跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 17:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐品嘉
研究生(外文):Ping-Chia Hsu
論文名稱:噴射式大氣電漿系統之廢熱回收與高霧度鎵摻雜氧化鋅透明導電薄膜製備
論文名稱(外文):Energy Harvesting from Atmospheric Pressure Plasma Jet and Deposition of Hazy Ga-doped ZnO Thin Film
指導教授:莊嘉揚
指導教授(外文):Jia-Yang Juang
口試委員:李明蒼王建凱劉建豪蔡佳霖
口試委員(外文):Ming-Tsang LeeChien-Kai WangChien-Hao LiuJia-Lin Tsai
口試日期:2021-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:213
中文關鍵詞:大氣電漿廢熱回收熱電晶片鎵摻雜氧化鋅高霧度透明電極光散射
外文關鍵詞:Intelligent machinesAtmosphere pressure plasma jet (APPJ)Waste heat recoveryThermoelectric generator (TEG)Sensing and monitoringGallium doped Zinc Oxide (GZO)High haze electrodeLight scattering
DOI:10.6342/NTU202101684
相關次數:
  • 被引用被引用:3
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著能源危機日益加劇,科學家紛紛研究如何有效利用製程中之各種能源,而其中廢熱回收為目前相當盛行之研究。本研究透過蒐集本實驗室自行架設之噴射式大氣電漿之熱能,並用以驅動一多功能感測系統幫助操作人員獲取溫度及槍體內空氣品質資訊,同時能自動將數據上傳至雲端資料庫。為了在有限空間中獲取足夠能量,將探討了三種熱電晶片組合,並且量測其電性,同時探討廢熱回收系統中,主動式散熱裝置的必要性。最後發現雙層熱電晶片在電路上為串聯時,為最適合當前多功能感測系統負載之熱電晶片組合,且開啟主動式散熱裝置後,可使熱電晶片載台底部溫度從90 °C降至42 °C,供電功率可從0.6 W上升至約1.09 W,使廢熱回收系統穩定運作至少17 分鐘。
再生能源中的太陽能電池也日益受到關注,其中,增加薄膜太陽能電池的前電極霧度不但能增加光的散射穿透度,使得入射光於太陽能電池中的路徑長增加,也能提高光封存的效果,進而提高太陽能電池的轉換效率。文獻中製備高霧度透明電極通常需要多次製程,常見的方法如:鍍製薄膜前預先在基板鋪上奈米銀線或奈米粒子、透過蝕刻薄膜增加表面粗糙度以及透過高溫基板(530 °C)來增加晶粒尺寸去增加表面粗糙度。本研究透過新增一層霧度增加層至標準製程薄膜之下,並調整霧度增加層之工作距離與步進距離進而改變薄膜之電學性質、光學性質及表面粗糙度,整個製程是可以一次完成,且與文獻相比使用較低溫之基板(180 °C),以及不須切換機台及更換材料,既省時又能節省成本。研究中將探討霧度增加層對於上層薄膜之影響,以及上層薄膜厚度對於F.O.M及霧度之關聯性。其中當霧度增加層的工作距離增加時會使薄膜之結晶性下降及表面粗糙度上升,進而使得電性較差但霧度較高;而霧度增加層之步進距離增加時則會使上層薄膜結晶性較佳,粗糙度下降,電學性質較好,但是霧度也會跟著下降。在本研究中,最佳高霧度透明電極參數為當霧度增加層:WD = 4 mm, Pitch = 5 mm及標準製程薄膜:Pass = 3,此時F.O.M為 0.02089 Ω−1,而霧度達25%,於高霧度相關研究中有著優異的表現。
As the energy crisis aggravate in recent year, scientists start finding how to recover the waste energy in various process. Among them, the thermoelectric generator is a rising research. Also, add the various sensors on the operation for monitoring is the cornerstone of Industry 4.0. In this research, we use the TEG to recover the waste heat from the self-constructed Atmospheric Pressure Plasma Jet (APPJ) of our lab, and use the electricity from the TEG to drive a multi-function monitoring system. A so-driven multi-functional monitoring system monitors processing temperature of the APPJ and air quality in the surroundings, transmits the data to a cloud storage, and alarms if the temperature or air quality exceeds a preset value. We study three different arrangements of TEGs and find that double TEGs connected in series thermally and electrically generate the most power of 1.09 0.0002 W at a current of 0.187 0.002 A, which is sufficient to drive the monitoring system continuously at least 17 min.
In numerous renewable energy, solar energy becomes promising because of its cost-efficiency and ease to produce. Increment of the haze of the front electrode in thin-film solar cell can enhance the power conversion efficiency because of the longer optical path and the level of light trapping. We deposit the haze enhanced layer under the standard process thin film, and through tuning the working distance and the pitch to change the electrical, optical, and surface roughness of the thin film. In previous literature, depositing hazy transparent conductive thin film needs either multiple processes or high substrate temperature. However, they would make the process inefficient, and the choice of the substrate might be limited. Therefore, our method can produce the high haze transparent electrode in one step, and it’s unnecessary to change the precursor or machine like the literature mentioned. It can also be deposited at the lower substrate temperature (~180 °C), so the limitation of the substrate can be reduced. In this research, we find that the surface roughness increase and crystallinity decrease as the working distance increase, which causes the higher resistivity and haze; after increasing the pitch, the surface roughness decrease and the crystallinity rise, so the better electrical properties but lower haze. The best parameters of high haze electrode in this research are the Working distance of the haze enhanced layer = 4 mm、Pitch of the haze enhanced layer = 5 mm、Pass of standard process thin film = 3, which show the high F.O.M value: 0.02089 Ω−1 and high haze: 25% and it has pretty high competitiveness in the hazy transparent conductive thin film literature.
