跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 06:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許喬暘
研究生(外文):Chiao-Yang Hsu
論文名稱:電動機車冷卻系統之散熱流道及熱管理策略能耗效率優化設計與探討
論文名稱(外文):A Study of Cooling Channel and Thermal Management Design Optimization of Cooling System for Electric Scooter
指導教授:鄭榮和
指導教授(外文):Jung-Ho Cheng
口試委員:劉霆蘇偉儁陳明彥
口試委員(外文):Tyng LiuWei-Jiun SuMing-Yen Chen
口試日期:2021-07-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:151
中文關鍵詞:複合動力機車冷卻系統散熱流道熱管理策略熱路模型最佳設計硬體在環測試模型在環模擬
外文關鍵詞:range-extended scootercooling systemthermal management strategythermal circuit modeldesign optimizationhardware-in-the-loopmodel-in-the-loop
DOI:10.6342/NTU202101800
相關次數:
  • 被引用被引用:1
  • 點閱點閱:362
  • 評分評分:
  • 下載下載:110
  • 收藏至我的研究室書目清單書目收藏:0
本研究以節省能源與提升效率為目標,將增程式複合動力機車之冷卻系統分為動力元件散熱流道設計與系統層級之熱管理策略建置,分別進行最佳化分析與能耗減量效益之探討,並提出一套完整之冷卻系統設計方法與流程。藉由探討目前文獻提出之設計方法,本研究彙整其優勢並改善其缺失之處,提出創新且合理之冷卻系統設計方法。依據此方法須具備之設計與評估工具,本研究建立了散熱流道有限體積模型、冷卻系統穩態及暫態數學模型。同時,本研究使用複合動力系統及冷卻系統之硬體在環(Hardware-in-the-Loop, HiL)測試平台,分別對數學模型進行驗證與探討誤差,確認設計與評估工具之可信度與合理性。針對散熱流道設計,本研究使用有限體積模型描述熱源、熱沉與流體之間的熱流狀態,並進行最佳化分析求解流道幾何與流率之最佳解,同時探討其能耗減量之效益;對於熱管理策略設計,本研究運用冷卻系統穩態及暫態模型進行策略規則之設計,並利用模型在環(Model-in-the-Loop, MiL)模擬方法針對特定之車輛測試路程進行策略規則的最佳化分析,同時探討策略運作之有效性及能耗減量之效益。本研究依據此設計方法完整的進行了冷卻系統之開發,確立了此設計方法之可行性與有效性。本研究提出之冷卻系統設計方法不局限於複合動力機車,此設計方法之理念能夠推廣至其他種類之車輛,甚至應用於車輛以外之機械或電子設備之冷卻系統設計。
With the purpose of saving energy and improving efficiency, this research presents the optimization analysis and study of energy consumption for the cooling system and thermal management strategies for the range-extended scooter. This thesis summarizes from literatures and existing studies to gather their advantages, also improving the shortcomings and proposes an innovative cooling system design method. Based on the essential design tools for this method, this thesis establishes mathematical models of the cooling channels and the whole cooling system using finite volume method (FVM) and thermal circuit method respectively. Then this research uses the hardware-in-the-loop (HiL) testbed of the hybrid system and the cooling system for mathematical models verification and to confirm the credibility and rationality of these design tools. In order to design the cooling channels, this research takes the FVM to describe the phenomena of heat transfer and the flow field and perform the optimization analysis to find the best geometry and flow rate for the cooling channels. Finally, we explore the benefits of energy reduction. For thermal management strategy design, we use mathematical model of the whole cooling system to design strategy rules, and perform the model-in-the-loop (MiL) simulation to optimize strategy rules for specific test cycle and finally investigate the effectiveness of the strategies and benefits of the energy reduction. The cooling system design method proposed in this research is not confined to range-extended scooters. The concept of this design method can be extended to other types of vehicles, and even applied to the cooling system design for other mechanical or electronic equipment.
