|
[1]V. K. Sanipini, B. Rakesh, A. J. Chamanthula, N. Santoshi, A. A. Gudivada, and A. K. Panigrahy, "Thermal management in TSV based 3D IC Integration: a survey," Materials Today: Proceedings, vol. 45, no. 2, pp.1742-1746, 2021. (10.1016/j.matpr.2020.08.621) [2]W. K. Lin W. H. Zhang, C. Huang, C. H. Tsai, and K. Hsaio, "Measurement of performance characterization of ultra-thin vapor chamber," 36th Semiconductor Thermal Measurement, Modeling and Management Symposium, San Jose, CA, U.S., March 16, 2020, pp. 97-104. (10.23919/SEMI-THERM50369.2020.9142852) [3]T. Liu, M. T. Dunham, K. W. Jung, B. Chen, M. Asheghi, and K. E. Goodson, "Characterization and thermal modeling of a miniature silicon vapor chamber for die-level heat redistribution," International Journal of Heat and Mass Transfer, vol. 152, p. 119569, 2020. (10.1016/j.ijheatmasstransfer.2020.119569). [4]M. Bulut, S. G. Kandlikar, and N. Sozbir, "A review of vapor chambers," Heat Transfer Engineering, vol. 40, no. 19, pp. 1551-1573, 2018. (10.1080/01457632.2018.1480868). [5]X. Cheng, G. Yang, and J. Wu, "Recent advances in the optimization of evaporator wicks of vapor chambers: from mechanism to fabrication technologies," AppliedThermal Engineering, vol. 188, p. 116611, 2021. (10.1016/j.applthermaleng.2021.116611). [6]C. Tompkins, H. M. Prasser, and M. Corradini, "Wire-mesh sensors: a review of methods and uncertainty in multiphase flows relative to other measurement techniques," Nuclear Engineering and Design, vol. 337, pp. 205-220, 2018. (10.1016/j.nucengdes.2018.06.005). [7]J. A. Weibel and S. V. Garimella, "Recent advances in vapor chamber transport characterization for high-heat-flux applications," in Advances in Heat Transfer, vol. 45, West Lafayette, IN, U.S.: CTRC Research Publications, 2013, ch. 4, pp. 209-301. (10.1016/B978-0-12-407819-2.00004-9) [8]H. Lee, Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells. Hoboken, NJ, U.S.: John Wiley & Sons, Inc. , 2011, ch. 4, pp. 180-200. (10.1002/9780470949979) [9]S. M. Thompson and H. Ma, "Recent advances in two-phase thermal ground planes," Annual Review of Heat Transfer, vol. 18, pp. 101-153, 2015. (10.1615/AnnualRevHeatTransfer.2015011163). [10]G. Huang, W. Liu, Y. Luo, Y. Li, and H. Chen, "Fabrication and thermal performance of mesh-type ultra-thin vapor chambers," Applied Thermal Engineering, vol. 162, p. 114263 2019. (10.1016/j.applthermaleng.2019.114263). [11]Y. Li, Z. Li, W. Zhou, Z. Zeng, Y. Yan, and B. Li, "Experimental investigation of vapor chambers with different wick structures at various parameters," Experimental Thermal and Fluid Science, vol. 77, pp. 132-143, 2016. (10.1016/j.expthermflusci.2016.04.017). [12]C. Wang, Z. Liu, G. Zhang, and M. Zhang, "Experimental investigations of flat plate heat pipes with interlaced narrow grooves or channels as capillary structure," Experimental Thermal and Fluid Science, vol. 48, pp. 222-229, 2013. (10.1016/j.expthermflusci.2013.03.004). [13]L. Chen, D. Deng, Q. Huang, X. Xu, and Y. Xie, "Development and thermal performance of a vapor chamber with multi-artery reentrant microchannels for high-power LED," Applied Thermal Engineering, vol. 166, p. 114686, 2020. (10.1016/j.applthermaleng.2019.114686). [14]J. Velardo, A. Date, R. Singh, J. Nihill, A. Date, T. L. Phan, and M. Takahashi, "Experimental investigation of a vapour chamber heat spreader with hybrid wick structure," International Journal of Thermal Sciences, vol. 140, pp. 28-35, 2019. (10.1016/j.ijthermalsci.2019.02.009). [15]F. Yao, S. Miao, M. Zhang, and Y. Chen, "An experimental study of an anti-gravity vapor chamber with a tree-shaped evaporator," Applied Thermal Engineering, vol. 141, pp. 1000-1008, 2018. (10.1016/j.applthermaleng.2018.06.053). [16]Z. Ming, L. Zhongliang, and M. Guoyuan, "The experimental and numerical investigation of a grooved vapor chamber," Applied Thermal Engineering, vol. 29, no. 2-3, pp. 422-430, 2009. (10.1016/j.applthermaleng.2008.03.030). [17]S. Lips, F. Lefèvre, and