誌謝 I
中文摘要 III
ABSTRACT V
目錄 VII
圖目錄 XI
表目錄 XVIII
符號表 XIX
第一章 緒論 1
1.1 透明導電薄膜概論 1
1.2 研究動機與目的 2
1.2.1 大氣電漿製程之廢熱回收 2
1.2.2 高霧度之透明導電薄膜 3
第二章 文獻回顧與理論基礎 5
2.1 文獻回顧 5
2.1.1 廢熱回收 5
2.1.2 高霧度透明電極 7
2.2 熱電晶片原理 12
2.2.1 席貝克效應 (Seebeck effect) 12
2.2.2 帕爾帖效應 (Peltier effect) 13
2.2.3 湯姆森效應 (Thomson effect) 13
2.3 熱電方程式 15
2.4 GZO 薄膜結構與光電特性 17
2.4.1 GZO薄膜材料之結構特性 17
2.4.2 GZO薄膜材料之光電性質 19
2.5 薄膜沉積理論 20
2.6 常見薄膜沉積方法 22
2.6.1 濺鍍法 23
2.6.2 蒸鍍法 24
2.6.3 脈衝雷射沉積 25
2.6.4 分子束磊晶 25
2.6.5 化學氣相沉積 27
2.6.6 噴霧熱裂解法 27
2.6.7 溶膠-凝膠法 28
2.6.8 原子層沉積 28
2.6.9 大氣電漿 29
2.7 電漿原理 34
2.7.1 離子化碰撞 34
2.7.2 激發–鬆弛碰撞 35
2.7.3 分解碰撞 35
第三章 實驗方法與儀器設備 37
3.1 大氣電漿製程之廢熱回收 37
3.1.1 實驗流程 37
3.1.2 系統架設 37
3.1.3 熱風槍作為替代熱源之可行性評估 40
3.1.4 熱電晶片電性量測配置 41
3.1.5 熱風槍 42
3.1.6 多功能感測系統 43
3.2 高霧度透明導電薄膜鍍製 45
3.2.1 實驗流程 45
3.2.2 系統架設 46
3.2.3 掃描參數設定 49
3.2.4 噴射式大氣電漿細部架設及參數設定 50
3.3 薄膜性質檢測儀器 59
3.3.1 膜厚測定儀 59
3.3.2 片電阻量測 60
3.3.3 霍爾量測 61
3.3.4 薄膜光學性質分析 63
3.3.5 表面形貌分析 65
3.3.6 晶體結構分析 67
3.3.7 表面粗糙度分析 69
第四章 結果與討論 71
4.1 大氣電漿製程之廢熱回收 71
4.1.1 三種組合熱電晶片之電流電壓–功率關係 71
4.1.2 三種組合熱電晶片之功率–外部負載關係 74
4.1.3 輸出功率–電流比較 75
4.1.4 多功能量測系統實際裝機測試 76
4.2 高霧度透明導電薄膜製備 79
4.2.1 霧度增加層 79
4.2.2 霧度增加層之影響 108
4.2.3 標準參數薄膜掃描次數之影響 139
4.2.4 樣本比較與展示 149
第五章 結論與未來展望 151
5.1 結論 151
5.1.1 大氣電漿製程之廢熱回收 151
5.1.2 高霧度透明導電薄膜製備 152
5.2 未來展望 153
參考文獻 154
著作目錄 171
附錄 172
[1]J. Y. Kwon et al., "Bottom-gate gallium indium zinc oxide thin-film transistor array for high-resolution AMOLED display," IEEE Electron Device Letters, vol. 29, no. 12, pp. 1309-1311, 2008.
[2]K. Ellmer, "Past achievements and future challenges in the development of optically transparent electrodes," Nature Photonics, vol. 6, no. 12, pp. 809-817, 2012.
[3]Y. Gao, X. Li, L. Chen, J. Shi, X. W. Sun, and J. Zhang, "High mobility solution-processed hafnium indium zinc oxide TFT with an Al-doped ZrO2 gate dielectric," IEEE Electron Device Letters, vol. 35, no. 5, pp. 554-556, 2014.
[4]A. Hongsingthong, T. Krajangsang, I. A. Yunaz, S. Miyajima, and M. Konagai, "ZnO films with very high haze value for use as front transparent conductive oxide films in thin-film silicon solar cells," Applied Physics Express, vol. 3, no. 5, 2010, doi: 10.1143/apex.3.051102.
[5]J. Krc et al., "Potential of thin-film silicon solar cells by using high haze TCO superstrates," Thin Solid Films, vol. 518, no. 11, pp. 3054-3058, 2010, doi: 10.1016/j.tsf.2009.09.164.
