跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.59) 您好!臺灣時間:2023/01/27 18:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王子豪
研究生(外文):Ziu-Hao Wang
論文名稱:應用於第五代行動通訊之功率放大器與混頻器的研究
論文名稱(外文):Research of Power Amplifier and Up-Conversion Mixer for 5G Mobile Communications
指導教授:王暉
指導教授(外文):Huei Wang
口試委員:黃天偉林坤佑蔡作敏章朝盛
口試委員(外文):Tian-Wei HuangKun-You LinTsai Zuo-MinChau-Ching Chiong
口試日期:2020-12-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:121
中文關鍵詞:第五代行動通訊互補式金屬氧化物半導體製程升頻器功率放大器Ka頻段
外文關鍵詞:5GCMOSPower amplifierMixer
DOI:10.6342/NTU202100179
相關次數:
  • 被引用被引用:0
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文包含兩個部分都是希望運用在第五代行動通訊系統中。第一部分應用在30到40 GHz寬頻連續反F類功率放大器,使用65奈米金氧半場電晶體製程設計。第二部分是應用於28 GHz高線性度升頻器,使用28米金氧半場電晶體製程設計。
論文中首先提出了一個應用在30到40 GHz連續模式反F(CCF-1)功率放大器設計以同時達到寬頻且高效率的表現。此電路為了實現連續反F操作,利用輸出變壓器並且在其中加入電容用來實現理想基頻與諧波阻抗設計。我們可以透過這種方式設計來減少匹配電路的設計複雜度與損耗,除此之外,在本章當中也討論放大器的線性度且電路的AM/PM失真因為輸出諧波匹配而有一定程度的改善。量測結果顯示本文提出的功率放大器在34 GHz有17.9 dBm的飽和輸出功率且大訊號頻寬包含從30到40 GHz,在此輸出功率下仍有35.8%功率附加效益,還得到15 dBm輸出功率的增益1dB壓縮點。在調變量測使用64-QAM的訊號下,此電路達到400MHz調變頻寬且有9.2 dBm的平均輸出功率和12.5 %平均功率附加效率,且錯誤向量大小(EVM)小於-28 dB。
另外提出一個在轉導級使用二階交互調變注入技術達到高線性度的升頻器,因此透過混和低頻輸入訊號和二階交互調變訊號可以在轉導級產生一個正的三階交互調變訊號,並且透過電晶體操作在三級區來放大此訊號,最後本電路展現出在寬輸入功率範圍下都有三階交互調變功率抑制。量測結果顯示此升頻器有-6.4 dB的轉換增益與-2.2 dBm輸出功率的增益1dB壓縮點,直流功率損耗為19 mW,而雙頻量測(two-tone measurement)則顯示明顯的三階交互調變功率抑制且輸出三階截點功率為10.2 dBm。除此之外,在調變訊號量測使用256-QAM的訊號下,此電路展現出在有三階交互調變失真抑制下輸出功率可以改善。
This thesis is composed of two parts and both of them aim for the fifth-generation wireless communication. The first part is a 30-40 GHz broadband power amplifier with continuous Class-F-1 matching fabricated in 65-nm CMOS process. The other exhibits a 28-GHz high linearity up-conversion mixer fabricated in 28-nm CMOS process.
At first, a 30-40 GHz continuous-mode inverse Class-F (Class-F-1) power amplifier design to achieve both high efficiency and wide bandwidth is presented. The proposed fundamental and harmonic matching are achieved using the output transformer with an embedded capacitor for continuous inverse class-F operation. In this way, we can reduce the harmonic load complexity and insertion loss significantly. Moreover, linearity of the power amplifier is discussed and the improvement of AM-PM distortion due to harmonic output matching is also exhibited. Therefore, the proposed continuous Class-F-1 PA shows a saturated output power (Psat) of 17.9 dBm, output power bandwidth (30 to 40 GHz) with 35.8 % peak PAE, and output 1-dB compression point (OP1dB) of 15.0 dBm at 34 GHz. When tested with a single-carrier 64-QAM signal, this PA achieves bandwidth of 400 MHz, 9.2-dBm average output power, and 12.5% average PAE under error vector magnitude (EVM) -28 dB.
