跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 12:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:談昱霆
研究生(外文):Yu-Ting Tan
論文名稱:血管支架噴墨式塗層的參數設計與驗證
論文名稱(外文):Design and Evaluation of Parameters of Inkjet Stent Coating
指導教授:蕭浩明
指導教授(外文):Hao-Ming Hsiao
口試委員:張鈞棣莊嘉揚
口試委員(外文):Chun-Ti ChangJia-Yang Juang
口試日期:2021-08-04
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:57
中文關鍵詞:塗藥血管支架壓電噴嘴聚乳酸聚乳酸-甘醇酸
外文關鍵詞:Drug-eluting stentPiezoelectric nozzlePLAPLGA
DOI:10.6342/NTU202102406
相關次數:
  • 被引用被引用:0
  • 點閱點閱:52
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
隨著現代人生活飲食習慣變遷,心血管疾病在全世界都已成為主要死亡因素。過去通常用冠狀動脈繞道手術與經皮冠狀動脈腔內氣球擴張術進行治療,但在心臟血管支架被發明後,就成為醫學界的主流。而裸金屬血管支架容易發生血管再狹窄的現象,需要配合防止細胞增生的藥物,防止支架內血栓的發生。現代最新的版本則是塗藥血管支架,將藥物部署在血管支架表面,只在患部精準投藥,減少過去口服藥物的全身性副作用。但如果直接在金屬表面部署藥物,在置入人體後,藥物很快就會被血流完全沖走,導致藥物快速釋放,減少實際作用時間。為了控制釋放時間,藥物通常會與聚合物混合,形成固體塗層。最初使用無法在體內分解的聚合物,藥物利用擴散的方式釋放,但一輩子留在體內的聚合物有機會發生問題;所以現在多使用生物可分解的聚合物,如聚乳酸(Poly-lactic acid, PLA)/聚乳酸-甘醇酸(Poly-lactide-co-glycolide, PLGA),藥物隨著聚合物的水解逐漸釋放,副作用也較小。
血管支架主要的塗藥方式為dip coating或spray coating,但這兩者都是大範圍面積塗佈,對於價格昂貴的塗藥血管支架藥物來說是一大浪費。最新的塗藥方法是噴墨式塗藥,利用微型壓電噴嘴極小的液滴直徑,以及精準的支架表面路徑規劃,可以將塗佈每根支架所需的藥物量降得更低。
本研究首先測試多種非毒化物有機溶劑對PLA的溶解度,嘗試找出適合的溶劑,因為多數研究為追求溶解度,使用毒性極高的氯化溶劑,如氯仿。接下來調整脈波控制器參數以拉長可穩定工作的噴塗間隔,因為這與生產流程息息相關。最後,嘗試多種參數與噴塗時間的組合,並以掃描式電子顯微鏡表面照片進行分析與佐證,嘗試歸納出參數對噴塗表面結果的影響。本研究之成果旨在驗證血管支架噴墨式塗層參數與噴塗表面的關係,有助於未來進一步發展。
Due to the changes in modern lifestyles, cardiovascular disease has become a major cause of death all over the world. In the past, coronary artery bypass surgery and percutaneous transluminal coronary angioplasty were usually used for treatment, but after the invention of coronary stents, it has become the mainstream in the medical field. Bare metal vascular stents are prone to vascular restenosis, and drugs to prevent cell proliferation are required to prevent in-stent thrombosis. Then the drug-eluting stent is invented. The drug is deployed on the surface of the vascular stent, and the drug is accurately applied only to the lesion, reducing the systemic side effects of oral drugs in the past. However, if the drug is directly deployed on the metal surface, after being placed in the human body, the drug will be completely washed away by the bloodstream, resulting in rapid release of the drug and reducing the actual effective time. In order to control the release time, the drug is usually mixed with a polymer to form a solid coating. In the past, polymers that cannot be decomposed in the body were used, and the drugs were released by diffusion, but the polymers that remained in the body for a lifetime may have problems; therefore, biodegradable polymers such as PLA(Poly-lactic acid)/PLGA(Poly-lactide-co-glycolide) are used now, and the drugs release along with hydrolysis of the polymer, and the side effects are smaller.
