跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/25 19:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃俊銘
研究生(外文):Chun-Ming Huang
論文名稱:電源傳輸網路於射頻元件接收感度惡化之系統改善設計
論文名稱(外文):Systematic Design on Power Distribution Network for Mitigation of RF De-sense
指導教授:吳瑞北
指導教授(外文):Ruey-Beei Wu
口試委員:吳宗霖林丁丙林祐生黃銘崇
口試委員(外文):Tzong-Lin WuDing-Bing LinYo-Shen LinMing-Chung Huang
口試日期:2020-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:83
中文關鍵詞:電磁能隙結構接收感度惡化電磁干擾射頻干擾交錯式電源線
外文關鍵詞:electromagnetic band gapRF de-senseelectromagnetic interference (EMI)radio-frequency interference (RFI)interleaved power line
DOI:10.6342/NTU202004253
相關次數:
  • 被引用被引用:0
  • 點閱點閱:321
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
本論文在針對由電感性耦合主導之問題,提出兩種抑制方法。第一種由雜訊源端進行抑制。提出交錯式電源線結構以代替傳統電源線。相較於傳統的抑制方式,擁有不額外佔據空間等優勢,特別適合使用在尺寸小層數少之產品。且其在有地平面之封裝系統中,一次交錯式電源線即可達到20dB之隔離度改善度,最後以實驗驗證。在無地平面之封裝系統中,一次交錯式結構在板材較厚情形下可達到12dB之隔離度改善度,另外亦提出兩種二次交錯式電源線結構,分別在板厚較薄及板厚較厚情形可以得到良好性能表現。
第二種抑制方式透過對於受害者RF電路之直流供應端進行抑制,我們透過對T型電路之改進其規一化,可達到S21在2~6GHz擁有-20dB,且可單純不改變共振頻之情況之下,只透過電容值改變止帶之深度。最後經過和LNA共同模擬,對於雜訊源於電源供應端由Vn=1~1000nV之情況之下,吾人提出之濾波器基本上均能使NF壓制在3dB以下,比傳統的方法包含單純電感到EBG表現優越,達到尺寸小且抑制能力好的結果。















關鍵字:電磁能隙結構、接收感度惡化、電磁干擾、射頻干擾、交錯式電源線
ABSTRACT
The goal of this thesis is to solve the crosstalk issue dominated by inductive coupling. Two methods are proposed. The first is to suppress the noise coupling through power lines from the source. An interleaved power line structure is proposed to replace the traditional power line. Compared with the traditional suppression methods, it does not need to occupy additional space and thus particularly suitable for products with small size, fewer layers and dense layouts. In packaging systems with a ground plane, the interleaved power line can achieve 20dB improvement in noise suppression, which is also verified by the experiment. In packaging systems without ground plane layer, the interleaved power line can provide up to 12 dB noise suppression improvement for thick layers. Two kinds of doubly interleaved power line structures are thus proposed to provide good suppression performance in both thicker and thinner substrates, respectively.
The second method is to suppress the noise from DC supply end of the RF circuit on the victim side. A T-type filter circuit with small occupied space is proposed. The performance in suppressing S21 is -20dB at 2~6GHz. Design formula is also derived so that the insertion loss in the stopband can be designed by changing the capacitance value while keeping the resonance frequency fixed. Finally, after co-simulation with LNA, the noise from the power supply, with Vn = 1~1000nV, is considered and the proposed filter can successfully suppress NF of the LNA below 3dB. As compared with the conventional methods such as direct inductor and EBG, the proposed filter can yield better performance, including small size and good suppression ability.


Index terms – electromagnetic band gap, RF de-sense, electromagnetic interference (EMI), radio-frequency interference (RFI), interleaved power line
目錄
口試委員會審定書 i
致謝 ii
中文摘要 iii
ABSTRACT iv
目錄 v
圖目錄 vii
表目錄 xii
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.3 論文貢獻 5
1.4 章節內容概述 6
第二章 基礎理論 7
2.1 問題背景及簡化電路模型 7
2.1.1 電場性耦合及磁場性耦合概述 9
2.1.2 問題簡化電路模型之驗證 13
2.2 自感及互感理論闡述 16
2.2.1 單根導體之自感推導 16
2.2.2 互感推導 17
2.2.3 多根導體對差動對之互感 19
第三章 交錯式電源線之結構分析 22
3.1 考慮地平面之交錯式電源線之設計 22
3.2 尺寸相關參數對隔離度之改善程度之影響 25
3.3 考慮線路交錯及去耦電容之位置 28
3.4 考慮地平面之交錯式電源線於雙層板QFN封裝之安裝及分析 32
3.5 考慮地平面之交錯式電源線於雙層板PCB之實驗驗證 34
第四章 無考慮地平面之交錯式電源線之結構分析 37
4.1 一次交錯式電源線結構 37
4.2 二次交錯式電源線結構 41
4.2.1 互補型二次交錯式結構 41
4.2.2 對稱式二次交錯式結構 46
4.3 無考慮地平面之交錯式電源線於雙層板PCB之實驗驗證 51
第五章 濾波器應用於PDN雜訊電流之抑制 54
5.1 簡單濾波器架構討論 54
5.2 T型電路之改進 61
5.3 濾波器應用於PDN雜訊電流之抑制 67
5.3.1 低雜訊放大器 67
5.3.2 LNA 電源端串接雜訊電壓源及濾波器 69
5.4 雜訊透過濾波器及LNA之互感耦合討論 76
第六章 結論 79
REFERENCE 81
[1]D. Ahn, J.-S. Park, C.-S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE transactions on microwave theory and techniques, vol. 49, no. 1, pp. 86-93, 2001.