[6]J.-M. Liu, X.-L. Chen, J. Fang, Y. Zhao, and X.-D. Zhang, "High-haze and wide-spectrum hydrogenated MGZO TCO films on micro-textured glass substrates for thin-film solar cells," Solar Energy Materials and Solar Cells, vol. 138, pp. 41-50, 2015, doi: 10.1016/j.solmat.2015.02.033.
[7]H. K. Park, J. K. Yoon, and K. Kim, "Novel fabrication of ag thin film on glass for efficient surface-enhanced raman scattering," Langmuir, vol. 22, no. 4, pp. 1626-1629, 2006.
[8]P. Carcia and A. Suna, "Properties of Pd/Au thin film layered structures," Journal of Applied Physics, vol. 54, no. 4, pp. 2000-2005, 1983.
[9]C. Preston, Y. Xu, X. Han, J. N. Munday, and L. Hu, "Optical haze of transparent and conductive silver nanowire films," Nano Research, vol. 6, no. 7, pp. 461-468, 2013, doi: 10.1007/s12274-013-0323-9.
[10]G. Khanarian et al., "The optical and electrical properties of silver nanowire mesh films," Journal of Applied Physics, vol. 114, no. 2, 2013, doi: 10.1063/1.4812390.
[11]J. Han et al., "Fully indium-free flexible ag nanowires/ZnO:F composite transparent conductive electrodes with high haze," Journal of Materials Chemistry A, vol. 3, no. 10, pp. 5375-5384, 2015, doi: 10.1039/c4ta05728g.
[12]B. Gehman, S. Jonsson, T. Rudolph, M. Scherer, M. Weigert, and R. Werner, "Influence of manufacturing process of indium tin oxide sputtering targets on sputtering behavior," Thin Solid Films, vol. 220, no. 1-2, pp. 333-336, 1992.
[13]B. Zhu et al., "Sputtering deposition of transparent conductive F-doped SnO2 (FTO) thin films in hydrogen-containing atmosphere," Ceramics International, vol. 43, no. 13, pp. 10288-10298, 2017.
[14]K. Baedeker, über die elektrische leitfähigkeit und die thermoelektrische kraft einiger schwermetallverbindungen. JA Barth, 1906.
[15]T. P. Rao, M. S. Kumar, and N. S. Hussain, "Effects of thickness and atmospheric annealing on structural, electrical and optical properties of GZO thin films by spray pyrolysis," Journal of Alloys and Compounds, vol. 541, pp. 495-504, 2012.
[16]D. Beretta et al., "Thermoelectrics: From history, a window to the future," Materials Science and Engineering: R: Reports, vol. 138, pp. 210-255, 2019, doi: 10.1016/j.mser.2018.09.001.
[17]T.-C. Hung, "Waste heat recovery of organic rankine cycle using dry fluids," Energy Conversion and Management, vol. 42, no. 5, pp. 539-553, 2001.
[18]L. E. Bell, "Cooling, heating, generating power, and recovering waste heat with thermoelectric systems," Science, vol. 321, no. 5895, pp. 1457-1461, 2008.
[19]V. Leonov and R. J. M. Vullers, "Wearable thermoelectric generators for body-powered devices," Journal of Electronic Materials, vol. 38, no. 7, pp. 1491-1498, 2009, doi: 10.1007/s11664-008-0638-6.
[20]X. Zhang and K. Chau, "An automotive thermoelectric–photovoltaic hybrid energy system using maximum power point tracking," Energy Conversion and Management, vol. 52, no. 1, pp. 641-647, 2011.
[21]T. H. Kwan, X. Wu, and Q. Yao, "Bidirectional operation of the thermoelectric device for active temperature control of fuel cells," Applied Energy, vol. 222, pp. 410-422, 2018.
[22]A. Montecucco, J. Siviter, and A. R. Knox, "Combined heat and power system for stoves with thermoelectric generators," Applied Energy, vol. 185, pp. 1336-1342, 2017, doi: 10.1016/j.apenergy.2015.10.132.
[23]N. Pacheco, F. Brito, R. Vieira, J. Martins, H. Barbosa, and L. Goncalves, "Compact automotive thermoelectric generator with embedded heat pipes for thermal control," Energy, vol. 197, p. 117154, 2020.
[24]R. Ahiska and H. Mamur, "Design and implementation of a new portable thermoelectric generator for low geothermal temperatures," IET Renewable Power Generation, vol. 7, no. 6, pp. 700-706, 2013.
[25]D. A. Clayton and R. A. Willems, "Design considerations for wireless sensor networks in nuclear power applications," Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 2015.
[26]M. Aljaghtham and E. Celik, "Design optimization of oil pan thermoelectric generator to recover waste heat from internal combustion engines," Energy, vol. 200, p. 117547, 2020.
[27]H. Khalil and H. Hassan, "Enhancement thermoelectric generators output power from heat recovery of chimneys by using flaps," Journal of Power Sources, vol. 443, p. 227266, 2019.
[28]X. Li and Z. Wang, "Exergy analysis of integrated TEG and regenerative cooling system for power generation from the scramjet cooling heat," Aerospace Science and Technology, vol. 66, pp. 12-19, 2017.