誌謝 I
摘要 II
ABSTRACT III
圖目錄 VII
表目錄 XII
第一章 緒論 1
1.1 研究背景 1
1.1.1 電動車產業之興起 1
1.1.2 複合動力機車開發與系統最佳設計 2
1.2 研究動機 3
1.3 研究目標 4
1.4 論文架構與內容簡介 5
第二章 文獻回顧 6
2.1 電動車輛冷卻系統種類概述 6
2.1.1 空冷式冷卻系統 7
2.1.2 油冷式冷卻系統 7
2.1.3 水冷式冷卻系統 8
2.2 動力元件之散熱流道設計方法 8
2.2.1 針對動力元件溫度進行優化設計 9
2.2.2 綜合考慮流道流阻及熱源溫度之優化探討 10
2.2.3 針對散熱流道流阻進行優化設計 12
2.3 冷卻系統熱管理策略設計方法 16
2.3.1 動力系統保護策略 16
2.3.2 系統能耗優化策略 20
2.4 冷卻系統數學模型 24
2.4.1 熱損失模型 24
2.4.2 動力元件熱模型 28
2.5 小結 32
第三章 研究方法 34
3.1 電動機車冷卻系統設計方法 34
3.1.1 冷卻系統架構 34
3.1.2 冷卻系統設計方法 35
3.1.3 開發所需之數學模型工具 41
3.2 研究架構與流程 42
第四章 冷卻系統數學模型 44
4.1 動力元件散熱流道數學模型 44
4.1.1 前處理 44
4.1.2 求解器 50
4.1.3 後處理 57
4.2 冷卻系統暫態數學模型 57
4.2.1 模型運作方法與基本假設 58
4.2.2 動力元件熱路模型 60
4.2.3 動力元件熱源模型 62
4.2.4 散熱排熱路模型 64
4.2.5 水冷液熱傳模型 64
4.2.6 冷卻系統流阻與能耗評估 66
4.2.7 初始條件與邊界條件 67
4.3 冷卻系統穩態數學模型 68
4.3.1 穩態熱路模型架構與運作方法 69
4.3.2 動力元件熱路模型與水冷液熱傳模型 70
4.3.3 複合動力機車穩態操作區間 72
4.4 小結 73
第五章 實驗平台建立與數學模型驗證 74
5.1 冷卻系統實驗平台建立 74
5.1.1 實驗測試目的與方法 74
5.1.2 複合動力系統與冷卻系統HiL測試平台架構 76
5.1.3 冷卻系統實驗儀器 80
5.2 冷卻系統數學模型驗證內容與結果 90
5.2.1 穩態熱路模型 90
5.2.2 暫態熱路模型 94
第六章 動力元件散熱流道最佳設計與探討 100
6.1 散熱流道最佳設計流程 100
6.2 散熱性能評估 101
6.3 最佳設計順序訂定 103
6.4 散熱流道能耗最佳設計 104
6.4.1 PCU散熱流道 105
6.4.2 動力馬達散熱流道 106
6.4.3 最佳化分析流程與演算法 108
6.5 最佳化分析結果與探討 109
6.5.1 散熱流道最佳化分析過程探討 109
6.5.2 設計變數與目標函數之相關性分析 112
6.5.3 散熱流道最佳化結果與熱流特性探討 113
6.6 小結 117
第七章 熱管理策略設計與最佳化探討 119
7.1 動力系統保護策略 119
7.1.1 策略目標與運作方法 119
7.1.2 策略規則設計 122
7.1.3 策略模擬分析結果 126
7.2 系統能耗優化策略 129
7.2.1 策略目標與運作方法 129
7.2.2 策略規則最佳設計 131
7.2.3 最佳化分析結果與能耗優化探討 136
7.3 小結 141
第八章 結論與未來方向 143
8.1 研究成果與貢獻 143
8.2 未來改善與研究方向 144
參考文獻 145
[1]I. Burch and J. Gilchrist, "Survey of global activity to phase out internal combustion engine vehicles," Center of Climate Protection: Santa Rosa, CA, USA, 2018.
[2]F. Sioshansi and J. Webb, "Transitioning from conventional to electric vehicles: The effect of cost and environmental drivers on peak oil demand," Economic Analysis and Policy, vol. 61, pp. 7-15, 2019.
[3]International Council on Clean Transportation. "Growing momentum: Global overview of government targets for phasing out sales of new internal combustion engine vehicles." https://theicct.org/blog/staff/global-ice-phaseout-nov2020 (accessed June 26, 2021).
[4]EV volumes. "Global Plug-in Vehicle Sales Reached over 3,2 Million in 2020." https://www.ev-volumes.com/ (accessed June 26, 2021).
[5]楊承餘, "增程式複合動力機車之動力系統規格匹配暨硬體在環測試驗證與系統應用探討," 臺灣大學機械工程學研究所學位論文, 2021.
[6]李成之, "增程式複合動力機車之能量管理策略研究與HiL驗證及二氧化碳排放評估," 臺灣大學機械工程學研究所學位論文, 2021.
[7]M.-S. Kim, K.-S. Lee, and S. Um, "Numerical investigation and optimization of the thermal performance of a brushless DC motor," International Journal of Heat and Mass Transfer, vol. 52, no. 5-6, pp. 1589-1599, 2009.