The main coating methods of vascular stents are dip coating or spray coating, but both of these apply coating in a large area, which is a big waste for the expensive drugs for vascular stents. The latest coating method is inkjet coating, which utililyzes the micro droplet diameter of the piezoelectric nozzle and the precise path planning of the stent surface to reduce the amount of drug required to coat each stent.
In this study, first, the solubility of a variety of non-toxic organic solvents to PLA is tested, for finding a suitable solvent, because most studies pursue solubility and use highly toxic chlorinated solvents, such as chloroform. Next, the parameters of pulse wave generator are adjusted to extend the spray interval that can work stably, because this is closely related to the production process. Finally, a combination of various parameters and spraying time are tested, and SEM stent surface photos are analyzed, for summarizing the influence of the parameters on the coated surface results. The results of this study are intended to verify the relationship between the parameters of the inkjet coating of the vascular stent and the sprayed surface, which will help further development in the future.
誌謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1. 前言 1
1.2. 研究目的 3
1.3. 研究內容 4
第二章 文獻探討 5
2.1. 微型壓電噴嘴 5
2.2. 聚乳酸(Poly-lactic acid, PLA) 8
2.3. 聚乳酸-甘醇酸(Poly-lactide-co-glycolide, PLGA) 11
第三章 藥物載具自動塗佈系統 14
3.1. 精密移動控制機構 14
3.2. 光學影像定位機構 15
3.3. 藥物塗佈控制機構 16
3.3.1. 微型玻璃噴嘴 16
3.3.2. 脈波控制器 17
3.3.3. 精密壓力調節裝置 18
3.4. 系統軟體介面 19
第四章 研究方法 20
4.1. 溶液準備 20
4.1.1. 實驗藥品 20
4.1.2. 漢森溶解度參數(Hansen solubility parameter, HSP) 21
4.1.3. 溶解度實驗 22
4.1.4. 溶液處理 23
4.2. 塗藥支架設計、模擬、製造 23
4.3. 噴塗間隔測試 26
4.4. 噴塗參數測試 27
4.5. 噴塗時間測試 28
4.6. 支架擴張測試 28
4.7. 塗層厚度量測 30
第五章 結果與討論 31
5.1. 溶解度實驗 31
5.2. 噴塗間隔測試 33
5.3. 噴塗參數測試 35
5.3.1. 溶液濃度 35
5.3.2. 脈波參數 36
5.4. 儲藥槽式血管支架 39
5.5. 噴塗時間測試 41
5.6. 支架擴張測試 46
5.7. 塗層厚度量測 49
第六章 結論與未來展望 51
6.1. 結論 51
6.2. 未來展望 52
參考文獻 53
[1]"The top 10 causes of death," WHO, 2020. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death, Accessed on July 1, 2021.
[2]"108 年死因統計結果分析," 中華民國衛生福利部, 2020. [Online]. Available: https://dep.mohw.gov.tw/DOS/lp-4927-113.html, Accessed on July 1, 2021.
[3]"Arteriosclerosis / atherosclerosis," M. Clinic, 2021. [Online]. Available: https://www.mayoclinic.org/diseases-conditions/arteriosclerosis-atherosclerosis/symptoms-causes/syc-20350569, Accessed on July 1, 2021.
[4]"Percutaneous transluminal coronary angioplasty," T. F. Malik, and V. S. Tivakaran., 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK535417/, Accessed on July 1, 2021.
[5]D. L. Fischman, M. B. Leon, D. S. Baim, et al., "A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease," New England Journal of Medicine, vol. 331, no. 8, pp. 496-501, 1994.
[6]A. Wong, and C. Chan, "Drug-eluting stents: the end of restenosis?," Ann Acad Med Singap, vol. 33, no. 4, pp. 423-31, 2004.