[29]E. Massaguer, A. Massaguer, T. Pujol, M. Comamala, L. Montoro, and J. Gonzalez, "Fuel economy analysis under a wltp cycle on a mid-size vehicle equipped with a thermoelectric energy recovery system," Energy, vol. 179, pp. 306-314, 2019.
[30]D. Kraemer et al., "High-performance flat-panel solar thermoelectric generators with high thermal concentration," Nature Materials, vol. 10, no. 7, pp. 532-538, 2011.
[31] A. M. Yusop, R. Mohamed, and A. Ayob, "Model building of thermoelectric generator exposed to dynamic transient sources," in IOP Conference Series: Materials Science and Engineering, 2013, vol. 53, no. 1: IOP Publishing, p. 012015.
[32]T. Kousksou, J.-P. Bédécarrats, D. Champier, P. Pignolet, and C. Brillet, "Numerical study of thermoelectric power generation for an helicopter conical nozzle," Journal of Power Sources, vol. 196, no. 8, pp. 4026-4032, 2011, doi: 10.1016/j.jpowsour.2010.12.015.
[33]C.-C. Weng and M.-J. Huang, "A simulation study of automotive waste heat recovery using a thermoelectric power generator," International Journal of Thermal Sciences, vol. 71, pp. 302-309, 2013, doi: 10.1016/j.ijthermalsci.2013.04.008.
[34]D. Champier, J. P. Bédécarrats, T. Kousksou, M. Rivaletto, F. Strub, and P. Pignolet, "Study of a te (thermoelectric) generator incorporated in a multifunction wood stove," Energy, vol. 36, no. 3, pp. 1518-1526, 2011, doi: 10.1016/j.energy.2011.01.012.
[35]C.-C. Weng and M.-J. Huang, "A study of using a thermoelectric generator to harvest energy from a table lamp," Energy, vol. 76, pp. 788-798, 2014, doi: 10.1016/j.energy.2014.08.078.
[36]Y. Wu, H. Zhang, and L. Zuo, "Thermoelectric energy harvesting for the gas turbine sensing and monitoring system," Energy Conversion and Management, vol. 157, pp. 215-223, 2018.
[37]D. Champier, J. P. Bedecarrats, M. Rivaletto, and F. Strub, "Thermoelectric power generation from biomass cook stoves," Energy, vol. 35, no. 2, pp. 935-942, 2010, doi: 10.1016/j.energy.2009.07.015.
[38]C.-C. Weng, M.-C. Lin, and M.-J. Huang, "A waste cold recovery from the exhausted cryogenic nitrogen by using thermoelectric power generator," Energy, vol. 103, pp. 385-396, 2016.
[39]黃京淇, "雷射輔助噴射式大氣電漿鍍製微米級鎵摻雜氧化鋅薄膜導線研究及電漿驟冷效應分析與改良," 碩士論文, 機械工程學研究所, 國立臺灣大學, 台北市, 2019. [Online]. Available: https://hdl.handle.net/11296/rhha4j
[40]S.-M. Park, T. Ikegami, and K. Ebihara, "Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition," Thin Solid Films, vol. 513, no. 1-2, pp. 90-94, 2006, doi: 10.1016/j.tsf.2006.01.051.
[41]J. Müller, B. Rech, J. Springer, and M. Vanecek, "TCO and light trapping in silicon thin film solar cells," Solar Energy, vol. 77, no. 6, pp. 917-930, 2004, doi: 10.1016/j.solener.2004.03.015.
[42]L. K. Wang, J. J. Chen, J. Y. Yu, H. L. Zhao, and J. K. Yang, "Highly textured spray-deposited SnO2:F films with high haze for solar cells," Vacuum, vol. 169, 2019, doi: 10.1016/j.vacuum.2019.108879.
[43]"<00667595.Pdf>."
[44]陳文凱, "噴射式大氣電漿系統沉積鎵摻雜氧化鋅薄膜之傾斜角及軌跡效應研究與雷射導引加熱系統之架設測試," 碩士論文, 機械工程學研究所, 國立臺灣大學, 台北市, 2018. [Online]. Available: https://hdl.handle.net/11296/435577
[45]S.-H. Yang, C.-H. Liu, C.-H. Su, and H. Chen, "Atmospheric-pressure plasma deposition of SiOx films for super-hydrophobic application," Thin Solid Films, vol. 517, no. 17, pp. 5284-5287, 2009.
[46]D. Beretta et al., "Thermoelectrics: From history, a window to the future," Materials Science and Engineering: R: Reports, vol. 138, pp. 210-255, 2019.
[47]S. Wang, T. Xie, and H. Xie, "Experimental study of the effects of the thermal contact resistance on the performance of thermoelectric generator," Applied Thermal Engineering, vol. 130, pp. 847-853, 2018.
[48]L. Chen, J. Li, F. Sun, and C. Wu, "Performance optimization of a two-stage semiconductor thermoelectric-generator," Applied Energy, vol. 82, no. 4, pp. 300-312, 2005, doi: 10.1016/j.apenergy.2004.12.003.