[8]U. SanAndres, G. Almandoz, J. Poza, and G. Ugalde, "Design of cooling systems using computational fluid dynamics and analytical thermal models," IEEE Transactions on Industrial Electronics, vol. 61, no. 8, pp. 4383-4391, 2013.
[9]D. H. Lim and S. C. Kim, "Thermal performance of oil spray cooling system for in-wheel motor in electric vehicles," Applied Thermal Engineering, vol. 63, no. 2, pp. 577-587, 2014.
[10]K.-H. Lee, H.-R. Cha, and Y.-B. Kim, "Development of an interior permanent magnet motor through rotor cooling for electric vehicles," Applied Thermal Engineering, vol. 95, pp. 348-356, 2016.
[11]P. Lindh, I. Petrov, J. Pyrhönen, E. Scherman, M. Niemelä, and P. Immonen, "Direct liquid cooling method verified with a permanent-magnet traction motor in a bus," IEEE Transactions on Industry Applications, vol. 55, no. 4, pp. 4183-4191, 2019.
[12]Y. Zhang, Y. Shen, and W. Zhang, "Optimized design of the cooling system for an articulated dump truck's electric drive system," SAE Technical Paper, 0148-7191, 2010.
[13]H. Fujita, A. Itoh, and T. Urano, "Newly Developed Motor Cooling Method Using Refrigerant," World Electric Vehicle Journal, vol. 10, no. 2, p. 38, 2019.
[14]B. Zhang, R. Qu, X. Fan, and J. Wang, "Thermal and mechanical optimization of water jacket of permanent magnet synchronous machines for EV application," in 2015 IEEE International Electric Machines & Drives Conference (IEMDC), 2015: IEEE, pp. 1329-1335.
[15]K.-Y. Li, W.-J. Luo, and S.-J. Wei, "Machining accuracy enhancement of a machine tool by a cooling channel design for a built-in spindle," Applied Sciences, vol. 10, no. 11, p. 3991, 2020.
[16]P. R. Parida, S. V. Ekkad, and K. Ngo, "Multi-layer mini-channel and ribbed mini-channel based high performance cooling configurations for automotive inverters—Part A: Design and evaluation," Journal of Thermal Science and Engineering Applications, vol. 5, no. 3, 2013.
[17]T. Wang, B. Gu, P. Zhao, and C. Qian, "Numerical investigation of liquid cooling cold plate for power control unit in fuel cell vehicle," Microelectronics Reliability, vol. 55, no. 7, pp. 1077-1088, 2015.
[18]L. Cuiping, G. Zhengwei, L. Junhui, Z. Bing, and D. Xiucui, "Optimal design of cooling system for water cooling motor used for mini electric vehicle," in 2017 20th International Conference on Electrical Machines and Systems (ICEMS), 2017: IEEE, pp. 1-4.
[19]L. Cuiping, C. Feng, F. Xichao, and C. Shukang, "Optimization design and analysis of cooling system used for mini electric vehicle motor," in 2014 17th International Conference on Electrical Machines and Systems (ICEMS), 2014: IEEE, pp. 2413-2417.
[20]Z.-n. Ye, W.-d. Luo, W.-m. Zhang, and Z.-x. Feng, "Simulative analysis of traction motor cooling system based on CFD," in 2011 International Conference on Electric Information and Control Engineering, 2011: IEEE, pp. 746-749.
[21]楊傑, "應用電磁與熱傳模擬於電動車感應馬達改良設計," 臺灣大學機械工程學研究所學位論文, pp. 1-97, 2016.
[22]W. Li, X. Peng, M. Xiao, A. Garg, and L. Gao, "Multi‐objective design optimization for mini‐channel cooling battery thermal management system in an electric vehicle," International Journal of Energy Research, vol. 43, no. 8, pp. 3668-3680, 2019.
[23]A. Jarrett and I. Y. Kim, "Design optimization of electric vehicle battery cooling plates for thermal performance," Journal of Power Sources, vol. 196, no. 23, pp. 10359-10368, 2011.
[24]B. Ye, M. R. H. Rubel, and H. Li, "Design and optimization of cooling plate for battery module of an electric vehicle," Applied Sciences, vol. 9, no. 4, p. 754, 2019.
[25]J. Xu et al., "Modelling and control of vehicle integrated thermal management system of PEM fuel cell vehicle," Energy, vol. 199, p. 117495, 2020.
[26]M. Al Sakka, H. Gualous, J. Van Mierlo, and H. Culcu, "Thermal modeling and heat management of supercapacitor modules for vehicle applications," Journal of Power Sources, vol. 194, no. 2, pp. 581-587, 2009.
