跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/09 08:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:連于仁
研究生(外文):Yu-Jen Lien
論文名稱:利用電容法量測均溫板在不同加熱功率與傾角下之空隙率變化
論文名稱(外文):Void fraction measurements in vapor chamber under different power inputs and tilting angles using electrical capacitance method
指導教授:孫珍理
指導教授(外文):Chen-Li Sun
口試委員:黃智永李明蒼
口試委員(外文):Chih-Yung HuangMing-Tsang Lee
口試日期:2021-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:163
中文關鍵詞:均溫板電容法空隙率量測非對稱加熱傾角啟動溫度
外文關鍵詞:vapor chamberelectrical capacitance methodvoid fraction measurementasymmetric heatingtilting anglestart-up temperature
DOI:10.6342/NTU202101798
相關次數:
  • 被引用被引用:0
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用電容法量測均溫板在非對稱加熱下的空隙率隨時間之變化,利用液態水與水蒸氣介電常數的差異,來推算內部的空隙率。我們針對不同的加熱功率與傾角組合進行空隙率量測,俾利探討均溫板之抗重力能力,結果將有助於未來相變化散熱元件之彈性運用及作為設計改良之參據。
由實驗結果可知,當進行非對稱加熱並搭配自然對流冷卻時,受到均溫板中央位置密集的毛細圓柱排列設計的影響,均溫板的空隙率分布會以中央的外環且遠離熱源的位置有較高的空隙率,而以熱源附近的空隙率較低,顯示在此液體回補良好。隨加熱功率增加,高空隙率區域會向外擴張,在10.7 W及傾角為90°時,局部最高空隙率可達0.96。當傾角固定時,隨加熱功率增加,均溫板的穩態平均空隙率亦上升,顯示內部汽化程度與加熱功率為正相關。由空隙率變化可知,在加熱功率為5.7 W與8.5 W時,均溫板的空隙率在傾角0°至90°間較不受傾角變化的影響,穩態平均空隙率的最大變異量分別僅有3.5%與1.7%;隨加熱功率增加至10.7 W時,均溫板的穩態平均空隙率較易受傾角變化的影響,在傾角小於30°時,穩態平均空隙率介於0.897與0.898,但傾角大於30°時,穩態平均空隙率會增加為0.906與0.908之間,代表在高汽化程度下,高傾角所造成之較大的重力作用會導致均溫板內的液體回補速度變緩,使整體空隙率上升。此外,傾角對於啟動溫度之影響亦取決於加熱功率之大小。在加熱功率為5.7 W與8.5 W時,均溫板的啟動溫度較不易受傾角變化的影響,而當加熱功率增加為10.7 W時,高加熱功率所產生之高汽化程度與高傾角(60°與90°)的重力作用,會導致均溫板的均溫性下降,且液態水無法即時回補,進而提高空隙率與內部壓力,啟動溫度隨之上升。
In this study, we utilized the electrical capacitance method to measure the change in void fraction of an off-the-shelf vapor chamber with different orientations under asymmetric heating. Due to difference in dielectric properties between liquid water and steam, we were able to determine the distribution of void fraction from the measurements of electrode pairs on flexible printed circuit boards. The tilting angle varied from 0° (horizontal) to 90° (vertical) in order to investigate the ability of the vapor chamber against gravity effect.
From the results, when the vapor chamber was subject to asymmetric heating at lower left corner and natural convection cooling, the far-side close to the center tended to have higher void fractions due to the highly-packed wick columns at the center. In contrast, the region adjacent to the heat source had lower void fractions, indicating sufficient replenishment of water liquid. When the tilting angle was fixed, the augmentation of the power input increased the average void fraction, leading to the expansion of high-void-fraction region and further deterioration of the vapor chamber.
With the vertical orientation at 10.7 W, void fraction could reach as high as 0.96. At low- to mid-level of power inputs (5.7 W and 8.5 W), on the other hand, both void fraction and start-up temperature were nearly independent of the tilting angle. As the power input increased to 10.7 W, the void fraction became susceptible to the tilting angle. The steady-state void fraction increased from 0.897 for tilting angles less than 30° to 0.909 for tilting angles greater than 60°. Moreover, severe vaporization at 10.7 W and great influence of gravity for tilting angles larger than 60° altogether aggravated the temperature uniformity, impeded the circulation of condensed liquid, elevated the void fraction and internal pressure, leading to higher start-up temperatures. The results of this study could facilitate more robust applications of phase-change devices and provide a mean to improve the design of the vapor chamber in the future.