The other part is a high linearity up-conversion mixer with a second-order intermodulation (IM2) signal injection technique adopted in the transconductance stage. So, the positive third-order intermodulation (IM3) signal is generated from mixing the IM2 signal and IF input signal with transistors biasing in triode region. The proposed mixer achieves the IM3 power improvement of 10 dB in a wide IF power range with the proposed technique. The measurement results demonstrate a conversion gain of -6.4 dB and output 1-dB compression point (OP1dB) of -2.2 dBm with 19 mW. The two-tone measurement results exhibit a conspicuous improvement of IM3 and achieves 10.2 dBm output third-order intercept point (OIP3). Furthermore, with the modulation measured results using single-carrier 256-QAM signal, the proposed mixer also exhibits an output power level enhancement of 3 dB when the linearizer turns on.
口試委員會審定書 #
誌謝 ii
中文摘要 iv
ABSTRACT vi
CONTENTS viii
LIST OF FIGURES xii
LIST OF TABLES xx
Chapter 1 Introduction 1
1.1 Backgrounds and Motivations 1
1.2 Literature Survey 3
1.2.1 Broadband and High Efficiency Power Amplifier 3
1.2.2 High Linearity Up-Conversion Mixer 5
1.3 Contributions 7
1.3.1 30-40 GHz Broadband and Efficiency CMOS PA 7
1.3.2 28-GHz CMOS up-conversion mixer 8
1.4 Thesis Organization 9
Chapter 2 A 30-40 GHz Power Amplifier with Continuous Class F-1 matching in 65 nm CMOS Technology 11
2.1 Introduction 11
2.2 Circuit Design 15
2.2.1 Circuit Architecture 16
2.2.2 Device and Bias selection 17
2.2.3 Capacitance-Based Neutralization 24
2.2.4 Load-pull Simulation for Continuous Class-F-1 operation 27
2.2.5 Design of the Matching Networks 30
2.2.6 Simulation Results 37
2.2.7 Stability Check of the Circuit 44
2.3 Experimental Results 47
2.3.1 DC Operating Point 47
2.3.2 S-Parameters and Large Signal Power Sweep Measurement 48
2.3.3 Digital Modulation 52
2.4 Summary 60
Chapter 3 A 28 GHz High Linearity Up-conversion Mixer Using Second-Harmonic Injection Technique in 28 nm CMOS Technology 64
3.1 Introduction 64
3.2 Circuit Design 69
3.2.1 High Linearity Up-Conversion Mixer 69
3.2.2 The Design of the Active Mixer Core 70
3.2.3 The Design of transconductance stage and IM2 signal injection technique 80
3.2.4 Simulation Results 87
3.3 Experimental Results 92
3.3.1 Large-signal CW Performances 92
3.3.2 Digital Modulation 102
3.3.3 The Linearity Consideration of the Up-conversion mixer 107
3.4 Summary 111
Chapter 4 Conclusions 113
REFERENCE 115
[1]3GPP Release 16 [Online] https://www.3gpp.org/release-16
[2]K. Kibaroglu, M. Sayginer, T. Phelps and G. M. Rebeiz, "A 64-element 28-GHz phased-array transceiver with 52-dBm EIRP and 8–12-Gb/s 5G Link at 300 meters without any calibration," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5796-5811, Dec. 2018.
[3]H. Jia, C. C. Prawoto, B. Chi, Z. Wang and C. P. Yue, "A full Ka-band power amplifier with 32.9% PAE and 15.3-dBm power in 65-nm CMOS," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 9, pp. 2657-2668, Sept. 2018.
[4]S. N. Ali, P. Agarwal, S. Gopal, S. Mirabbasi and D. Heo, "A 25–35 GHz neutralized continuous Class-F CMOS power amplifier for 5G mobile communications achieving 26% modulation PAE at 1.5 Gb/s and 46.4% peak PAE," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 2, pp. 834-847, Feb. 2019.
[5]T. Li, M. Huang and H. Wang, "Millimeter-wave continuous-mode power amplifier for 5G MIMO applications," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 7, pp. 3088-3098, July 2019.
[6]M. Vigilante and P. Reynaert, "A 29-to-57GHz AM-PM compensated class-AB power amplifier for 5G phased arrays in 0.9V 28nm bulk CMOS," IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Honolulu, HI, 2017, pp. 116-119.
[7]L. Chen, L. Zhang, L. Zhang and Y. Wang, "A compact E-band PA with 22.37% PAE 14.29 dBm output power and 26 dB power gain with efficiency enhancement at power back-off," IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, MA, USA, 2019, pp. 183-186.
[8]Young Yun Woo, Youngoo Yang and Bumman Kim, "Analysis and experiments for high-efficiency class-F and inverse class-F power amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 5, pp. 1969-1974, May 2006.