[2]T.-L. Wu, Y.-H. Lin, T.-K. Wang, C.-C. Wang, and S.-T. Chen, "Electromagnetic bandgap power/ground planes for wideband suppression of ground bounce noise and radiated emission in high-speed circuits," IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 9, pp. 2935-2942, 2005.
[3]C.-H. Huang and T.-L. Wu, "Analytical design of via lattice for ground planes noise suppression and application on embedded planar EBG structures," IEEE Transactions on components, packaging and manufacturing technology, vol. 3, no. 1, pp. 21-30, 2012.
[4]T.-L. Wu, C.-C. Wang, Y.-H. Lin, T.-K. Wang, and G. Chang, "A novel power plane with super-wideband elimination of ground bounce noise on high speed circuits," IEEE microwave and wireless components letters, vol. 15, no. 3, pp. 174-176, 2005.
[5]B. Mohajer-Iravani and O. M. Ramahi, "Suppression of EMI and electromagnetic noise in packages using embedded capacitance and miniaturized electromagnetic bandgap structures with high-k dielectrics," IEEE Transactions on advanced Packaging, vol. 30, no. 4, pp. 776-788, 2007.
[6]H. Hsieh, H. Chan, Y. Wang, Y. Lin, W. Wang, S. Wang, and R. Wu, "Nonperiodic Flipped EBG for Dual-Band SSN Mitigation in Two-Layer PCB," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 9, no. 9, pp. 1690-1697, 2019, doi: 10.1109/TCPMT.2019.2933490.
[7]P.-C. Chen, K.-Y. Yang, Y.-H. Lin, W.-S. Wang, T.-Y. Wu, and R.-B. Wu, "A Novel Two-Cap Filter for Routing Noise Suppression Using Extended EBG Analysis," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 7, no. 11, pp. 1852-1858, 2017.
[8]M.-H. Tsai, S.-K. Hsu, S. Liu, and F.-L. Hsueh, "An on-chip electromagnetic bandgap structure with ESD protection for noise suppression in 16-nm FinFET CMOS," IEEE Microwave and Wireless Components Letters, vol. 27, no. 2, pp. 147-149, 2017.
[9]C.-K. Shen, Y.-C. Lu, Y.-P. Chiou, H.-H. Hsieh, M.-H. Tsai, S. Liu, and T.-L. Wu, "EBG-based grid-type PDN on interposer for SSN mitigation in mixed-signal system-in-package," IEEE Microwave and Wireless Components Letters, vol. 27, no. 12, pp. 1053-1055, 2017.
[10]P.-S. Wei, M.-H. Tsai, S.-K. Hsu, C.-K. Shen, and T.-L. Wu, "An Electromagnetic Bandgap Structure Integrated With RF LNA Using Integrated Fan-Out Wafer-Level Package for Gigahertz Noise Suppression," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5482-5490, 2018.
[11]Y.-S. Cheng, W.-D. Guo, C.-P. Hung, R.-B. Wu, and D. De Zutter, "Enhanced microstrip guard trace for ringing noise suppression using a dielectric superstrate," IEEE transactions on advanced packaging, vol. 33, no. 4, pp. 961-968, 2010.
[12]K. Lee, H.-B. Lee, H.-K. Jung, J.-Y. Sim, and H.-J. Park, "A serpentine guard trace to reduce the far-end crosstalk voltage and the crosstalk induced timing jitter of parallel microstrip lines," IEEE transactions on advanced packaging, vol. 31, no. 4, pp. 809-817, 2008.
[13] Y.-S. Cheng, W.-D. Guo, G.-H. Shiue, H.-H. Cheng, and C.-C. Wang, "Fewest vias design for microstrip guard trace by using overlying dielectric," in 2008 IEEE-EPEP Electrical Performance of Electronic Packaging, 2008: IEEE, pp. 321-324.
[14]G.-H. Shiue, J.-H. Shiu, and P.-W. Chiu, "Analysis and design of crosstalk noise reduction for coupled striplines inserted guard trace with an open-stub on time-domain in high-speed digital circuits," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 1, no. 10, pp. 1573-1582, 2011.
[15]K.-B. Wu, T.-Y. Kuo, C.-C. Hung, B. Lin, I.-H. Peng, M.-T. Yang, and R.-B. Wu, "Novel RDL design of wafer-level packaging for signal/power integrity in LPDDR4 Application," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 8, no. 8, pp. 1431-1439, 2018.
[16]C. R. Paul, Introduction to electromagnetic compatibility. John Wiley & Sons, 2006.
[17]C. R. Paul, Inductance: loop and partial. John Wiley & Sons, 2011.
[18]D. M. Pozar, Microwave engineering. John Wiley & Sons, 2009.
[19]C.-Y. Hsiao, Y.-C. Huang, and T.-L. Wu, "An ultra-compact common-mode bandstop filter with modified-T circuits in integrated passive device (IPD) process," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 11, pp. 3624-3631, 2015.
[20]J.-W. Sheen, "A compact semi-lumped low-pass filter for harmonics and spurious suppression," IEEE Microwave and Guided Wave Letters, vol. 10, no. 3, pp. 92-93, 2000.
[21]W.-T. Fang, T.-H. Tseng, and Y.-S. Lin, "Miniaturized ultra-wideband bandpass filter using bridged-T coil," IEEE microwave and wireless components letters, vol. 24, no. 6, pp. 367-369, 2014.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top