跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 09:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳冠融
研究生(外文):Guan-Rong Chen
論文名稱:以非接觸光學法量測血液流速並估算平均動脈壓
論文名稱(外文):Using non-contact optical method to measure blood flow velocity and estimate mean arterial pressure
指導教授:李世光李世光引用關係吳光鐘
指導教授(外文):Chih-Kung LeeKuang-Chong Wu
口試委員:黃君偉李翔傑李舒昇
口試委員(外文):Jiun-Woei HuangHsiang-Chieh LeeShu-Sheng Lee
口試日期:2021-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:96
中文關鍵詞:連續血壓量測血液流速平均動脈壓雷射都卜勒流速儀迴歸模型
外文關鍵詞:continuous blood pressure monitoringblood flow velocitymean arterial pressurelaser Doppler flowmetryregression model
DOI:10.6342/NTU202102251
相關次數:
  • 被引用被引用:1
  • 點閱點閱:394
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
目前最為廣泛的血壓量測方法為聽音診斷法及示波振幅法,這兩種方法於量測過程中均須使用脈壓袖帶以阻斷血流,過程中可能會造成受試者的不適且無法進行連續性地監控,故有許多研究致力於開發非接觸式的連續監控血壓方法,先前曾有研究透過材料力學及流體力學的觀點,推導出以血液體積流率、脈衝傳遞時間(Pulse Transit Time, PTT)、心率及血管管徑變化等作為參數之血壓迴歸模型,其中血液體積流率參數僅使用光體積描記法(Photoplethysmography, PPG)之波形斜率作為參考依據,因此本研究將使用非接觸光學方法進行人體血液流速之量測,並結合各項生理參數進行迴歸分析,期望使原始血壓迴歸模型更為完善。
本研究將使用光纖搭載環形器之雷射都卜勒流速儀(Laser Doppler Flowmetry, LDF)進行流速之量測,為了驗證光學系統可行性及都卜勒散射理論之正確性,於人體量測之前,預先進行管流流速量測實驗以簡化及模擬人體量測時之光學行為,透過分析干涉訊號之功率譜及計算結果得知,平均流速與其功率譜一次矩成正比關係,其結果與理論相符合。此外,由隨時間變化之流速分析結果可以得知此LDF具備了良好的相對流速快慢之分辨率,並可將其應用於人體血流量測。
於人體量測上除了LDF進行血液流速量測外,還另外搭配商用儀器量測心電圖(Electrocardiography, ECG)及 PPG,以獲取PTT及心率。將所量測到之各項生理參數代入使用血液流速參數之迴歸模型中以評估平均動脈壓(Mean Arterial Pressure, MAP),並與使用PPG波形斜率之迴歸模型進行比較與分析,經單一受試者和複數受試者迴歸後的統計結果顯示,使用血液流速之迴歸模型比起使用PPG波形斜率之迴歸模型具備了更好的預測能力,且於每位受試者之迴歸結果均為血液流速參數為影響MAP高低之主要因素,因此證明了使用血液流速資訊作為迴歸參數確實對於模型上有顯著的改善。
Nowadays, the most widely used blood pressure measurement methods are auscultatory method and oscillometric method. Both of these methods use cuff to occlude the blood flow during the measurement, which cause the subject to feel uncomfortable and cannot be monitored continuously. Therefore, many studies have proposed the development of non-contact continuous blood pressure monitoring methods. Previous studies have proposed a blood pressure regression model with parameters such as blood volume flow rate, pulse transit time (PTT), heart rate, and vessel diameter changes from the viewpoints of material mechanics and fluid mechanics. Among them, the blood volume flow rate only uses the slope of Photoplethysmography (PPG) waveform as the basis. Therefore, this study will use non-contact optical methods to measure the human blood flow velocity, and combined with the regression analysis of various physiological parameters. It is expected that the original blood pressure regression model can be improved.
In this study, a laser Doppler flowmetry (LDF) with a fiber and circulator will be used to measure the flow velocity. In order to verify the feasibility of the optical system and the correctness of the Doppler scattering theory, the pipe flow velocity measurement experiment is carried out to simplify and simulate the optical behavior of the human body before the human body measurement. By analyzing the power spectrum of the interference signal and the calculation results, it is known that the mean flow velocity is proportional to the first moment of the power spectrum. The experimental results are consistent with the theory. In addition, through the analysis results of the flow velocity over time, it can be known that this LDF has a good resolution of relative flow velocity and can be applied to human blood flow measurement.