[9]K. Chen and D. Peroulis, "Design of broadband highly efficient harmonic-tuned power amplifier using in-band continuous Class-F/F-1 mode transferring," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 12, pp. 4107-4116, Dec. 2012.
[10]S. C. Cripps, RF Power Amplifier for Wireless Communications. Boston, MA:Artech House, 2000.
[11]M. Vigilante and P. Reynaert, "A wideband class-AB power amplifier with 29–57-GHz AM–PM compensation in 0.9-V 28-nm Bulk CMOS," IEEE Journal of Solid-State Circuits, vol. 53, no. 5, pp. 1288-1301, May 2018.
[12]Y. Chen, T. Tsai, J. Tsai and T. Huang, "A 38-GHz-Band Power Amplifier with Analog Pre-distortion for 1600-MHz Transmission Bandwidth 64-QAM OFDM Modulated Signal," 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2019.
[13]C. C. Cheng.,”Neutralization and unilateralization,” IRE Trans. Circuit Theory,vol. 2,no. 2, pp138-145, June 1955.
[14]Y. Chang, B. Lu, Y. Wang and H. Wang, "A Ka-Band stacked power amplifier with 24.8-dBm output power and 24.3% PAE in 65-nm CMOS Technology," IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2019.
[15]W. Huang, J. Lin, Y. Lin and H. Wang, "A K-Band power amplifier with 26-dBm output power and 34% PAE with novel inductance-based neutralization in 90-nm CMOS," IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Philadelphia, PA, 2018.
[16]Y. Chen, Y. Lin, J. Lin and H. Wang, "A Ka-Band transformer-based doherty power amplifier for multi-Gb/s application in 90-nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 28, no. 12, pp. 1134-1136, Dec. 2018.
[17]T. Li et al., “A Continuous-Mode 23.5-41GHz Hybrid Class-F/F-1 Power Amplifier with 46% Peak PAE for 5G Massive MIMO Applications,” IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 220-223, June. 2018.
[18]H. Park et al., "A high efficiency 39 GHz CMOS cascode power amplifier for 5G Applications," IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, MA, USA, 2019.
[19]B. Park et al., “Highly Linear mm-wave CMOS Power Amplifier,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 12, pp. 4535-4544, Dec. 2016.
[20]CMOS Front Ends for Millimeter Wave Wireless Communication Systems Authors: Deferm, Noël, Reynaert, Patrick.
[21]Mortazavi, S.Y., & Koh, K. "A 43% PAE inverse Class-F power amplifier at 39–42 GHz with a λ/4-transformer based harmonic filter in 0.13-µm SiGe BiCMOS," IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, 2016.
[22]M. Vigilante and P. Reynaert, "A 29-to-57GHz AM-PM compensated class-AB power amplifier for 5G phased arrays in 0.9V 28nm bulk CMOS," IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Honolulu, HI, 2017, pp. 116-119.
[23]Y. Chen, Y. Lin, J. Lin and H. Wang, "A Ka-Band Transformer-Based Doherty Power Amplifier for Multi-Gb/s Application in 90-nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 28, no. 12, pp. 1134-1136, Dec. 2018.
[24]Y. Chen, T. Tsai, J. Tsai and T. Huang, "A 38-GHz-Band Power Amplifier with Analog Pre-distortion for 1600-MHz Transmission Bandwidth 64-QAM OFDM Modulated Signal," IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2019.
[25]Behzad Razavi, RF Microelectronics, Second Edition.
[26]Y. Wang et al., "A 39-GHz 64-element phased-array transceiver with built-in phase and amplitude calibrations for large-array 5G NR in 65-nm CMOS," IEEE Journal of Solid-State Circuits, vol. 55, no. 5, pp. 1249-1269, May 2020.
[27]C. Chen, Y. Chen, Y. Wang, T. Kuo and H. Wang, "38-GHz CMOS linearized receiver with IM3 suppression, P1dB/IP3/RR3 enhancements, and mitigation of QAM constellation diagram distortion in 5G MMW systems" IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp. 2779-2795, July 2020.
[28]Y. M. Kim, H. Han, and T. W. Kin, “A 0.6-V +4 dBm IIP3 LC folded cascode CMOS LNA With gm linearization,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 3, pp. 122-126, March 2013.
[29]K. Liang, C. Lin, H. Chang and Y. Chan, "A new linearization technique for CMOS RF mixer using third-order transconductance cancellation," IEEE Microwave and Wireless Components Letters, vol. 18, no. 5, pp. 350-352, May 2008.
