跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 09:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾鉅翔
研究生(外文):Chu-Hsiang Tseng
論文名稱:延伸式簡支梁壓電能量採集器之設計與分析
論文名稱(外文):Design and Analysis of an Extended Simply Supported Beam Piezoelectric Energy Harvester
指導教授:蘇偉儁
指導教授(外文):Wei-Jiun Su
口試委員:舒貽忠陳蓉珊
口試委員(外文):Yi-Chung ShuJung-San Chen
口試日期:2021-07-09
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:90
中文關鍵詞:壓電能量採集器簡支梁應變分佈扭力彈簧軸向預力
外文關鍵詞:piezoelectric energy harvestersimply supported beamstrain distributiontorsion springaxial preload
DOI:10.6342/NTU202101197
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
傳統的壓電懸臂梁能量採集器末端位移大且應變分佈不均,相較之下,簡支梁則有更佳的應變分佈且端點位移也較小,但其卻有較高之共振頻率。本研究基於簡支梁提出一種延伸式簡支梁壓電能量採集器,在簡支梁上佈滿PVDF壓電片作為主梁,並使用滾軸及轉軸固定兩端點的側向位移,而在轉軸另外一端外加延伸梁和末端質量,透過延伸梁長度和末端質量調整共振頻率。本研究理論模型使用古典梁理論與壓電本構方程式作為基礎,在滾軸及轉軸外加扭力彈簧與主梁施加軸向預力,建立其理論模型,將無外加扭力彈簧與軸向預力的設計作為原型,使用不同延伸梁長度及基底激振加速度以實驗結果驗證,並透過改變理論模型中的扭力彈簧常數與軸向預力大小,討論各參數對延伸式簡支梁性能的影響。實驗結果顯示,在相同共振頻率的條件下,延伸梁長度越短,壓電片最大應變越大。模擬結果顯示,在相同共振頻率與壓電片最大應變一致的條件下,對主梁施加適當軸向預壓力,可以使其應變分佈更均勻。以延伸梁長度20 mm的延伸式簡支梁原型設計與懸臂梁的實驗結果相比,在相同加速度與共振頻率一致的條件下,由於延伸式簡支梁應變分佈較均勻,其輸出電壓較高,末端位移也較小,最大輸出功率可提升約86 %,末端位移可減少約63.2 %。
The conventional piezoelectric cantilever energy harvester has the disadvantages of large transverse displacement and low output voltage due to uneven strain distribution. In contrast, the simply supported beam has more even strain distribution and smaller transverse displacement. However, its resonance frequency is too high so the application is limited. Therefore, this study proposes an extended simply supported beam piezoelectric energy harvester. The proposed design is composed of a main beam and an extended beam. The main beam is a simply supported beam covered with PVDF and clamped by a roller and a pin. The extension beam is attached to the other side of the pin. The resonance frequency can be adjusted by tuning the length of extension beam and the tip mass which is installed at the end of the extension beam. In this study, the motion and circuit equations of the theoretical model is derived based on the Euler-Bernoulli beam theory and piezoelectric constitutive equation. In the theoretical model, torsion springs at the pin and roller and an axial preload are also considered to see their impact on the performance. Base excitation experiment is conducted to verify the theoretical model. In order to analyze the influences of torsion springs and the axial preload, this study performs a simulation by using different spring constants and axial preloads and compares the effects of various parameter changes. The experimental results show that the shorter extension beam brings the greater maximum central stain of PVDF when the resonance frequency is the same. The simulation results show that the strain distribution may be even when the axial pre-stress is applied to the main beam. Compared with the experimental results of cantilever piezoelectric energy harvester, the maximum output power of proposed harvester with extension length of 20 mm is improved by about 86 %, the maximum transverse displacement is decreased by about 63.2 % respectively.