論文口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iii
目錄 iv
符號索引 vii
表目錄 ix
圖目錄 x
第一章 導論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1均溫板 2
1.2.2外部工作環境對均溫板之影響 6
1.2.3毛細結構上之相變化 8
1.2.4空隙率量測 10
1.3 研究目的 13
第二章 實驗架構與不確定性分析 14
2.1 實驗架構 14
2.1.1 均溫板與平行電極板 14
2.1.2 測試環境與傾斜平台 16
2.1.3 電容與溫度量測系統 17
2.2 空隙率量測原理 18
2.2.1 蒸氣與液態水對電容之影響 18
2.2.2 等效電路分析 19
2.2.3 均溫板內部壓力分析 20
2.3 實驗量測程序 23
2.4空隙率與電容之校正 24
2.4.1 Cw溫度校正 24
2.4.2 Cs溫度校正 24
2.4.3 工作流體相對介電常數之溫度校正 25
2.5 自動化數據分析程序 26
2.6 不確定性分析 27
2.6.1均溫板表面溫度之不確定性 28
2.6.2 電容量測之不確定性 28
2.6.3 電極面積之不確定性 30
2.6.4 電極對距離之不確定性 31
2.6.5均溫板空隙率之不確定性 31
2.6.6 傾角之不確定性 32
2.6.7 加熱功率之不確定性 32
2.6.8 工作流體填充率之不確定性 32
2.6.9 均溫板內部壓力之不確定性 33
第三章 實驗結果與討論 34
3.1 位置之影響 34
3.1.1 溫度隨時間之變化 34
3.1.2 電容隨時間之變化 35
3.1.3 空隙率溫度隨時間之變化 36
3.1.4 壓力隨時間之變化 39
3.2 加熱功率之影響 40
3.2.1 溫度隨時間之變化 40
3.2.2 電容隨時間之變化 41
3.2.3 空隙率隨時間之變化 42
3.2.4 壓力隨時間之變化 44
3.3 傾角之影響 46
3.3.1 溫度隨時間之變化 47
3.3.2 電容隨時間之變化 51
3.3.3 空隙率隨時間之變化 53
3.3.4 壓力隨時間之變化 58
3.4 空隙率之量測靈敏度 59
3.5從電容量測推算燒乾現象—以雷射光源加熱為例 60
第四章 結論與建議 62
4.1 結論 62
4.2 建議 64
參考文獻 65
附錄 70
[1]V. K. Sanipini, B. Rakesh, A. J. Chamanthula, N. Santoshi, A. A. Gudivada, and A. K. Panigrahy, "Thermal management in TSV based 3D IC Integration: a survey," Materials Today: Proceedings, vol. 45, no. 2, pp.1742-1746, 2021. (10.1016/j.matpr.2020.08.621)
[2]W. K. Lin W. H. Zhang, C. Huang, C. H. Tsai, and K. Hsaio, "Measurement of performance characterization of ultra-thin vapor chamber," 36th Semiconductor Thermal Measurement, Modeling and Management Symposium, San Jose, CA, U.S., March 16, 2020, pp. 97-104. (10.23919/SEMI-THERM50369.2020.9142852)
[3]T. Liu, M. T. Dunham, K. W. Jung, B. Chen, M. Asheghi, and K. E. Goodson, "Characterization and thermal modeling of a miniature silicon vapor chamber for die-level heat redistribution," International Journal of Heat and Mass Transfer, vol. 152, p. 119569, 2020. (10.1016/j.ijheatmasstransfer.2020.119569).
[4]M. Bulut, S. G. Kandlikar, and N. Sozbir, "A review of vapor chambers," Heat Transfer Engineering, vol. 40, no. 19, pp. 1551-1573, 2018. (10.1080/01457632.2018.1480868).
[5]X. Cheng, G. Yang, and J. Wu, "Recent advances in the optimization of evaporator wicks of vapor chambers: from mechanism to fabrication technologies," AppliedThermal Engineering, vol. 188, p. 116611, 2021. (10.1016/j.applthermaleng.2021.116611).