[49]G. Liang, J. Zhou, and X. Huang, "Analytical model of parallel thermoelectric generator," Applied Energy, vol. 88, no. 12, pp. 5193-5199, 2011, doi: 10.1016/j.apenergy.2011.07.041.
[50]X. Sun, X. Liang, G. Shu, H. Tian, H. Wei, and X. Wang, "Comparison of the two-stage and traditional single-stage thermoelectric generator in recovering the waste heat of the high temperature exhaust gas of internal combustion engine," Energy, vol. 77, pp. 489-498, 2014, doi: 10.1016/j.energy.2014.09.032.
[51]A. Montecucco, J. Siviter, and A. R. Knox, "The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel," Applied Energy, vol. 123, pp. 47-54, 2014, doi: 10.1016/j.apenergy.2014.02.030.
[52] I. Laird, H. Lovatt, N. Savvides, D. Lu, and V. Agelidis, "Comparative study of maximum power point tracking algorithms for thermoelectric generators," in 2008 Australasian Universities Power Engineering Conference, 2008: IEEE, pp. 1-6.
[53] A. Montecucco, J. Siviter, and A. R. Knox, "Simple, fast and accurate maximum power point tracking converter for thermoelectric generators," in 2012 IEEE Energy Conversion Congress and Exposition (ECCE), 2012: IEEE, pp. 2777-2783.
[54]J. Wang, P. Cao, X. Li, X. Song, C. Zhao, and L. Zhu, "Experimental study on the influence of peltier effect on the output performance of thermoelectric generator and deviation of maximum power point," Energy Conversion and Management, vol. 200, 2019, doi: 10.1016/j.enconman.2019.112074.
[55]M. Liao, Z. He, C. Jiang, X. a. Fan, Y. Li, and F. Qi, "A three-dimensional model for thermoelectric generator and the influence of peltier effect on the performance and heat transfer," Applied Thermal Engineering, vol. 133, pp. 493-500, 2018, doi: 10.1016/j.applthermaleng.2018.01.080.
[56]J.-Y. Juang, T.-S. Chou, H.-T. Lin, Y.-F. Chou, and C.-C. Weng, "Trajectory effect on the properties of large area ZnO thin films deposited by atmospheric pressure plasma jet," Applied Surface Science, vol. 314, pp. 1074-1081, 2014, doi: 10.1016/j.apsusc.2014.05.220.
[57]T.-S. Chou, H.-T. Lin, Y.-Y. Chen, K.-L. Pan, and J.-Y. Juang, "Effect of main gas and carrier gas on ZnO thin films deposited by atmospheric pressure plasma jet," Thin Solid Films, vol. 594, pp. 282-286, 2015, doi: 10.1016/j.tsf.2015.05.050.
[58]Y.-Y. Chen and J.-Y. Juang, "Enhancement of Ga-doped zinc oxide film properties and deposition rate by multiple deposition using atmosphere pressure plasma jet," Journal of Alloys and Compounds, vol. 694, pp. 452-458, 2017.
[59]J.-Y. Juang et al., "Effect of ambient air flow on resistivity uniformity of transparent Ga-doped ZnO film deposited by atmospheric pressure plasma jet," Journal of Alloys and Compounds, vol. 766, pp. 868-875, 2018.
[60]W.-K. Chen, J.-C. Huang, Y.-C. Chen, M.-T. Lee, and J.-Y. Juang, "Deposition of highly transparent and conductive Ga-doped zinc oxide films on tilted substrates by atmospheric pressure plasma jet," Journal of Alloys and Compounds, vol. 802, pp. 458-466, 2019, doi: 10.1016/j.jallcom.2019.06.213.
[61]P.-H. Chou, J.-C. Huang, K.-L. Pan, and J.-Y. Juang, "Enhancement of electrical conductivity of transparent Ga-doped zinc oxide films via quench reduction in an atmospheric pressure plasma jet," Physical Review Applied, vol. 12, no. 3, 2019, doi: 10.1103/PhysRevApplied.12.034050.
[62]Y.-C. Chen, P.-C. Hsu, L. Xu, and J.-Y. Juang, "Simultaneous enhancement of electrical conductivity, uniformity, and near-infrared transmittance via laser annealing on ZnO:Ga films deposited by atmospheric pressure plasma jet," Journal of Alloys and Compounds, vol. 857, 2021, doi: 10.1016/j.jallcom.2020.157697.
[63]C. Stancu et al., "Cleaning of carbon materials from flat surfaces and castellation gaps by an atmospheric pressure plasma jet," Fusion Engineering and Design, vol. 103, pp. 38-44, 2016.
[64]P. Piechulla, J. Bauer, G. Boehm, H. Paetzelt, and T. Arnold, "Etch mechanism and temperature regimes of an atmospheric pressure chlorine‐based plasma jet process," Plasma Processes and Polymers, vol. 13, no. 11, pp. 1128-1135, 2016.
[65]K.-M. Chang et al., "Enhancement of the light-scattering ability of Ga-doped ZnO thin films using SiOx nano-films prepared by atmospheric pressure plasma deposition system," Thin Solid Films, vol. 548, pp. 460-464, 2013, doi: 10.1016/j.tsf.2013.09.082.
