M.M., Klein, L.J., Savage, D.E., Slinker, K.A., Friesen, M., Celler, G., Eriksson, M.A., and Lagally, M.G.: ‘Elastically relaxed free-standing strained-silicon nanomembranes’, Nature Materials, 2006, 5, (5), pp. 388-393
24Sánchez-Pérez, J.R., Boztug, C., Chen, F., Sudradjat, F.F., Paskiewicz, D.M., Jacobson, R.B., Lagally, M.G., and Paiella, R.: ‘Direct-bandgap light-emitting germanium in tensilely strained nanomembranes’, Proceedings of the National Academy of Sciences, 2011, 108, (47), pp. 18893
25Park, S.I., Ahn, J.H., Feng, X., Wang, S., Huang, Y., and Rogers, J.A.: ‘Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates’, Advanced Functional Materials, 2008, 18, (18), pp. 2673-2684
26Xia, Z., Song, H., Kim, M., Zhou, M., Chang, T.-H., Liu, D., Yin, X., Xiong, K., Mi, H., and Wang, X.: ‘Single-crystalline germanium nanomembrane photodetectors on foreign nanocavities’, Science advances, 2017, 3, (7), pp. e1602783
27Choi, W.M., Song, J., Khang, D.-Y., Jiang, H., Huang, Y.Y., and Rogers, J.A.: ‘Biaxially stretchable “wavy” silicon nanomembranes’, Nano Letters, 2007, 7, (6), pp. 1655-1663
28Kim, M., Mi, H., Cho, M., Seo, J.-H., Zhou, W., Gong, S., and Ma, Z.: ‘Tunable biaxial in-plane compressive strain in a Si nanomembrane transferred on a polyimide film’, Applied Physics Letters, 2015, 106, (21), pp. 212107
29Ying, M., Bonifas, A.P., Lu, N., Su, Y., Li, R., Cheng, H., Ameen, A., Huang, Y., and Rogers, J.A.: ‘Silicon nanomembranes for fingertip electronics’, Nanotechnology, 2012, 23, (34), pp. 344004
30Zhang, Y., Yan, Z., Nan, K., Xiao, D., Liu, Y., Luan, H., Fu, H., Wang, X., Yang, Q., and Wang, J.: ‘A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes’, Proceedings of the National Academy of Sciences, 2015, 112, (38), pp. 11757-11764
31Swaminathan, V., and Macrander., A.T.: ‘Materials Aspects of Gaas and Inp Based Structures’ (Prentice Hall, 1991. 1991)
32Kittel, C., McEuen, P., and McEuen, P.: ‘Introduction to solid state physics’ (Wiley New York, 1996. 1996)
33Adachi, S.: ‘Properties of semiconductor alloys: group-IV, III-V and II-VI semiconductors’ (John Wiley & Sons, 2009. 2009)
34D’costa, V.R., Cook, C.S., Birdwell, A., Littler, C.L., Canonico, M., Zollner, S., Kouvetakis, J., and Menéndez, J.: ‘Optical critical points of thin-film Ge 1− y Sn y alloys: a comparative Ge 1− y Sn y∕ Ge 1− x Si x study’, Physical Review B, 2006, 73, (12), pp. 125207
35Jenkins, D.W., and Dow, J.D.: ‘Electronic properties of metastable Ge x Sn 1− x alloys’, Physical Review B, 1987, 36, (15), pp. 7994
36Mäder, K., Baldereschi, A., and Von Känel, H.: ‘Band structure and instability of Ge1− xSnx alloys’, Solid state communications, 1989, 69, (12), pp. 1123-1126
37Ravi, R., Prakash, P., Saurabh, K.P., Sanjay, K., and Jitendra, K.M.: ‘Investigation of GeSn/SiGeSn nanostructured layer for sensors in mid-infrared application’, in Editor (Ed.)^(Eds.): ‘Book Investigation of GeSn/SiGeSn nanostructured layer for sensors in mid-infrared application’ (2020, edn.), pp.