J. Bonjour, "Combined effects of the filling ratio and the vapour space thickness on the performance of a flat plate heat pipe," International Journal of Heat and Mass Transfer, vol. 53, no. 4, pp. 694-702, 2010. (10.1016/j.ijheatmasstransfer.2009.10.022). [18]A. A. Attia and B. T. El-Assal, "Experimental investigation of vapor chamber with different working fluids at different charge ratios," Ain Shams Engineering Journal, vol. 3, no. 3, pp. 289-297, 2012. (10.1016/j.asej.2012.02.003). [19]W. Liu, J. Gou, Y. Luo, and M. Zhang, "The experimental investigation of a vapor chamber with compound columns under the influence of gravity," Applied Thermal Engineering, vol. 140, pp. 131-138, 2018. (10.1016/j.applthermaleng.2018.05.010). [20]X. Ji, J. Xu, and A. M. Abanda, "Copper foam based vapor chamber for high heat flux dissipation," Experimental Thermal and Fluid Science, vol. 40, pp. 93-102, 2012. (10.1016/j.expthermflusci.2012.02.004). [21]S. C. Wong, S. F. Huang, and K. C. Hsieh, "Performance tests on a novel vapor chamber," Applied Thermal Engineering, vol. 31, no. 10, pp. 1757-1762, 2011. (10.1016/j.applthermaleng.2011.02.020). [22]J. Velardo, A. Date, R. Singh, J. Nihill, A. Date, and T. L. Phan, "On the effective thermal conductivity of the vapour region in vapour chamber heat spreaders," International Journal of Heat and Mass Transfer, vol. 145, 2019. (10.1016/j.ijheatmasstransfer.2019.118797). [23]J. A. Weibel and S. V. Garimella, "Visualization of vapor formation regimes during capillary-fed boiling in sintered-powder heat pipe wicks," International Journal of Heat and Mass Transfer, vol. 55, no. 13-14, pp. 3498-3510, 2012. (10.1016/j.ijheatmasstransfer.2012.03.021). [24]S. Sudhakar, J. A. Weibel, and S. V. Garimella, "Experimental investigation of boiling regimes in a capillary-fed two-layer evaporator wick," International Journal of Heat and Mass Transfer, vol. 135, pp. 1335-1345, 2019. (10.1016/j.ijheatmasstransfer.2019.03.008). [25]S. C. Wong and W. S. Liao, "Visualization experiments on flat-plate heat pipes with composite mesh-groove wick at different tilt angles," International Journal of Heat and Mass Transfer, vol. 123, pp. 839-847, 2018. (10.1016/j.ijheatmasstransfer. [26]S. C. Wong, H. H. Tseng, and S. H. Chen, "Visualization experiments on the condensation process in heat pipe wicks," International Journal of Heat and Mass Transfer, vol. 68, pp. 625-632, 2014. (10.1016/j.ijheatmasstransfer.2013.09.069). [27]T. P. Koukoravas, G. Damoulakis, and C. M. Megaridis, "Experimental investigation of a vapor chamber featuring wettability-patterned surfaces," Applied Thermal Engineering, vol. 178, p. 115522, 2020. (10.1016/j.applthermaleng.2020.115522). [28]S. Jahangir, E. C. Wagner, R. F. Mudde, and C. Poelma, "Void fraction measurements in partial cavitation regimes by X-ray computed tomography," International Journal of Multiphase Flow, vol. 120, p. 103085, 2019. (10.1016/j.ijmultiphaseflow.2019.103085). [29]Y. Zhao, Q. Bi, Y. Yuan, and H. Lv, "Void fraction measurement in steam–water two-phase flow using the gamma ray attenuation under high pressure and high temperature evaporating conditions," Flow Measurement and Instrumentation, vol. 49, pp. 18-30, 2016. (10.1016/j.flowmeasinst.2016.03.002). [30]T. Alhashan, A. Addali, J. A. Teixeira, and A. Naid, "Experimental investigation of the influences of different liquid types on acoustic emission energy levels during the bubble formation process," International Journal of Energy and Environmental Engineering, vol. 9, no. 1, pp. 13-20, 2017. (10.1007/s40095-017-0245-5). [31]L. Fang, Q. Zeng, F. Wang, Y. Faraj, Y. Zhao, Y. Lang, and Z. Wei,, "Identification of two-phase flow regime using ultrasonic phased array," Flow Measurement and Instrumentation, vol. 72, p. 101726, 2020. (10.1016/j.flowmeasinst.2020.101726). [32]J. K. Keska and B. E. Williams, "Experimental comparison of flow pattern detection techniques for air–water mixture flow," Experimental