[7]G. Mani, M. D. Feldman, D. Patel, and C. M. Agrawal, "Coronary stents: A materials perspective," Biomaterials, vol. 28, no. 9, pp. 1689-1710, 2007.
[8]H. M. Hsiao, Y. H. Chiu, T. Y. Wu, et al., "Effects of through-hole drug reservoirs on key clinical attributes for drug-eluting depot stent," Medical Engineering & Physics, vol. 35, no. 7, pp. 884-897, 2013.
[9]B. V. Antohe, and D. B. Wallace, "Ink-jet as a manufacturing method for drug delivery applications," ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing, vol. 2, pp. 525-533, 2008.
[10]S. Borhani, S. Hassanajili, S. H. Ahmadi Tafti, and S. Rabbani, "Cardiovascular stents: overview, evolution, and next generation," Progress in Biomaterials, vol. 7, no. 3, pp. 175-205, 2018.
[11]D. W. Jeong, W. Park, T. M. Bedair, et al., "Augmented re-endothelialization and anti-inflammation of coronary drug-eluting stent by abluminal coating with magnesium hydroxide," Biomaterials Science, vol. 7, no. 6, pp. 2499-2510, 2019.
[12]N. Reis, C. Ainsley, and B. Derby, "Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors," Journal of Applied Physics, vol. 97, no. 9, p. 094903, 2005.
[13]E. Tekin, P. J. Smith, and U. S. Schubert, "Inkjet printing as a deposition and patterning tool for polymers and inorganic particles," Soft Matter, vol. 4, no. 4, pp. 703-713, 2008.
[14]D. B. Bogy, and F. E. Talke, "Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices," IBM Journal of Research and Development, vol. 28, no. 3, pp. 314-321, 1984.
[15]"Drive waveform effects on ink-jet device performance," MicroFab, 1999. [Online]. Available: http://www.microfab.com/technotes, Accessed on July 1, 2021.
[16]M. H. Tsai, and W. S. Hwang, "Effects of pulse voltage on the droplet formation of alcohol and ethylene glycol in a piezoelectric inkjet printing process with bipolar pulse," MATERIALS TRANSACTIONS, vol. 49, no. 2, pp. 331-338, 2008.
[17]M. Nofar, D. Sacligil, P. J. Carreau, et al., "Poly (lactic acid) blends: Processing, properties and applications," International Journal of Biological Macromolecules, vol. 125, pp. 307-360, 2019.
[18]R. Scaffaro, A. Maio, and A. Nostro, "Poly(lactic acid)/carvacrol-based materials: preparation, physicochemical properties, and antimicrobial activity," Applied Microbiology and Biotechnology, vol. 104, no. 5, pp. 1823-1835, 2020.
[19]M. Jamshidian, E. A. Tehrany, M. Imran, et al., "Poly-lactic acid: production, applications, nanocomposites, and release studies," Comprehensive Reviews in Food Science and Food Safety, vol. 9, no. 5, pp. 552-571, 2010.
[20]A. J. R. Lasprilla, G. A. R. Martinez, B. H. Lunelli, et al., "Poly-lactic acid synthesis for application in biomedical devices — A review," Biotechnology Advances, vol. 30, no. 1, pp. 321-328, 2012.
[21]D. J. Sawyer, "Bioprocessing – no longer a field of dreams," Macromolecular Symposia, vol. 201, no. 1, pp. 271-282, 2003.
[22]R. E. Drumright, P. R. Gruber, and D. E. Henton, "Polylactic acid technology," Advanced Materials, vol. 12, no. 23, pp. 1841-1846, 2000.
[23]K. A. Athanasiou, G. G. Niederauer, and C. M. Agrawal, "Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/ polyglycolic acid copolymers," Biomaterials, vol. 17, no. 2, pp. 93-102, 1996.
[24]B. Eling, S. Gogolewski, and A. J. Pennings, "Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres," Polymer, vol. 23, no. 11, pp. 1587-1593, 1982.