38Pankove, J.I.: ‘Optical processes in semiconductors’ (Courier Corporation, 1975. 1975)
39D'Costa, V.R., Wang, W., Zhou, Q., Chan, T.K., Osipowicz, T., Tok, E.S., and Yeo, Y.-C.: ‘Compositional dependence of optical critical point parameters in pseudomorphic GeSn alloys’, Journal of Applied Physics, 2014, 116, (5), pp. 053520
40Zanatta, A.R.: ‘Revisiting the optical bandgap of semiconductors and the proposal of a unified methodology to its determination’, Scientific Reports, 2019, 9, (1), pp. 11225
41Tran, H., Du, W., Ghetmiri, S.A., Mosleh, A., Sun, G., Soref, R.A., Margetis, J., Tolle, J., Li, B., and Naseem, H.A.: ‘Systematic study of Ge1− xSnx absorption coefficient and refractive index for the device applications of Si-based optoelectronics’, Journal of Applied Physics, 2016, 119, (10), pp. 103106
42Gassenq, A., Milord, L., Aubin, J., Pauc, N., Guilloy, K., Rothman, J., Rouchon, D., Chelnokov, A., Hartmann, J., and Reboud, V.: ‘Raman spectral shift versus strain and composition in GeSn layers with 6%–15% Sn content’, Applied Physics Letters, 2017, 110, (11), pp. 112101
43‘Principles of X-ray Diffraction’: ‘Thin Film Analysis by X‐Ray Scattering’ (2005), pp. 1-40
44Stanchu, H., Kuchuk, A.V., Mazur, Y.I., Margetis, J., Tolle, J., Richter, J., Yu, S.-Q., and Salamo, G.J.: ‘X-ray diffraction study of strain relaxation, spontaneous compositional gradient, and dislocation density in GeSn/Ge/Si (100) heterostructures’, Semiconductor Science and Technology, 2020, 35, (7), pp. 075009
45Birkholz, M.: ‘Thin film analysis by X-Ray scattering’ (WILEY-VCH Verlag GmbH & Co. KGaA, 2005. 2005)
46Speriosu, V., and Vreeland Jr, T.: ‘X‐ray rocking curve analysis of superlattices’, Journal of applied physics, 1984, 56, (6), pp. 1591-1600
47Wie, C., Tombrello, T.t., and Vreeland Jr, T.: ‘Dynamical x‐ray diffraction from nonuniform crystalline films: Application to x‐ray rocking curve analysis’, Journal of applied physics, 1986, 59, (11), pp. 3743-3746
48Wie, C.: ‘Rocking curve peak shift in thin semiconductor layers’, Journal of applied physics, 1989, 66, (2), pp. 985-988
49d'Aragona, F.S.: ‘Dislocation etch for (100) planes in silicon’, Journal of the Electrochemical Society, 1972, 119, (7), pp. 948
50Holy, V., Kubena, J., Abramof, E., Pesek, A., and Koppensteiner, E.: ‘High resolution x-ray reciprocal space mapping’, J. Phys. D, Appl. Phys, 26
51Beeler, R., Roucka, R., Chizmeshya, A., Kouvetakis, J., and Menéndez, J.: ‘Nonlinear structure-composition relationships in the Ge1-ySny/Si(100) (y<0.15) system’, Physical Review B, 2011, 84, pp. 035204
52Moulder, J.F.: ‘Handbook of X-ray photoelectron spectroscopy’, Physical electronics, 1995, pp. 230-232
53Campo, A., Cardinaud, C., and Turban, G.: ‘Comparison of etching processes of silicon and germanium in SF6–O2 radio‐frequency plasma’, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1995, 13, (2), pp. 235-241
54Gupta, S., Chen, R., Huang, Y.-C., Kim, Y., Sanchez, E., Harris, J.S., and Saraswat, K.C.: ‘Highly Selective Dry Etching of Germanium over Germanium–Tin (Ge1–x Sn x): A Novel Route for Ge1–x Sn x Nanostructure Fabrication’, Nano letters, 2013, 13, (8), pp. 3783-3790
55Van Roosbroeck, W., and Shockley, W.: ‘Photon-radiative recombination of electrons and holes in germanium’, Physical Review, 1954, 94, (6), pp. 1558
56Menéndez, J., Poweleit, C.D., and Tilton, S.E.: ‘Temperature-dependent photoluminescence in Ge: Experiment and theory’, Physical Review B, 2020, 101, (19), pp. 195204
57Würfel, P., Finkbeiner, S., and Daub, E.: ‘Generalized Planck's radiation law for luminescence via indirect transitions’, Applied Physics A, 1995, 60, (1), pp. 67-70
58Lin, H., Chen, R., Huo, Y., Kamins, T.I., and Harris, J.S.: ‘Raman study of strained Ge1− xSnx alloys’, Applied Physics Letters, 2011, 98, (26), pp. 261917
59Lee, S., Kim, K., Dhakal, K.P., Kim, H., Yun, W.S., Lee, J., Cheong, H., and Ahn, J.-H.: ‘Thickness-dependent phonon renormalization and enhanced Raman scattering in ultrathin silicon nanomembranes’, Nano letters, 2017, 17, (12), pp. 7744-7750
60Guo, Q., Zhang, M., Xue, Z., Zhang, J., Wang, G., Chen, D., Mu, Z., Huang, G., Mei, Y., and Di, Z.: ‘Uniaxial and tensile strained germanium nanomembranes in rolled-up geometry by polarized Raman scattering spectroscopy’, AIP Advances, 2015, 5, (3), pp. 037115
61Han, Y., Li, Y., Song, Y., Chi, C., Zhang, Z., Liu, J., Zhu, Z., and Wang, S.: ‘A comparative study of selective dry and wet etching of germanium–tin (Ge1− xSnx) on germanium’, Semiconductor Science and Technology, 2018, 33, (8), pp. 085011
62Parker Jr, J., Feldman, D., and Ashkin, M.: ‘Raman scattering by silicon and germanium’, Physical Review, 1967, 155, (3), pp. 712
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top