[6]C. Tompkins, H. M. Prasser, and M. Corradini, "Wire-mesh sensors: a review of methods and uncertainty in multiphase flows relative to other measurement techniques," Nuclear Engineering and Design, vol. 337, pp. 205-220, 2018. (10.1016/j.nucengdes.2018.06.005).
[7]J. A. Weibel and S. V. Garimella, "Recent advances in vapor chamber transport characterization for high-heat-flux applications," in Advances in Heat Transfer, vol. 45, West Lafayette, IN, U.S.: CTRC Research Publications, 2013, ch. 4, pp. 209-301. (10.1016/B978-0-12-407819-2.00004-9)
[8]H. Lee, Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells. Hoboken, NJ, U.S.: John Wiley & Sons, Inc. , 2011, ch. 4, pp. 180-200. (10.1002/9780470949979)
[9]S. M. Thompson and H. Ma, "Recent advances in two-phase thermal ground planes," Annual Review of Heat Transfer, vol. 18, pp. 101-153, 2015. (10.1615/AnnualRevHeatTransfer.2015011163).
[10]G. Huang, W. Liu, Y. Luo, Y. Li, and H. Chen, "Fabrication and thermal performance of mesh-type ultra-thin vapor chambers," Applied Thermal Engineering, vol. 162, p. 114263 2019. (10.1016/j.applthermaleng.2019.114263).
[11]Y. Li, Z. Li, W. Zhou, Z. Zeng, Y. Yan, and B. Li, "Experimental investigation of vapor chambers with different wick structures at various parameters," Experimental Thermal and Fluid Science, vol. 77, pp. 132-143, 2016. (10.1016/j.expthermflusci.2016.04.017).
[12]C. Wang, Z. Liu, G. Zhang, and M. Zhang, "Experimental investigations of flat plate heat pipes with interlaced narrow grooves or channels as capillary structure," Experimental Thermal and Fluid Science, vol. 48, pp. 222-229, 2013. (10.1016/j.expthermflusci.2013.03.004).
[13]L. Chen, D. Deng, Q. Huang, X. Xu, and Y. Xie, "Development and thermal performance of a vapor chamber with multi-artery reentrant microchannels for high-power LED," Applied Thermal Engineering, vol. 166, p. 114686, 2020. (10.1016/j.applthermaleng.2019.114686).
[14]J. Velardo, A. Date, R. Singh, J. Nihill, A. Date, T. L. Phan, and M. Takahashi, "Experimental investigation of a vapour chamber heat spreader with hybrid wick structure," International Journal of Thermal Sciences, vol. 140, pp. 28-35, 2019. (10.1016/j.ijthermalsci.2019.02.009).
[15]F. Yao, S. Miao, M. Zhang, and Y. Chen, "An experimental study of an anti-gravity vapor chamber with a tree-shaped evaporator," Applied Thermal Engineering, vol. 141, pp. 1000-1008, 2018. (10.1016/j.applthermaleng.2018.06.053).
[16]Z. Ming, L. Zhongliang, and M. Guoyuan, "The experimental and numerical investigation of a grooved vapor chamber," Applied Thermal Engineering, vol. 29, no. 2-3, pp. 422-430, 2009. (10.1016/j.applthermaleng.2008.03.030).
[17]S. Lips, F. Lefèvre, and J. Bonjour, "Combined effects of the filling ratio and the vapour space thickness on the performance of a flat plate heat pipe," International Journal of Heat and Mass Transfer, vol. 53, no. 4, pp. 694-702, 2010. (10.1016/j.ijheatmasstransfer.2009.10.022).
[18]A. A. Attia and B. T. El-Assal, "Experimental investigation of vapor chamber with different working fluids at different charge ratios," Ain Shams Engineering Journal, vol. 3, no. 3, pp. 289-297, 2012. (10.1016/j.asej.2012.02.003).
[19]W. Liu, J. Gou, Y. Luo, and M. Zhang, "The experimental investigation of a vapor chamber with compound columns under the influence of gravity," Applied Thermal Engineering, vol. 140, pp. 131-138, 2018. (10.1016/j.applthermaleng.2018.05.010).