[66]Q. Gao et al., "Tailoring of textured transparent conductive SnO2:F thin films," Journal of Alloys and Compounds, vol. 574, pp. 427-431, 2013, doi: 10.1016/j.jallcom.2013.05.108.
[67]G. Giusti, V. Consonni, E. Puyoo, and D. Bellet, "High performance ZnO-SnO(2):F nanocomposite transparent electrodes for energy applications," ACS Applied Materials & Interfaces, vol. 6, no. 16, pp. 14096-107, Aug 27 2014, doi: 10.1021/am5034473.
[68]X. Yan, W. Li, A. G. Aberle, and S. Venkataraj, "Investigation of the thickness effect on material and surface texturing properties of sputtered ZnO:Al films for thin-film Si solar cell applications," Vacuum, vol. 123, pp. 151-159, 2016, doi: 10.1016/j.vacuum.2015.10.027.
[69]S.-T. Zhang et al., "Tuning the properties of F:SnO2 (FTO) nanocomposites with S:TiO2 nanoparticles – promising hazy transparent electrodes for photovoltaics applications," Journal of Materials Chemistry C, vol. 5, no. 1, pp. 91-102, 2017, doi: 10.1039/c6tc04153a.
[70]Q. Rong et al., "Light manipulating electrode based on high optical haze aluminum-doped zinc oxide for highly efficient indium-tin-oxide free organic solar cells with over 13% efficiency," Journal of Materials Chemistry C, vol. 7, no. 28, pp. 8515-8521, 2019, doi: 10.1039/c9tc02189b.
[71]S. Chen and Z. Ren, "Recent progress of half-heusler for moderate temperature thermoelectric applications," Materials Today, vol. 16, no. 10, pp. 387-395, 2013.
[72]K. Morrison and F. K. Dejene, "Thermal imaging of the thomson effect," Physics, vol. 13, p. 137, 2020.
[73]D. K. C. MacDonald, Thermoelectricity: An introduction to the principles. Courier Corporation, 2006.
[74]V. Giaretto and E. Campagnoli, "The elusive thomson effect in thermoelectric devices. Experimental investigation from 363 K to 213 K on various peltier modules," Metals, vol. 10, no. 2, p. 291, 2020.
[75]K. Ellmer, A. Klein, and B. Rech, "Transparent conductive zinc oxide: Basics and applications in thin film solar cells," 2007.
[76]A. Ali, A.-R. Phull, and M. Zia, "Elemental zinc to zinc nanoparticles: Is ZnO NPs crucial for life? Synthesis, toxicological, and environmental concerns," Nanotechnology Reviews, vol. 7, no. 5, pp. 413-441, 2018.
[77]V. Miloslavskii and P. Pogrebniak, "The burstein‐moss effect in polycrystalline ZnO films," Physica Status Solidi (B): Basic Research, vol. 51, no. 2, pp. K99-K102, 1972.
[78]K. Häufle and J. Block, "über die sauerstoffdruckabhängigkeit der elektrischen leitfähigkeit einiger mischoxyde," Zeitschrift für Physikalische Chemie, vol. 196, no. 1, pp. 438-446, 1950.
[79]A. Babar, P. Deshamukh, R. Deokate, D. Haranath, C. Bhosale, and K. Rajpure, "Gallium doping in transparent conductive ZnO thin films prepared by chemical spray pyrolysis," Journal of Physics D: Applied Physics, vol. 41, no. 13, p. 135404, 2008.
[80]A. Bikowski and K. Ellmer, "A comparative study of electronic and structural properties of polycrystalline and epitaxial magnetron-sputtered ZnO: Al and Zn1-xMgxO: Al films—origin of the grain barrier traps," Journal of Applied Physics, vol. 114, no. 6, p. 063709, 2013.
[81]J. Y. Seto, "The electrical properties of polycrystalline silicon films," Journal of Applied Physics, vol. 46, no. 12, pp. 5247-5254, 1975.
[82]K. Ellmer, "Resistivity of polycrystalline zinc oxide films: Current status and physical limit," Journal of Physics D: Applied Physics, vol. 34, no. 21, p. 3097, 2001.
[83]莊達人, "Vlsi 製造技術 (五版)," ed: 台北: 高立出版社, 2004.
[84]F. C. Matacotta and G. Ottaviani, Science and technology of thin films. World scientific, 1995.
[85]I. Matt Hughes - President - Semicore Equipment. "Diagram of the DC magnetron sputtering process." http://www.semicore.com/what-is-sputtering (accessed.
[86]N. Bouhssira et al., "Influence of annealing temperature on the properties of ZnO thin films deposited by thermal evaporation," Applied Surface Science, vol. 252, no. 15, pp. 5594-5597, 2006.
[87]D. Agarwal et al., "Synthesis and characterization of ZnO thin film grown by electron beam evaporation," Journal of Applied Physics, vol. 99, no. 12, p. 123105, 2006.
[88]A. Corporation. "UHV electron beam evaporator." https://www.adnano-tek.com/electron-beam-evaporator-ebe.html (accessed.
[89]Y. Lu, H. Ni, Z. Mai, and Z. Ren, "The effects of thermal annealing on ZnO thin films grown by pulsed laser deposition," Journal of Applied Physics, vol. 88, no. 1, pp. 498-502, 2000.