口試委員會審定書 #
誌謝 i
摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 viii
符號表 ix
Chapter 1 序論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與方法 9
1.4 論文架構 10
Chapter 2 壓電能量採集理論 11
2.1 壓電效應 11
2.2 壓電本構方程式 13
2.3 線性壓電懸臂梁振動能量採集器模型 16
Chapter 3 線性延伸式簡支梁振動能量採集器模型 22
3.1 延伸式簡支梁之振動模型 22
3.2 延伸式簡支梁之電路模型 29
Chapter 4 實驗設計 32
4.1 原型設計 32
4.2 實驗設備 35
4.3 實驗流程 39
Chapter 5 結果驗證與討論 41
5.1 線性壓電懸臂梁驗證 41
5.2 線性延伸式簡支梁驗證 46
5.3 末端質量與延伸長度對於延伸式簡支梁的性能影響 53
5.3.1 末端質量和延伸長度對工作空間的影響 53
5.3.2 末端質量和延伸長度對應變分佈的影響 56
5.3.3 末端質量和延伸長度對輸出電壓的影響 58
5.4 扭力彈簧或軸向預力對於延伸式簡支梁的性能影響 60
5.4.1 在滾軸加入扭力彈簧對性能的影響 61
5.4.2 在轉軸加入扭力彈簧對性能的影響 64
5.4.3 在主梁施加軸向預拉力對性能的影響 67
5.4.4 在主梁施加軸向預壓力對性能的影響 70
5.5 延伸式簡支梁與壓電懸臂梁討論 73
Chapter 6 結論與未來展望 80
6.1 結論 80
6.2 未來展望 81
參考文獻 82
附錄 A 矩陣 之係數 85
附錄 B 矩陣 之行列式展開推導過程 87
[1]S. P. Beeby, M. J. Tudor, and N. White, "Energy harvesting vibration sources for microsystems applications," Measurement science and technology, vol. 17, no. 12, p. R175, 2006.
[2]A. Erturk, D. J. J. J. o. v. Inman, and acoustics, "A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters," vol. 130, no. 4, 2008.
[3]A. Erturk and D. J. Inman, "An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations," Smart Materials and Structures, vol. 18, no. 2, 2009.
[4]E. K. Reilly, F. Burghardt, R. Fain, and P. Wright, "Powering a wireless sensor node with a vibration-driven piezoelectric energy harvester," Smart Materials and Structures, vol. 20, no. 12, p. 125006, 2011.
[5]F. Goldschmidtboeing and P. Woias, "Characterization of different beam shapes for piezoelectric energy harvesting," Journal of micromechanics and microengineering, vol. 18, no. 10, p. 104013, 2008.
[6]J. M. Dietl and E. Garcia, "Beam shape optimization for power harvesting," Journal of Intelligent Material Systems and Structures, vol. 21, no. 6, pp. 633-646, 2010.
[7]S. Paquin and Y. St-Amant, "Improving the performance of a piezoelectric energy harvester using a variable thickness beam," Smart Materials and Structures, vol. 19, no. 10, p. 105020, 2010.
[8]A. Čeponis, D. Mažeika, and V. Bakanauskas, "Trapezoidal cantilevers with irregular cross-sections for energy harvesting systems," Applied sciences, vol. 7, no. 2, p. 134, 2017.
[9]Y. Liao and H. A. Sodano, "Optimal placement of piezoelectric material on a cantilever beam for maximum piezoelectric damping and power harvesting efficiency," Smart materials and structures, vol. 21, no. 10, p. 105014, 2012.
[10]M. Ferrari, V. Ferrari, M. Guizzetti, D. Marioli, and A. Taroni, "Piezoelectric multifrequency energy converter for power harvesting in autonomous microsystems," Sensors and Actuators A: Physical, vol. 142, no. 1, pp. 329-335, 2008.
[11]J.-Q. Liu et al., "A MEMS-based piezoelectric power generator array for vibration energy harvesting," Microelectronics Journal, vol. 39, no. 5, pp. 802-806, 2008.
[12]H. Xue, Y. Hu, and Q.-M. Wang, "Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 55, no. 9, pp. 2104-2108, 2008.
[13]S. Qi, R. Shuttleworth, S. O. Oyadiji, and J. Wright, "Design of a multiresonant beam for broadband piezoelectric energy harvesting," Smart Materials and Structures, vol. 19, no. 9, p. 094009, 2010.
[14]A. Erturk, J. M. Renno, and D. J. Inman, "Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs," Journal of intelligent material systems and structures, vol. 20, no. 5, pp. 529-544, 2009.
[15]X. Nie, T. Tan, Z. Yan, Z. Yan, and M. R. Hajj, "Broadband and high-efficient L-shaped piezoelectric energy harvester based on internal resonance," International Journal of Mechanical Sciences, vol. 159, pp. 287-305, 2019.
[16]Y. Cao, D. Cao, G. He, X. Ge, and Y. J. E. J. o. M.-A. S. Hao, "Vibration analysis and distributed piezoelectric energy harvester design for the L-shaped beam," vol. 87, p. 104214, 2021.