[30]C. Wu, C. Yu and K. K. O, "Amplification of nonlinearity in multiple gate transistor millimeter wave mixer for improvement of linearity and noise figure," IEEE Microwave and Wireless Components Letters, vol. 25, no. 5, pp. 310-312, May 2015.
[31]H. Lin, Y. Lin and H. Wang, "A high linearity 24-GHz down-conversion mixer using distributed derivative superposition technique in 0.18-m CMOS Process," IEEE Microwave and Wireless Components Letters, vol. 28, no. 1, pp. 49-51, Jan. 2018.
[32]Z. Jiang, B. Lu, Y. Wang and H. Wang, "A compact 38-54 GHz sub-harmonic mixer with improved linearity in 65-nm CMOS," IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Nanjing, China, 2019.
[33]H. Li and C. E. Saavedra, "Linearization of active downconversion mixers at the IF using feedforward cancellation," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 4, pp. 1620-1631, April 2019.
[34]M. Mollaalipour and H. Miar-Naimi, "Design and analysis of a highly efficient linearized CMOS subharmonic mixer for zero and low-IF Applications," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 6, pp. 2275-2285, June 2016.
[35]M. Mollaalipour and H. Miar-Naimi, "An improved high linearity active CMOS mixer: design and volterra series analysis," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 8, pp. 2092-2103, Aug. 2013.
[36]M. Asghari and M. Yavari, "Using the Gate–Bulk interaction and a fundamental current injection to attenuate IM3 and IM2 currents in RF transconductors," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 1, pp. 223-232, Jan. 2016.
[37]C. Chen, J. Lin and H. Wang, "A 38-GHz high-speed I/Q modulator using weak-inversion biasing modified gilbert-cell mixer," IEEE Microwave and Wireless Components Letters, vol. 28, no. 9, pp. 822-824, Sept. 2018.
[38]H. Li and C. E. Saavedra, "Linearization of active downconversion mixers at the IF using feedforward cancellation," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 4, pp. 1620-1631, April 2019.
[39]T. Kuo, Y. Lin, C. Chen and H. Wang, "A 40-GHz high Linearity transmitter in 65-nm CMOS technology with 32-dBm OIP3," IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2019.
[40]J. Y. Su, S. C. Tseng, C. Meng, P. Y. Wu, Y. T. Lee, and G. W. Huang,“Ka/Ku-Band pHEMT gilbert mixers with polyphase and coupled-line quadrature generators,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 5, pp. 1063-1073, May 2009,.
[41]J. Li and Q. J. Gu, "Harmonic-based nonlinearity factorization of switching behavior in up-conversion mixers," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 7, pp. 2468-2477, July 2019.
[42]Z. -H. Wang, C. -N. Chen and H. Wang, "A 30-40 GHz Continuous Class F−1 Power Amplifier with 35.8% Peak PAE in 65 nm CMOS Technology," 2020 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Hiroshima, Japan, 2020.
[43]Z. Wang, C. Cheng, T. Huang and H. Wang, "A 28-GHz High Linearity Up-conversion Mixer Using Second-Harmonic Injection Technique in 28-nm CMOS Technology," in IEEE Microwave and Wireless Components Letters, 2021.
[44]X. Xu et al., "A 21-39.5 GHz power amplifier for 5G wireless systems in 22 nm FD-SOI CMOS," 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, Singapore, 2019.
[45]D. Wang, W. Chen, L. Chen, X. Liu and Z. Feng, "A Ka-Band highly linear power amplifier with a linearization bias circuit," 2019 IEEE MTT-S International Microwave Symposium (IMS), Boston, MA, USA, 2019.
[46]F. Wang, T. Li and H. Wang, "4.8 A highly linear super-resolution mixed-signal Doherty power amplifier for high-efficiency mm-Wave 5G multi-Gb/s communications," 2019 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019.
[47]S. N. Ali, P. Agarwal, S. Gopal and D. Heo, "Transformer-based predistortion linearizer for high linearity and high modulation efficiency in mm-Wave 5G CMOS power amplifiers," in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 7, pp. 3074-3087, July 2019.
[48]S. N. Ali et al., "A 40% PAE frequency-reconfigurable CMOS power amplifier with tunable gate–drain neutralization for 28-GHz 5G Radios," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 5, pp. 2231-2245, May 2018.
[49]Marki Microwave website: https://www.markimicrowave.com/baluns/bal-0026.aspx.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