[27]A. Enthaler, T. Weustenfeld, F. Gauterin, and J. Koehler, "Thermal management consumption and its effect on remaining range estimation of electric vehicles," in 2014 International Conference on Connected Vehicles and Expo (ICCVE), 2014: IEEE, pp. 170-177.
[28]T. M. Padovani, M. Debert, G. Colin, and Y. Chamaillard, "Optimal energy management strategy including battery health through thermal management for hybrid vehicles," IFAC Proceedings Volumes, vol. 46, no. 21, pp. 384-389, 2013.
[29]Z. Rao, S. Wang, M. Wu, Z. Lin, and F. Li, "Experimental investigation on thermal management of electric vehicle battery with heat pipe," Energy Conversion and Management, vol. 65, pp. 92-97, 2013.
[30]J. Jeffs and T. Dinh, "Thermal Management of a High Performance Electric Motorcycle: Active vs Passive Cooling," in 2020 3rd International Conference on Power and Energy Applications (ICPEA), 2020: IEEE, pp. 180-185.
[31]S. Park and D. Jung, "Design of vehicle cooling system architecture for a heavy duty series-hybrid electric vehicle using numerical system simulations," Journal of Engineering for Gas Turbines and Power, vol. 132, no. 9, 2010.
[32]Zero Motorcycles Inc. "Zero Motorcycles Inc. Official Website." https://www.zeromotorcycles.com/model/zero-srf (accessed May 5, 2021).
[33]A. Y. Karnik, A. Fuxman, P. Bonkoski, M. Jankovic, and J. Pekar, "Vehicle powertrain thermal management system using model predictive control," SAE International Journal of Materials and Manufacturing, vol. 9, no. 3, pp. 525-533, 2016.
[34]A. K. Haghighat, S. Roumi, N. Madani, D. Bahmanpour, and M. G. Olsen, "An intelligent cooling system and control model for improved engine thermal management," Applied Thermal Engineering, vol. 128, pp. 253-263, 2018.
[35]J. Lescot, A. Sciarretta, Y. Chamaillard, and A. Charlet, "On the integration of optimal energy management and thermal management of hybrid electric vehicles," in 2010 IEEE vehicle power and propulsion conference, 2010: IEEE, pp. 1-6.
[36]X. Tao, K. Zhou, A. Ivanco, J. R. Wagner, H. Hofmann, and Z. Filipi, "A hybrid electric vehicle thermal management system-nonlinear controller design," SAE Technical Paper, 0148-7191, 2015.
[37]J. Huang et al., "A hybrid electric vehicle motor cooling system—design, model, and control," IEEE Transactions on Vehicular Technology, vol. 68, no. 5, pp. 4467-4478, 2019.
[38]D. Graovac, M. Purschel, and A. Kiep, "MOSFET power losses calculation using the data-sheet parameters," Infineon application note, vol. 1, pp. 1-23, 2006.
[39]Infineon Technologies. "N-Channel Power MOSFET 12V - 300V." https://www.infineon.com/cms/en/product/power/mosfet/12v-300v-n-channel-power-mosfet/ (accessed May 8, 2021).
[40]W. Tong, Mechanical design of electric motors. CRC press, 2014.
[41]R. Wrobel, D. E. Salt, A. Griffo, N. Simpson, and P. H. Mellor, "Derivation and scaling of AC copper loss in thermal modeling of electrical machines," IEEE Transactions on Industrial Electronics, vol. 61, no. 8, pp. 4412-4420, 2013.
[42]C. Debruyne et al., "Evaluation of the efficiency of line-start permanent-magnet machines as a function of the operating temperature," IEEE Transactions on Industrial Electronics, vol. 61, no. 8, pp. 4443-4454, 2013.
[43]Y. Yu, T.-Y. T. Lee, and V. A. Chiriac, "Compact thermal resistor-capacitor-network approach to predicting transient junction temperatures of a power amplifier module," IEEE Transactions on components, packaging and manufacturing technology, vol. 2, no. 7, pp. 1172-1181, 2012.
[44]H. Chen, B. Ji, V. Pickert, and W. Cao, "Real-time temperature estimation for power MOSFETs considering thermal aging effects," IEEE Transactions on Device and Materials Reliability, vol. 14, no. 1, pp. 220-228, 2013.
[45]K. Górecki and J. Zarebski, "Nonlinear compact thermal model of power semiconductor devices," IEEE Transactions on Components and Packaging Technologies, vol. 33, no. 3, pp. 643-647, 2010.