[90]V. Craciun, J. Elders, a. J. Gardeniers, and I. W. Boyd, "Characteristics of high quality ZnO thin films deposited by pulsed laser deposition," Applied Physics Letters, vol. 65, no. 23, pp. 2963-2965, 1994.
[91]M. K. Baig et al., "Pulsed laser deposition of SmCo thin films for MEMS applications," Journal of Applied Research and Technology, vol. 14, no. 5, pp. 287-292, 2016.
[92]M. S. Kim et al., "Thickness dependence of properties of ZnO thin films on porous silicon grown by plasma-assisted molecular beam epitaxy," Journal of the Korean Physical Society, vol. 59, no. 3, pp. 2354-2361, 2011.
[93]Y. Heo, D. Norton, and S. Pearton, "Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy," Journal of Applied Physics, vol. 98, no. 7, p. 073502, 2005.
[94]A. Corporation. "Molecular beam epitaxy in action." https://www.adnano-tek.com/molecular-beam-epitaxy--laser-mbe.html (accessed.
[95]L. Filipovic, "Topography simulation of novel processing techniques." [Online]. Available: https://www.iue.tuwien.ac.at/phd/filipovic/node56.html.
[96]N. Shakti and P. Gupta, "Structural and optical properties of sol-gel prepared ZnO thin film," Applied Physics Research, vol. 2, no. 1, p. 19, 2010.
[97]S. Ilican, Y. Caglar, and M. Caglar, "Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method," Journal of Optoelectronics and Advanced Materials, vol. 10, no. 10, pp. 2578-2583, 2008.
[98]S. Kwon et al., "Characteristics of the ZnO thin film transistor by atomic layer deposition at various temperatures," Semiconductor Science and Technology, vol. 24, no. 3, p. 035015, 2009.
[99]S. Lim, S. Kwon, and H. Kim, "ZnO thin films prepared by atomic layer deposition and rf sputtering as an active layer for thin film transistor," Thin Solid Films, vol. 516, no. 7, pp. 1523-1528, 2008.
[100]K. Innovate. "Challenges for non-ideal atomic layer deposition processes & systems." https://www.lesker.com/blog/challenges-for-non-ideal-atomic-layer-deposition-processes-systems (accessed.
[101]H. Yoshiki, K. Taniguchi, and Y. Horiike, "Localized removal of a photoresist by atmospheric pressure micro-plasma jet using rf corona discharge," Japanese journal of applied physics, vol. 41, no. 9R, p. 5797, 2002.
[102]J. H. Noh, H. K. Baik, I. Noh, J.-C. Park, and I.-S. Lee, "Surface modification of polytetrafluoroethylene using atmospheric pressure plasma jet for medical application," Surface and Coatings Technology, vol. 201, no. 9-11, pp. 5097-5101, 2007.
[103]H.-H. Chien et al., "Improved performance of polyaniline/reduced-graphene-oxide supercapacitor using atmospheric-pressure-plasma-jet surface treatment of carbon cloth," Electrochimica Acta, vol. 260, pp. 391-399, 2018.
[104]J. F. Kolb et al., "Cold atmospheric pressure air plasma jet for medical applications," Applied Physics Letters, vol. 92, no. 24, p. 241501, 2008.
[105]J. Gonzalez-Aguilar, C. P. Sanjurjo, A. Rodríguez-Yunta, and M. G. Calderón, "A theoretical study of a cutting air plasma torch," IEEE Transactions on Plasma Science, vol. 27, no. 1, pp. 264-271, 1999.
[106]M. Cao, F. Gitzhofer, D. Gravelle, R. Henne, and M. Boulos, "A torch nozzle design to improve plasma spraying techniques," Plasma Sources Science and Technology, vol. 6, no. 1, p. 39, 1997.
[107]S. Rubio, M. Quintero, A. Rodero, and R. Alvarez, "Removal of volatile organic compounds by a high pressure microwave plasma torch," Acta Physica Slovaca, vol. 54, no. 2, pp. 125-133, 2004.
[108]周東陞, "噴射式大氣電漿鍍製鎵摻雜氧化鋅薄膜之性質研究及均勻度改善," 碩士論文, 機械工程學研究所, 國立臺灣大學, 台北市, 2014. [Online]. Available: https://hdl.handle.net/11296/k7y82n
[109]張家豪 and 魏鴻文, "電漿源原理與應用之介紹."
[110]C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, "Atmospheric pressure plasmas: A review," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, no. 1, pp. 2-30, 2006.
[111]A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: A review and comparison to other plasma sources," IEEE Transactions on Plasma Science, vol. 26, no. 6, pp. 1685-1694, 1998.
[112]J.-I. Ida, T. Matsuyama, and H. Yamamoto, "Surface corona discharge-induced plasma chemical process-chemical vapor deposition (SPCP-CVD) as a novel method for surface modification of ceramic membranes," Advanced Powder Technology, vol. 11, no. 3, pp. 343-351, 2000.
[113]O. Blejan, P. V. Notingher, L. M. Dumitran, M. Younes, A. Samuila, and L. Dascalescu, "Experimental study of the corona discharge in a modified coaxial wire-cylinder electrostatic precipitator," IEEE Transactions on Industry Applications, vol. 46, no. 1, pp. 3-8, 2009.