[17]M. O. Mansour, M. H. Arafa, and S. M. Megahed, "Resonator with magnetically adjustable natural frequency for vibration energy harvesting," Sensors and Actuators A: Physical, vol. 163, no. 1, pp. 297-303, 2010.
[18]W. Al-Ashtari, M. Hunstig, T. Hemsel, and W. Sextro, "Frequency tuning of piezoelectric energy harvesters by magnetic force," Smart Materials and Structures, vol. 21, no. 3, p. 035019, 2012.
[19]N. A. Aboulfotoh, M. H. Arafa, and S. M. Megahed, "A self-tuning resonator for vibration energy harvesting," Sensors and Actuators A: Physical, vol. 201, pp. 328-334, 2013.
[20]C. V. Karadag and N. Topaloglu, "A self-sufficient and frequency tunable piezoelectric vibration energy harvester," Journal of Vibration and Acoustics, vol. 139, no. 1, 2017.
[21]C. Gregg, P. Pillatsch, and P. Wright, "Passively self-tuning piezoelectric energy harvesting system," in Journal of Physics: Conference Series, 2014, vol. 557, no. 1, p. 012123: IOP Publishing.
[22]D. Zhao et al., "Analysis of single-degree-of-freedom piezoelectric energy harvester with stopper by incremental harmonic balance method," Materials Research Express, vol. 5, no. 5, p. 055502, 2018.
[23]A. Abdelkefi and N. Barsallo, "Comparative modeling of low-frequency piezomagnetoelastic energy harvesters," Journal of Intelligent Material Systems and Structures, vol. 25, no. 14, pp. 1771-1785, 2014.
[24]S. C. Stanton, C. C. McGehee, and B. P. Mann, "Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator," Physica D: Nonlinear Phenomena, vol. 239, no. 10, pp. 640-653, 2010.
[25]H.-X. Zou et al., "A broadband compressive-mode vibration energy harvester enhanced by magnetic force intervention approach," Applied Physics Letters, vol. 110, no. 16, p. 163904, 2017.
[26]A. Rajora, A. Dwivedi, A. Vyas, S. Gupta, and A. Tyagi, "Energy Harvesting Estimation from the Vibration of a Simply Supported Beam," International Journal of Acoustics & Vibration, vol. 22, no. 2, 2017.
[27]R. Patel, Y. Tanaka, S. McWilliam, H. Mutsuda, and A. A. Popov, "Simply-supported multi-layered beams for energy harvesting," Journal of Intelligent Material Systems and Structures, vol. 28, no. 6, pp. 740-759, 2017.
[28]I. D. Hamani, R. Tikani, H. Assadi, and S. J. M. Ziaei-Rad, "Energy harvesting from moving harmonic and moving continuous mass traversing on a simply supported beam," vol. 150, p. 107080, 2020.
[29]Y. Chen and Z. J. I. J. o. M. S. Yan, "Nonlinear analysis of axially loaded piezoelectric energy harvesters with flexoelectricity," vol. 173, p. 105473, 2020.
[30]C. Xu et al., "Bi-stable energy harvesting based on a simply supported piezoelectric buckled beam," Journal of Applied Physics, vol. 114, no. 11, p. 114507, 2013.
[31]Y. Zhu, J. Zu, and W. Su, "Broadband energy harvesting through a piezoelectric beam subjected to dynamic compressive loading," Smart Materials and Structures, vol. 22, no. 4, p. 045007, 2013.
[32]Z. Li, "Low-frequency Piezoelectric Energy Harvesting," University of Toronto (Canada), 2019.
[33]Z. Li, Z. Yang, and H. E. J. E. Naguib, "Introducing revolute joints into piezoelectric energy harvesters," vol. 192, p. 116604, 2020.
[34]Z. Li, H. E. J. S. M. Naguib, and Structures, "Effect of revolute joint mechanism on the performance of cantilever piezoelectric energy harvester," vol. 28, no. 8, p. 085043, 2019.
[35]Q.-M. Wang and L. E. Cross, "Constitutive equations of symmetrical triple layer piezoelectric benders," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 46, no. 6, pp. 1343-1351, 1999.
[36]Y. Liao, H. A. J. S. m. Sodano, and Structures, "Optimal parameters and power characteristics of piezoelectric energy harvesters with an RC circuit," vol. 18, no. 4, p. 045011, 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top