[20]X. Ji, J. Xu, and A. M. Abanda, "Copper foam based vapor chamber for high heat flux dissipation," Experimental Thermal and Fluid Science, vol. 40, pp. 93-102, 2012. (10.1016/j.expthermflusci.2012.02.004).
[21]S. C. Wong, S. F. Huang, and K. C. Hsieh, "Performance tests on a novel vapor chamber," Applied Thermal Engineering, vol. 31, no. 10, pp. 1757-1762, 2011. (10.1016/j.applthermaleng.2011.02.020).
[22]J. Velardo, A. Date, R. Singh, J. Nihill, A. Date, and T. L. Phan, "On the effective thermal conductivity of the vapour region in vapour chamber heat spreaders," International Journal of Heat and Mass Transfer, vol. 145, 2019. (10.1016/j.ijheatmasstransfer.2019.118797).
[23]J. A. Weibel and S. V. Garimella, "Visualization of vapor formation regimes during capillary-fed boiling in sintered-powder heat pipe wicks," International Journal of Heat and Mass Transfer, vol. 55, no. 13-14, pp. 3498-3510, 2012. (10.1016/j.ijheatmasstransfer.2012.03.021).
[24]S. Sudhakar, J. A. Weibel, and S. V. Garimella, "Experimental investigation of boiling regimes in a capillary-fed two-layer evaporator wick," International Journal of Heat and Mass Transfer, vol. 135, pp. 1335-1345, 2019. (10.1016/j.ijheatmasstransfer.2019.03.008).
[25]S. C. Wong and W. S. Liao, "Visualization experiments on flat-plate heat pipes with composite mesh-groove wick at different tilt angles," International Journal of Heat and Mass Transfer, vol. 123, pp. 839-847, 2018. (10.1016/j.ijheatmasstransfer.
[26]S. C. Wong, H. H. Tseng, and S. H. Chen, "Visualization experiments on the condensation process in heat pipe wicks," International Journal of Heat and Mass Transfer, vol. 68, pp. 625-632, 2014. (10.1016/j.ijheatmasstransfer.2013.09.069).
[27]T. P. Koukoravas, G. Damoulakis, and C. M. Megaridis, "Experimental investigation of a vapor chamber featuring wettability-patterned surfaces," Applied Thermal Engineering, vol. 178, p. 115522, 2020. (10.1016/j.applthermaleng.2020.115522).
[28]S. Jahangir, E. C. Wagner, R. F. Mudde, and C. Poelma, "Void fraction measurements in partial cavitation regimes by X-ray computed tomography," International Journal of Multiphase Flow, vol. 120, p. 103085, 2019. (10.1016/j.ijmultiphaseflow.2019.103085).
[29]Y. Zhao, Q. Bi, Y. Yuan, and H. Lv, "Void fraction measurement in steam–water two-phase flow using the gamma ray attenuation under high pressure and high temperature evaporating conditions," Flow Measurement and Instrumentation, vol. 49, pp. 18-30, 2016. (10.1016/j.flowmeasinst.2016.03.002).
[30]T. Alhashan, A. Addali, J. A. Teixeira, and A. Naid, "Experimental investigation of the influences of different liquid types on acoustic emission energy levels during the bubble formation process," International Journal of Energy and Environmental Engineering, vol. 9, no. 1, pp. 13-20, 2017. (10.1007/s40095-017-0245-5).
[31]L. Fang, Q. Zeng, F. Wang, Y. Faraj, Y. Zhao, Y. Lang, and Z. Wei,, "Identification of two-phase flow regime using ultrasonic phased array," Flow Measurement and Instrumentation, vol. 72, p. 101726, 2020. (10.1016/j.flowmeasinst.2020.101726).
[32]J. K. Keska and B. E. Williams, "Experimental comparison of flow pattern detection techniques for air–water mixture flow," Experimental Thermal and Fluid Science, vol. 19, no. 1, pp. 1-12, 1999. (10.1016/S0894-1777(98)10046-8).
[33]M. Uematsu and E. U. Frank, "Static dielectric constant of water and steam," Journal of Physical and Chemical Reference Data, vol. 9, no. 4, pp. 1291-1306, 1980. (10.1063/1.555632).