[25]B. Gupta, N. Revagade, and J. Hilborn, "Poly(lactic acid) fiber: An overview," Progress in Polymer Science, vol. 32, no. 4, pp. 455-482, 2007.
[26]R. M. Rasal, A. V. Janorkar, and D. E. Hirt, "Poly(lactic acid) modifications," Progress in Polymer Science, vol. 35, no. 3, pp. 338-356, 2010.
[27]T. Casalini, F. Rossi, A. Castrovinci, and G. Perale, "A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications," Frontiers in Bioengineering and Biotechnology, Review vol. 7, no. 259, 2019.
[28]J. C. Middleton, and A. J. Tipton, "Synthetic biodegradable polymers as orthopedic devices," Biomaterials, vol. 21, no. 23, pp. 2335-2346, 2000.
[29]Y. Onuma, and P. W. Serruys, "Bioresorbable scaffold," Circulation, vol. 123, no. 7, pp. 779-797, 2011.
[30]A. Södergård, and M. Stolt, "Properties of lactic acid based polymers and their correlation with composition," Progress in Polymer Science, vol. 27, no. 6, pp. 1123-1163, 2002.
[31]H. T. Oyama, Y. Tanaka, and A. Kadosaka, "Rapid controlled hydrolytic degradation of poly(l-lactic acid) by blending with poly(aspartic acid-co-l-lactide)," Polymer Degradation and Stability, vol. 94, no. 9, pp. 1419-1426, 2009.
[32]R. Auras, B. Harte, and S. Selke, "An overview of polylactides as packaging materials," Macromolecular Bioscience, vol. 4, no. 9, pp. 835-864, 2004.
[33]S. A. Wayangankar, and S. G. Ellis, "Bioresorbable stents: Is this where we are headed?," Progress in Cardiovascular Diseases, vol. 58, no. 3, pp. 342-355, 2015.
[34]A. C. Vieira, J. C. Vieira, J. M. Ferra, et al., "Mechanical study of PLA–PCL fibers during in vitro degradation," Journal of the Mechanical Behavior of Biomedical Materials, vol. 4, no. 3, pp. 451-460, 2011.
[35]J. S. Bergström, and D. Hayman, "An overview of mechanical properties and material modeling of polylactide (PLA) for medical applications," Annals of Biomedical Engineering, vol. 44, no. 2, pp. 330-340, 2016.
[36]C. Bouissou, J. J. Rouse, R. Price, and C. F. van der Walle, "The influence of surfactant on PLGA microsphere glass transition and water sorption: remodeling the surface morphology to attenuate the burst release," Pharmaceutical Research, vol. 23, no. 6, pp. 1295-1305, 2006.
[37]F. Mohamed, and C. F. van der Walle, "Engineering biodegradable polyester particles with specific drug targeting and drug release properties," Journal of Pharmaceutical Sciences, vol. 97, no. 1, pp. 71-87, 2008.
[38]J. Ghitman, E. I. Biru, R. Stan, and H. Iovu, "Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine," Materials & Design, vol. 193, p. 108805, 2020.
[39]"PLGA," Fvasconcellos, 2008. [Online]. Available: https://en.wikipedia.org/wiki/PLGA, Accessed on July 2, 2021.
[40]P. Gentile, V. Chiono, I. Carmagnola, and P. V. Hatton, "An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering," International Journal of Molecular Sciences, vol. 15, no. 3, pp. 3640-3659, 2014.
[41]P. K. Samantaray, A. Little, D. M. Haddleton, et al., "Poly(glycolic acid) (PGA): a versatile building block expanding high performance and sustainable bioplastic applications," Green Chemistry, vol. 22, no. 13, pp. 4055-4081, 2020.
[42]J. Choi, B. N. Jang, B. J. Park, et al., "Effect of solvent on drug release and a spray-coated matrix of a sirolimus-eluting stent coated with poly(lactic-co-glycolic acid)," Langmuir, vol. 30, no. 33, pp. 10098-10106, 2014.