[114]J. H. Davidson and P. J. McKinney, "Chemical vapor deposition in the corona discharge of electrostatic air cleaners," Aerosol Science and Technology, vol. 29, no. 2, pp. 102-110, 1998.
[115]E. Marotta, A. Callea, M. Rea, and C. Paradisi, "DC corona electric discharges for air pollution control. Part 1. Efficiency and products of hydrocarbon processing," Environmental Science & Technology, vol. 41, no. 16, pp. 5862-5868, 2007.
[116]U. Reitz, J. Salge, and R. Schwarz, "Pulsed barrier discharges for thin film production at atmospheric pressure," Surface and Coatings Technology, vol. 59, no. 1-3, pp. 144-147, 1993.
[117]T.-L. Sung et al., "Effect of pulse power characteristics and gas flow rate on ozone production in a cylindrical dielectric barrier discharge ozonizer," Vacuum, vol. 90, pp. 65-69, 2013.
[118]D. Liu, S. Yu, T. Ma, Z. Song, and X. Yang, "Diamond-like carbon films deposited in the plasma of dielectric barrier discharge at atmospheric pressure," Japanese journal of applied physics, vol. 39, no. 6R, p. 3359, 2000.
[119]T. Kugimiya, M. Kannaka, M. Yokomizo, A. Nakaue, and H. Takamatsu, "Ultraviolet irradiation on hydrogenated amorphous carbon films deposited by atmospheric dielectric barrier discharge," Journal of The Electrochemical Society, vol. 153, no. 5, p. C282, 2006.
[120]V. Grinevich, E. Y. Kvitkova, N. Plastinina, and V. Rybkin, "Application of dielectric barrier discharge for waste water purification," Plasma Chemistry and Plasma Processing, vol. 31, no. 4, pp. 573-583, 2011.
[121]H. Xiao, Introduction to semiconductor manufacturing technology. Prentice Hall, 2015.
[122]A. Montecucco, J. Siviter, and A. R. Knox, "Constant heat characterisation and geometrical optimisation of thermoelectric generators," Applied Energy, vol. 149, pp. 248-258, 2015, doi: 10.1016/j.apenergy.2015.03.120.
[123]H. Gomez and M. d. l. L. Olvera, "Ga-doped ZnO thin films: Effect of deposition temperature, dopant concentration, and vacuum-thermal treatment on the electrical, optical, structural and morphological properties," Materials Science and Engineering: B, vol. 134, no. 1, pp. 20-26, 2006.
[124]YOTEC. "經濟型 gx-36系列 pid溫度控制器." https://www.yscco.com.tw/product-detail-2618799.html (accessed.
[125]陳冠曄, "噴射式大氣電漿系統之設計架設與大面積氧化鋅鎵薄膜均勻度之改善," 碩士論文, 機械工程學研究所, 國立臺灣大學, 台北市, 2016. [Online]. Available: https://hdl.handle.net/11296/fyekz9
[126]陳于壹, "噴射式大氣電漿系統之設計架設與多次沉積氧化鋅鎵薄膜性質之量測與模擬," 碩士論文, 機械工程學研究所, 國立臺灣大學, 台北市, 2016. [Online]. Available: https://hdl.handle.net/11296/2djj7b
[127]J. Ltd. "Jsm-7800f schottky field emission scanning electron microscope." https://www.jeol.co.jp/en/products/detail/JSM-7800F.html (accessed.
[128]C.-T. Hsu, G.-Y. Huang, H.-S. Chu, B. Yu, and D.-J. Yao, "An effective seebeck coefficient obtained by experimental results of a thermoelectric generator module," Applied Energy, vol. 88, no. 12, pp. 5173-5179, 2011, doi: 10.1016/j.apenergy.2011.07.033.
[129]Y. Wang, W. Tang, and L. Zhang, "Crystalline size effects on texture coefficient, electrical and optical properties of sputter-deposited Ga-doped ZnO thin films," Journal of Materials Science and Technology, vol. 31, no. 2, pp. 175-181, 2015.
[130]N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito, "Control of preferred orientation for ZnOx films: Control of self-texture," Journal of Crystal Growth, vol. 130, no. 1-2, pp. 269-279, 1993.
[131]B. D. Cullity, Elements of x-ray diffraction. Addison-Wesley Publishing, 1956.
[132]R. Cebulla, R. Wendt, and K. Ellmer, "Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties," Journal of Applied Physics, vol. 83, no. 2, pp. 1087-1095, 1998.
[133]Z. Xiao et al., "Materials development and potential applications of transparent ceramics: A review," Materials Science and Engineering: R: Reports, vol. 139, p. 100518, 10/01 2019, doi: 10.1016/j.mser.2019.100518.
[134]G. Haacke, "New figure of merit for transparent conductors," Journal of Applied Physics, vol. 47, no. 9, pp. 4086-4089, 1976.
[135]E. Fortunato et al., "Growth of ZnO: Ga thin films at room temperature on polymeric substrates: Thickness dependence," Thin Solid Films, vol. 442, no. 1-2, pp. 121-126, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