[46]M. Chen, H. Wang, D. Pan, X. Wang, and F. Blaabjerg, "Thermal characterization of silicon carbide mosfet module suitable for high-temperature computationally-efficient thermal-profile prediction," IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020.
[47]G. D. Demetriades, H. Z. De La Parra, E. Andersson, and H. Olsson, "A real-time thermal model of a permanent-magnet synchronous motor," IEEE Transactions on Power Electronics, vol. 25, no. 2, pp. 463-474, 2009.
[48]A. Boglietti, E. Carpaneto, M. Cossale, and S. Vaschetto, "Stator-winding thermal models for short-time thermal transients: Definition and validation," IEEE Transactions on Industrial Electronics, vol. 63, no. 5, pp. 2713-2721, 2015.
[49]ANSYS Inc., "ANSYS Fluent Theory Guide 15.0," ANSYS, Canonsburg, PA, vol. 33, 2013.
[50]P. M. Gerhart, A. L. Gerhart, and J. I. Hochstein, Fundamentals of fluid mechanics. Wiley, 2017.
[51]K. D. Hagen, Heat Transfer with Applications. Prentice Hall, 1999.
[52]Infineon Technologies. "Some key facts about avalanche infineon." https://www.infineon.com/cms/en/product/power/mosfet/#!documents (accessed June 1, 2021).
[53]S. V. Patankar and D. B. Spalding, "A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows," in Numerical prediction of flow, heat transfer, turbulence and combustion: Elsevier, 1983, pp. 54-73.
[54]T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine, Fundamentals of heat and mass transfer. John Wiley & Sons, 2011.
[55]J. W. Nilsson and S. A. Riedel, Electric circuits. Prentice Hall, 2011.
[56]W. Grega, "Hardware-in-the-loop simulation and its application in control education," in FIE'99 Frontiers in Education. 29th Annual Frontiers in Education Conference. Designing the Future of Science and Engineering Education. Conference Proceedings (IEEE Cat. No. 99CH37011, 1999, vol. 2: IEEE, pp. 12B6/7-12B612 vol. 2.
[57]林庭合, "應用於線控車輛之硬體在環驗證平台開發," 國立臺灣大學機械工程學研究所學位論文, 2020.
[58]P. Patil and S. Bhosale, "Review on Hardware-in-Loop simulation used to advance design efficiency and test competency," International Journal of Science and Research (IJSR), vol. 4, 2015.
[59]M. Gopal, Control systems: principles and design. Tata McGraw-Hill Education, 2002.
[60]Automotive Research & Testing Center. "機車第六期污染排放標準將於2017年實施." https://www.artc.org.tw/chinese/03_service/03_02detail.aspx?pid=3018 (accessed June 15, 2021).
[61]車輛能耗研究網站. "能源效率測試資料閱讀說明." https://auto.itri.org.tw/energy_efficiency_desc.aspx?fbclid=IwAR3waYUhOttdQoI8VLNpfiGfmFKl8ybBKOS5PNHVe99FAG1gFXR98S_LRr8 (accessed June 15, 2021).
[62]Automotive Research & Testing Center. "機車污染測試新趨勢─淺談WMTC測試方法之車輛分類." https://www.artc.org.tw/chinese/03_service/03_02detail.aspx?pid=1620 (accessed June 15, 2021).
[63]全國法規資料庫. "建築技術規則建築設計施工編." https://law.moj.gov.tw/LawClass/LawSingleRela.aspx?media=print&PCODE=D0070115&FLNO=139&ty=L (accessed June 17, 2021).
[64]全國法規資料庫. "道路交通安全規則." https://law.moj.gov.tw/LawClass/LawSingle.aspx?pcode=K0040013&flno=93 (accessed June 17, 2021).
[65]M. H. Shojaeefard, A. Khalkhali, and S. Yarmohammadisatri, "An efficient sensitivity analysis method for modified geometry of Macpherson suspension based on Pearson correlation coefficient," Vehicle System Dynamics, vol. 55, no. 6, pp. 827-852, 2017.
[66]M. Cardone, A. Senatore, D. Buono, M. Polcino, G. De Angelis, and P. Gaudino, "A Model for Application of Chen's Boiling Correlation to a Standard Engine Cooling System," SAE Technical Paper, 0148-7191, 2008.
[67]C. Han, "Lifetime evaluation of class E electrical insulation for small induction motors," IEEE Electrical Insulation Magazine, vol. 27, no. 3, pp. 14-19, 2011.
[68]A. Schneider. "GPS Visualizer." https://www.gpsvisualizer.com/elevation (accessed June 21, 2021).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top