[43]V. Saini, V. Jain, M. S. Sudheesh, et al., "Comparison of humoral and cell-mediated immune responses to cationic PLGA microspheres containing recombinant hepatitis B antigen," International Journal of Pharmaceutics, vol. 408, no. 1, pp. 50-57, 2011.
[44]T. G. Park, "Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition," Biomaterials, vol. 16, no. 15, pp. 1123-1130, 1995.
[45]S. J. Siegel, J. B. Kahn, K. Metzger, et al., "Effect of drug type on the degradation rate of PLGA matrices," European Journal of Pharmaceutics and Biopharmaceutics, vol. 64, no. 3, pp. 287-293, 2006.
[46]M. L. Houchin, and E. M. Topp, "Physical properties of PLGA films during polymer degradation," Journal of Applied Polymer Science, vol. 114, no. 5, pp. 2848-2854, 2009.
[47]V. R. Sinha, and A. Trehan, "Biodegradable microspheres for protein delivery," Journal of Controlled Release, vol. 90, no. 3, pp. 261-280, 2003.
[48]R. C. Mundargi, V. R. Babu, V. Rangaswamy, et al., "Nano/micro technologies for delivering macromolecular therapeutics using poly(d,l-lactide-co-glycolide) and its derivatives," Journal of Controlled Release, vol. 125, no. 3, pp. 193-209, 2008.
[49]N. Passerini, and D. Q. M. Craig, "An investigation into the effects of residual water on the glass transition temperature of polylactide microspheres using modulated temperature DSC," Journal of Controlled Release, vol. 73, no. 1, pp. 111-115, 2001.
[50]"Principle of image acquisition using line scan cameras," Vision-Doctor, 2012. [Online]. Available: https://www.vision-doctor.com/en/line-scan-cameras.html, Accessed on July 2, 2021.
[51]"Low temperature devices," MicroFab, 2007. [Online]. Available: http://www.microfab.com/dispensing-devices/low-temp-devices, Accessed on July 2, 2021.
[52]C. M. Hansen,"The three dimensional solubility parameter," The three dimensional solubility parameter and solvent diffusion coefficient : Their importance in surface coating formulation, Copenhagen: Danish Technical Press, pp. 13-29, 1967.
[53]K. Vay, S. Scheler, and W. Frieß, "Application of Hansen solubility parameters for understanding and prediction of drug distribution in microspheres," International Journal of Pharmaceutics, vol. 416, no. 1, pp. 202-209, 2011.
[54]S. Schenderlein, M. Lück, and B. W. Müller, "Partial solubility parameters of poly(d,l-lactide-co-glycolide)," International Journal of Pharmaceutics, vol. 286, no. 1, pp. 19-26, 2004.
[55]R. J. van Bommel, M. E. Lemmert, N. M. van Mieghem, et al., "Occurrence and predictors of acute stent recoil—A comparison between the xience prime cobalt chromium stent and the promus premier platinum chromium stent," Catheterization and Cardiovascular Interventions, vol. 91, no. 3, pp. E21-E28, 2018.
[56]D. K. Liang, D. Z. Yang, M. Qi, and W. Q. Wang, "Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery," International Journal of Cardiology, vol. 104, no. 3, pp. 314-318, 2005.
[57]S. Ara, M. Ajima, R. J. Gordon, et al., "Support for use of tabletop microscopes in science education," vol. 62, pp. 437-443, 2013.
[58]S. J. Denardo, P. L. Carpinone, D. M. Vock, et al., "Changes to polymer surface of drug-eluting stents during balloon expansion," JAMA, vol. 307, no. 20, pp. 2148-2150, 2012.
[59]"Encore™ 26," B. Scientific, 2015. [Online]. Available: https://www.bostonscientific.com/en-US/products/accessories/encore.html, Accessed on July 2, 2021.
[60]"形狀分析雷射共焦顯微鏡," 台大精密量測實驗室, 2021. [Online]. Available: https://sites.google.com/view/ntupmlab/量測服務, Accessed on July 2, 2021.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top