In human body measurement, in addition to using LDF to measure the blood velocity, commercial instruments are also used to measure electrocardiography (ECG) and PPG to obtain PTT and heart rate. Combined these parameters into the regression model using the blood flow velocity to evaluate the mean arterial pressure (MAP), and compared with the regression model using the slope of PPG waveform. The statistical results show that the regression model using blood flow velocity has better predictive ability than the using slope of PPG waveform either in the results of single subject or multiple subjects regression results. Moreover, the blood flow velocity is the main factor that affects the level of MAP for each subject. In summary, using blood flow velocity as a regression parameter has a significant improvement on the model.
口試委員審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 ix
表目錄 xiii
第1章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 血壓的形成與量測方法 2
1.2.2 傳統流體量測技術 12
1.2.3 人體血流量測技術 14
1.2.4 人體生理訊號 20
1.3 研究方法及目標 23
1.4 論文架構 24
第2章 研究原理 25
2.1 散射現象 25
2.2 都卜勒效應 28
2.3 光學干涉原理 33
2.4 頻譜分析 34
2.4.1 功率譜 34
2.4.2 離散傅立葉轉換 36
2.4.3 快速傅立葉轉換 37
2.5 血壓迴歸模型與迴歸分析 39
2.5.1 血壓迴歸模型 39
2.5.2 迴歸分析 41
第3章 雷射都卜勒技術應用於不同量測情況之分析 46
3.1 位移平台振動速度量測實驗 46
3.1.1 位移平台實驗架設 46
3.1.2 振動速度量測實驗結果 47
3.2 管流流速量測實驗 50
3.2.1 實驗架設與元件 50
3.2.2 蠕動幫浦穩定性分析 52
3.2.3 光路調校 54
3.2.4 量測訊號處理流程 56
3.2.5 管流平均流速量測 57
3.2.6 隨時間變化之管流流速量測 61
第4章 雷射都卜勒流速儀之人體血流量測 66
4.1 人體血液流速量測光路架構 66
4.2 量測治具設計 67
4.3 人體量測實驗架設 69
4.4 人體血流與生理參數之量測結果 70
4.5 不同參數對於迴歸模型之分析與比較 72
4.5.1 單一受試者不同參數之迴歸模型比較與討論 73
4.5.2 複數受試者不同參數之迴歸模型比較與討論 78
第5章 結論與未來展望 86
5.1 結論 86
5.2 未來展望 87
參考文獻 88
[1]G. V. Research. "Home Healthcare Market Size, Share & Trends Analysis Report By Equipment (Therapeutic, Diagnostic), By Services (Skilled Home Healthcare Services, Unskilled Home Healthcare Services), By Region, And Segment Forecasts, 2020 - 2027." Grand View Research. https://www.grandviewresearch.com/industry-analysis/home-healthcare-industry (accessed May 9, 2021).
[2]World Health Organization. "The top 10 causes of death." World Health Organization. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed May 9, 2021).
[3]J. Sola et al., "Noninvasive and nonocclusive blood pressure estimation via a chest sensor," IEEE Transactions on Biomedical Engineering, vol. 60, no. 12, pp. 3505-3513, 2013.
[4]Y. Choi, Q. Zhang, and S. Ko, "Noninvasive cuffless blood pressure estimation using pulse transit time and Hilbert–Huang transform," Computers & Electrical Engineering, vol. 39, no. 1, pp. 103-111, 2013.
[5]T. Ma and Y.-T. Zhang, "A correlation study on the variabilities in pulse transit time, blood pressure, and heart rate recorded simultaneously from healthy subjects," in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 2006: IEEE, pp. 996-999.
[6]高育晟, "以相異位置PPG訊號間脈衝傳遞時間建立血壓量測模型," 碩士, 應用力學研究所, 國立臺灣大學, 台北市, 2020.
[7]T. G. Pickering et al., "Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research," Hypertension, vol. 45, no. 1, pp. 142-161, 2005.
[8]P. Kalita and R. Schaefer, "Mechanical models of artery walls," Archives of Computational Methods in Engineering, vol. 15, no. 1, pp. 1-36, 2008.
[9]C. A. Figueroa and J. D. Humphrey, "Pressure wave propagation in full-body arterial models: a gateway to exploring aging and hypertension," Procedia IUTAM, vol. 10, pp. 382-395, 2014.
[10]M. A. Weber et al., "Clinical practice guidelines for the management of hypertension in the community: a statement by the American Society of Hypertension and the International Society of Hypertension," Journal of hypertension, vol. 32, no. 1, pp. 3-15, 2014.
[11]A. V. Chobanian et al., "Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure," hypertension, vol. 42, no. 6, pp. 1206-1252, 2003.
[12]J. Booth, "A short history of blood pressure measurement," ed: SAGE Publications, 1977.
