|
Chocolatey - The package manager for Windows. https://chocolatey.org/. Cygwin. https://www.cygwin.com/. Desktop Operating System Market Share World. https://gs.statcounter.com/os-market-share/desktop/world. GDB: The GNU Project Debugger. https://www.gnu.org/software/gdb. Ghidra. https://ghidra-sre.org/. IDA Freeware - Hex Rays. https://hex-rays.com/ida-free/. radare. https://rada.re/n/. VirusShare.com. https://virusshare.com/. Top 13 Popular Packers Used in Malware. https://resources.infosecinstitute.com/topic/top-13-popular-packers-used-in-mal. Aghakhani, H., Gritti, F., Mecca, F., Lindorfer, M., Ortolani, S., Balzarotti, D., Vigna, G., & Kruegel, C. (2020). When Malware is Packin’Heat; Limits of Machine Learning Classifiers Based on Static Analysis Features. In Network and Distributed Systems Security (NDSS) Symposium 2020. Alon, U., & Yahav, E. (2020). On the Bottleneck of Graph Neural Networks and its Practical Implications. arXiv preprint arXiv:2006.05205. Alon, U., Zilberstein, M., Levy, O., & Yahav, E. (2019). code2vec: Learning distributed representations of code. Proceedings of the ACM on Programming Languages, 3(POPL), 1–29. Anderson, H., & Roth, P. (2018). Ember: an open dataset for training static pe malware machine learning models. arXiv preprint arXiv:1804.04637. Alex Berry, Josh Homan, & Randi Eitzman. (2017). WannaCry Malware Profile. https://www.fireeye.com/blog/threat-research/2017/05/wannacry-malware-profile.html. Broder, A. (1997). On the resemblance and containment of documents. In Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171) (pp. 21–29). Cyber-Research. cyber-research/APTMalware. https://github.com/cyber-research/APTMalware. Dai, H., Dai, B., & Song, L. (2016). Discriminative Embeddings of Latent Variable Models for Structured Data. In Proceedings of The 33rd International Conference on Machine Learning (pp. 2702–2711). PMLR. Ding, S., Fung, B., & Charland, P. (2019). Asm2vec: Boosting static representation robustness for binary clone search against code obfuscation and compiler optimization. In 2019 IEEE Symposium on Security and Privacy (SP) (pp. 472–489). DOMARS, DCtheGeek, nitya, & garycentric. Download Debugging Tools for Windows - WinDbg - Windows drivers. https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools. Gibert, D., Mateu, C., & Planes, J. (2020). The rise of machine learning for detection and classification of malware: Research developments, trends and challenges. Journal of Network and Computer Applications, 153, 102526. Gibert, D., Mateu, C., Planes, J., & Vicens, R. (2019). Using convolutional neural networks for classification of malware represented as images. Journal of Computer Virology and Hacking Techniques, 15(1), 15–28. Grohe, M. (2020). word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings of structured data. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (pp. 1–16). Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 855–864). Hashemi, H., Azmoodeh, A., Hamzeh, A., & Hashemi, S. (2017). Graph embedding as a new approach for unknown malware detection. Journal of Computer Virology and Hacking Techniques, 13(3), 153–166. Hassen, M., & Chan, P. (2017). Scalable Function Call Graph-based Malware Classification. In Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy (pp. 239–248). Horsicq. horsicq/Detect-It-Easy. https://github.com/horsicq/Detect-It-Easy. Kalash, M., Rochan, M., Mohammed, N., Bruce, N., Wang, Y., & Iqbal, F. (2018). Malware classification with deep convolutional neural networks. In 2018 9th IFIP international conference on new technologies, mobility and security (NTMS) (pp. 1–5). Kipf, T., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907. Marek Krčál, Ondřej Švec, Martin Bálek, & Otakar Jašek. (2018). Deep Convolutional Malware Classifiers Can Learn from Raw Executables and Labels Only. Le, Q., Boydell, O., Mac Namee, B., & Scanlon, M. (2018). Deep learning at the shallow end: Malware classification for non-domain experts. Digital Investigation, 26, S118–S126. Li, G., Xiong, C., Thabet, A., & Ghanem, B. (2020). Deepergcn: All you need to train deeper gcns. arXiv preprint arXiv:2006.07739. Li, Y., Tarlow, D., Brockschmidt, M., & Zemel, R. (2015). Gated graph sequence neural networks. arXiv preprint arXiv:1511.05493. Massarelli, L., Di Luna, G., Petroni, F., Baldoni, R., & Querzoni, L. (2019). Safe: Self-attentive function embeddings for binary similarity. In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (pp. 309–329). Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781. Mises, R., & Pollaczek-Geiringer, H. (1929). Praktische Verfahren der Gleichungsauflösung.. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 9(1), 58–77. Pendlebury, F., Pierazzi, F., Jordaney, R., Kinder, J., & Cavallaro, L. (2019). $\$TESSERACT$\$: Eliminating experimental bias in malware classification across space and time. In 28th $\$USENIX$\$ Security Symposium ($\$USENIX$\$ Security 19) (pp. 729–746). Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 701–710). Pham, H.D., Le, T., & Vu, T. (2018). Static PE malware detection using gradient boosting decision trees algorithm. In International Conference on Future Data and Security Engineering (pp. 228–236). Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B., & Nicholas, C. (2018). Malware detection by eating a whole exe. In Workshops at the Thirty-Second AAAI Conference on Artificial Intelligence. Raff, E., & Nicholas, C. (2020). A Survey of Machine Learning Methods and Challenges for Windows Malware Classification. arXiv preprint arXiv:2006.09271. Raff, E., Sylvester, J., & Nicholas, C. (2017). Learning the pe header, malware detection with minimal domain knowledge. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security (pp. 121–132). Raff, E., Zak, R., Cox, R., Sylvester, J., Yacci, P., Ward, R., Tracy, A., McLean, M., & Nicholas, C. (2018). An investigation of byte n-gram features for malware classification. Journal of Computer Virology and Hacking Techniques, 14(1), 1–20. Saxe, J., & Berlin, K. (2015). Deep neural network based malware detection using two dimensional binary program features. In 2015 10th International Conference on Malicious and Unwanted Software (MALWARE) (pp. 11–20). Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE.. Journal of machine learning research, 9(11). Vasan, D., Alazab, M., Wassan, S., Safaei, B., & Zheng, Q. (2020). Image-Based malware classification using ensemble of CNN architectures (IMCEC). Computers & Security, 92, 101748. Veli\vckovi\'c, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903. Ying, R., Bourgeois, D., You, J., Zitnik, M., & Leskovec, J. (2019). Gnnexplainer: Generating explanations for graph neural networks. Advances in neural information processing systems, 32, 9240. Zak, R., Raff, E., & Nicholas, C. (2017). What can N-grams learn for malware detection?. In 2017 12th International Conference on Malicious and Unwanted Software (MALWARE) (pp. 109–118).
|