Thermal and Fluid Science, vol. 19, no. 1, pp. 1-12, 1999. (10.1016/S0894-1777(98)10046-8). [33]M. Uematsu and E. U. Frank, "Static dielectric constant of water and steam," Journal of Physical and Chemical Reference Data, vol. 9, no. 4, pp. 1291-1306, 1980. (10.1063/1.555632). [34]S. Paranjape, S. N. Ritchey, and S. V. Garimella, "Electrical impedance-based void fraction measurement and flow regime identification in microchannel flows under adiabatic conditions," International Journal of Multiphase Flow, vol. 42, pp. 175-183, 2012. (10.1016/j.ijmultiphaseflow.2012.02.010). [35]A. Krupa, M. Lackowski, and A. Jaworek, "Effect of void fraction on capacitance of sensor for void fraction measurement," European Journal of Mechanics - B/Fluids, vol. 87, pp. 196-212, 2021. (10.1016/j.euromechflu.2021.02.003). [36]P. Gijsenbergh and R. Puers, "Permittivity-based void fraction sensing for microfluidics," Sensors and Actuators A: Physical, vol. 195, pp. 64-70, 2013. 10.1016/j.sna.2013.02.019). [37]E. J. Mohamad, R. A. Rahim, M. H. F. Rahiman, H. L. M. Ameran, S. Z. M. Muji, and O. M. F. Marwah, "Measurement and analysis of water/oil multiphase flow using electrical capacitance tomography sensor," Flow Measurement and Instrumentation, vol. 47, pp. 62-70, 2016. (10.1016/j.flowmeasinst.2015.12.004). [38]L. Lu, Y. Xie, F. Zhang, H. Liao, X. Liu, and Y. Tang, "Influence of a sintered central column on the thermal hydraulic performance of a vapor chamber: A numerical analysis," Applied Thermal Engineering, vol. 103, pp. 1176-1185, 2016. (10.1016/j.applthermaleng.2016.05.018). [39]Keysight Technologies, Keysight E4980A/AL Precision LCR Meter User’s Guide, 2017. [online] Available: https://www.keysight.com/tw/zh/assets/9018-06166/user-manuals/9018-06166.pdf. [40]Keysight Technologies, Keysight DAQ970A Data Acquisition System User's Guide, 2020. [online] Available: https://www.keysight.com/tw/zh/assets/9018-04738/user-manuals/9018-04738.pdf. [41]C. Elliott, V. Vijayakumar, W. Zink, and R. Hansen, "National Instruments LabVIEW: a programming environment for laboratory automation and measurement," Journal of The Association for Laboratory Automation, vol. 12, pp. 17-24, 2007. (10.1016/j.jala.2006.07.012). [42]A. H. Robbins and W. C. Miller, Circuit Analysis: Theory and Practice. Clifton Park, NY, U.S.: Delmar Cengage Learning, 2003, ch. 10, pp. 384-415. [43]E. Lemmon, I. Bell, M. Huber, and M. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0. Gaithersburg, MD, U.S.: National Institute of Standards and Technology, 2013. [44]A. Jaworek and A. Krupa, "Gas/liquid ratio measurements by RF resonance capacitance sensor," Sensors and Actuators A: Physical, vol. 113, no. 2, pp. 133-139, 2004. (10.1016/j.sna.2004.02.006). [45]W. B. Floriano and M. A. C. Nascimento, "Dielectric constant and density of water as a function of pressure at constant temperature," Brazilian Journal of Physics, vol. 34, no. 1, pp. 38-41, 2004. (10.1590/S0103-97332004000100006). [46]J. Stranathan, "Dielectric constant of water vapor," Physical Review, vol. 48, no. 6, p. 538, 1935. (10.1103/PhysRev.48.538). [47]J. M. C. Yunus A. Çengel, Robert H. Turner, Fundamentals of Thermal-Fluid Sciences, Boston, MA, U.S.: McGraw-Hill, 5th ed. 2016, ch.4, pp 111-149. [48]A. Buck, "New equations for computing vapor pressure and enhancement factor," Journal of Applied Meteorology and Climatology, vol. 20, pp. 1527-1532, 1981. (10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2). [49]J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd ed. Sausalito, CA, U.S.: University Science Books, 1982, pp 188-190. [50]"Thermocouple types." Omega Engineering. https://www.omega.com/en-us/resources/thermocouple-types , Accessed April 20, 2021. [51]P. Naphon and S. Wiriyasart, "Effect of sintering columns on the heat transfer and flow characteristics of the liquid cooling vapor chambers," Heat and Mass Transfer, vol. 52, no. 9, pp. 1807-1820, 2015. (10.1007/s00231-015-1699-8).
|