[13]F. W. Stahnisch, "Instrument transfer as knowledge transfer in neurophysiology: François Magendie's (1783–1855) early attempts to measure cerebrospinal fluid pressure," Journal of the History of the Neurosciences, vol. 17, no. 1, pp. 72-99, 2008.
[14]E. Balestrieri, P. Daponte, and S. Rapuano, "Open questions on unified approach for calibration of oscillometric blood pressure measurement devices," in 2009 IEEE International Workshop on Medical Measurements and Applications, 2009: IEEE, pp. 206-211.
[15]G. Drzewiecki, R. Hood, and H. Apple, "Theory of the oscillometric maximum and the systolic and diastolic detection ratios," Annals of biomedical engineering, vol. 22, no. 1, pp. 88-96, 1994.
[16]M. Forouzanfar, H. R. Dajani, V. Z. Groza, M. Bolic, S. Rajan, and I. Batkin, "Oscillometric blood pressure estimation: past, present, and future," IEEE reviews in biomedical engineering, vol. 8, pp. 44-63, 2015.
[17]T. Sato, M. Nishinaga, A. Kawamoto, T. Ozawa, and H. Takatsuji, "Accuracy of a continuous blood pressure monitor based on arterial tonometry," Hypertension, vol. 21, no. 6_pt_1, pp. 866-874, 1993.
[18]X. Teng and Y. Zhang, "Continuous and noninvasive estimation of arterial blood pressure using a photoplethysmographic approach," in Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439), 2003, vol. 4: IEEE, pp. 3153-3156.
[19]F. N. Van de Vosse and N. Stergiopulos, "Pulse wave propagation in the arterial tree," Annual Review of Fluid Mechanics, vol. 43, pp. 467-499, 2011.
[20]J. D. Lane, L. Greenstadt, D. Shapiro, and E. Rubinstein, "Pulse transit time and blood pressure: an intensive analysis," Psychophysiology, vol. 20, no. 1, pp. 45-49, 1983.
[21]L. Peter, N. Noury, and M. Cerny, "A review of methods for non-invasive and continuous blood pressure monitoring: Pulse transit time method is promising?," Irbm, vol. 35, no. 5, pp. 271-282, 2014.
[22]J. Penaz, "Instrument for indirect continuous recording of blood pressure," Cs. patent, vol. 133205, 1969.
[23]P. A. Obrist, K. C. Light, J. A. McCubbin, J. S. Hutcheson, and J. L. Hoffer, "Pulse transit time: Relationship to blood pressure," Behavior Research Methods & Instrumentation, vol. 10, no. 5, pp. 623-626, 1978.
[24]P. Fung, G. Dumont, C. Ries, C. Mott, and M. Ansermino, "Continuous noninvasive blood pressure measurement by pulse transit time," in The 26th annual international conference of the IEEE engineering in medicine and biology society, 2004, vol. 1: IEEE, pp. 738-741.
[25]M. Elgendi et al., "The use of photoplethysmography for assessing hypertension," NPJ digital medicine, vol. 2, no. 1, pp. 1-11, 2019.
[26]J. Proença, J. Muehlsteff, X. Aubert, and P. Carvalho, "Is pulse transit time a good indicator of blood pressure changes during short physical exercise in a young population?," in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010: IEEE, pp. 598-601.
[27]R. Mukkamala et al., "Toward ubiquitous blood pressure monitoring via pulse transit time: theory and practice," IEEE Transactions on Biomedical Engineering, vol. 62, no. 8, pp. 1879-1901, 2015.
[28]A. Jadooei, O. Zaderykhin, and V. Shulgin, "Adaptive algorithm for continuous monitoring of blood pressure using a pulse transit time," in 2013 IEEE XXXIII international scientific conference electronics and nanotechnology (ELNANO), 2013: IEEE, pp. 297-301.
[29]X. Ding, B. P. Yan, Y.-T. Zhang, J. Liu, N. Zhao, and H. K. Tsang, "Pulse transit time based continuous cuffless blood pressure estimation: A new extension and a comprehensive evaluation," Scientific reports, vol. 7, no. 1, pp. 1-11, 2017.
[30]H. Pitot, "Description d’une machine pour mesurer la vitesse des eaux courantes et le sillage des vaisseaux," Mémoires de L'Académie, 1732.
[31]L. V. King, "XII. On the convection of heat from small cylinders in a stream of fluid: Determination of the convection constants of small platinum wires with applications to hot-wire anemometry," Philosophical transactions of the royal society of London. series A, containing papers of a mathematical or physical character, vol. 214, no. 509-522, pp. 373-432, 1914.