[34]S. Paranjape, S. N. Ritchey, and S. V. Garimella, "Electrical impedance-based void fraction measurement and flow regime identification in microchannel flows under adiabatic conditions," International Journal of Multiphase Flow, vol. 42, pp. 175-183, 2012. (10.1016/j.ijmultiphaseflow.2012.02.010).
[35]A. Krupa, M. Lackowski, and A. Jaworek, "Effect of void fraction on capacitance of sensor for void fraction measurement," European Journal of Mechanics - B/Fluids, vol. 87, pp. 196-212, 2021. (10.1016/j.euromechflu.2021.02.003).
[36]P. Gijsenbergh and R. Puers, "Permittivity-based void fraction sensing for microfluidics," Sensors and Actuators A: Physical, vol. 195, pp. 64-70, 2013. 10.1016/j.sna.2013.02.019).
[37]E. J. Mohamad, R. A. Rahim, M. H. F. Rahiman, H. L. M. Ameran, S. Z. M. Muji, and O. M. F. Marwah, "Measurement and analysis of water/oil multiphase flow using electrical capacitance tomography sensor," Flow Measurement and Instrumentation, vol. 47, pp. 62-70, 2016. (10.1016/j.flowmeasinst.2015.12.004).
[38]L. Lu, Y. Xie, F. Zhang, H. Liao, X. Liu, and Y. Tang, "Influence of a sintered central column on the thermal hydraulic performance of a vapor chamber: A numerical analysis," Applied Thermal Engineering, vol. 103, pp. 1176-1185, 2016. (10.1016/j.applthermaleng.2016.05.018).
[39]Keysight Technologies, Keysight E4980A/AL Precision LCR Meter User’s Guide, 2017. [online] Available: https://www.keysight.com/tw/zh/assets/9018-06166/user-manuals/9018-06166.pdf.
[40]Keysight Technologies, Keysight DAQ970A Data Acquisition System User's Guide, 2020. [online] Available: https://www.keysight.com/tw/zh/assets/9018-04738/user-manuals/9018-04738.pdf.
[41]C. Elliott, V. Vijayakumar, W. Zink, and R. Hansen, "National Instruments LabVIEW: a programming environment for laboratory automation and measurement," Journal of The Association for Laboratory Automation, vol. 12, pp. 17-24, 2007. (10.1016/j.jala.2006.07.012).
[42]A. H. Robbins and W. C. Miller, Circuit Analysis: Theory and Practice. Clifton Park, NY, U.S.: Delmar Cengage Learning, 2003, ch. 10, pp. 384-415.
[43]E. Lemmon, I. Bell, M. Huber, and M. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0. Gaithersburg, MD, U.S.: National Institute of Standards and Technology, 2013.
[44]A. Jaworek and A. Krupa, "Gas/liquid ratio measurements by RF resonance capacitance sensor," Sensors and Actuators A: Physical, vol. 113, no. 2, pp. 133-139, 2004. (10.1016/j.sna.2004.02.006).
[45]W. B. Floriano and M. A. C. Nascimento, "Dielectric constant and density of water as a function of pressure at constant temperature," Brazilian Journal of Physics, vol. 34, no. 1, pp. 38-41, 2004. (10.1590/S0103-97332004000100006).
[46]J. Stranathan, "Dielectric constant of water vapor," Physical Review, vol. 48, no. 6, p. 538, 1935. (10.1103/PhysRev.48.538).
[47]J. M. C. Yunus A. Çengel, Robert H. Turner, Fundamentals of Thermal-Fluid Sciences, Boston, MA, U.S.: McGraw-Hill, 5th ed. 2016, ch.4, pp 111-149.
[48]A. Buck, "New equations for computing vapor pressure and enhancement factor," Journal of Applied Meteorology and Climatology, vol. 20, pp. 1527-1532, 1981. (10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2).
[49]J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd ed. Sausalito, CA, U.S.: University Science Books, 1982, pp 188-190.
[50]"Thermocouple types." Omega Engineering. https://www.omega.com/en-us/resources/thermocouple-types , Accessed April 20, 2021.
[51]P. Naphon and S. Wiriyasart, "Effect of sintering columns on the heat transfer and flow characteristics of the liquid cooling vapor chambers," Heat and Mass Transfer, vol. 52, no. 9, pp. 1807-1820, 2015. (10.1007/s00231-015-1699-8).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top