[32]Y. Yeh and H. Cummins, "Localized fluid flow measurements with an He–Ne laser spectrometer," Applied Physics Letters, vol. 4, no. 10, pp. 176-178, 1964.
[33]A. Molki, L. Khezzar, and A. Goharzadeh, "Measurement of fluid velocity development in laminar pipe flow using laser Doppler velocimetry," European Journal of Physics, vol. 34, no. 5, p. 1127, 2013.
[34]C. Schugger and U. Renz, "Experimental investigation of the primary breakup zone of high pressure diesel sprays from multi-orifice nozzles," in 9 th International conference on liquid atomization and spray system, ICLASS, 2003.
[35]A. M. Rudolph and M. A. Heymann, "The circulation of the fetus in utero: methods for studying distribution of blood flow, cardiac output and organ blood flow," Circulation research, vol. 21, no. 2, pp. 163-184, 1967.
[36]O. A. Larsen, N. Lassen, and F. Quaade, "Blood flow through human adipose tissue determined with radioactive xenon," Acta physiologica Scandinavica, vol. 66, no. 3, pp. 337-345, 1966.
[37]C. Black, R. Clark, K. Darton, M. Goff, T. Norman, and H. Spikes, "A pyroelectric thermal imaging system for use in medical diagnosis," Journal of biomedical engineering, vol. 12, no. 4, pp. 281-286, 1990.
[38]A. Zontak, S. Sideman, O. Verbitsky, and R. Beyar, "Dynamic thermography: analysis of hand temperature during exercise," Annals of biomedical engineering, vol. 26, no. 6, pp. 988-993, 1998.
[39]A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," Journal of Cerebral Blood Flow & Metabolism, vol. 21, no. 3, pp. 195-201, 2001.
[40]J. W. Goodman, "Some effects of target-induced scintillation on optical radar performance," Proceedings of the IEEE, vol. 53, no. 11, pp. 1688-1700, 1965.
[41]T. Sugiyama, M. Araie, C. E. Riva, L. Schmetterer, and S. Orgul, "Use of laser speckle flowgraphy in ocular blood flow research," Acta ophthalmologica, vol. 88, no. 7, pp. 723-729, 2010.
[42]W. Wongsaroj, A. Hamdani, N. Thong-Un, H. Takahashi, and H. Kikura, "Ultrasonic Measurement of Velocity Profile on Bubbly Flow Using a Single Resonant Frequency," in Multidisciplinary Digital Publishing Institute Proceedings, 2018, vol. 2, no. 8, p. 549.
[43]P. Hoskins, "Haemodynamics and blood flow measured using ultrasound imaging," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 224, no. 2, pp. 255-271, 2010.
[44]R. Bonner and R. Nossal, "Model for laser Doppler measurements of blood flow in tissue," Applied optics, vol. 20, no. 12, pp. 2097-2107, 1981.
[45]A. Lima and J. Bakker, "Noninvasive monitoring of peripheral perfusion," Applied physiology in intensive care medicine, pp. 131-141, 2006.
[46]V. Rajan, B. Varghese, T. G. van Leeuwen, and W. Steenbergen, "Review of methodological developments in laser Doppler flowmetry," Lasers in medical science, vol. 24, no. 2, pp. 269-283, 2009.
[47]S.-H. Liu, R.-X. Li, J.-J. Wang, W. Chen, and C.-H. Su, "Classification of photoplethysmographic signal quality with deep convolution neural networks for accurate measurement of cardiac stroke volume," Applied Sciences, vol. 10, no. 13, p. 4612, 2020.
[48]P.-Y. Chiang et al., "Machine learning classification for assessing the degree of stenosis and blood flow volume at arteriovenous fistulas of hemodialysis patients using a new photoplethysmography sensor device," Sensors, vol. 19, no. 15, p. 3422, 2019.
[49]T. R. Dawber, H. E. THomas Jr, and P. M. McNamara, "Characteristics of the dicrotic notch of the arterial pulse wave in coronary heart disease," Angiology, vol. 24, no. 4, pp. 244-255, 1973.
[50]S. C. Millasseau, J. M. Ritter, K. Takazawa, and P. J. Chowienczyk, "Contour analysis of the photoplethysmographic pulse measured at the finger," Journal of hypertension, vol. 24, no. 8, pp. 1449-1456, 2006.
[51]陳偉光、王泰鴻, 深知你心:心臟檢查面面觀. 知出版有限公司, 2007.
[52]C. A. SENSORS. "12-Lead ECG Placement Guide with Illustrations." CABLES AND SENSORS. https://www.cablesandsensors.com/pages/12-lead-ecg-placement-guide-with-illustrations#1 (accessed Jun 1, 2021).
[53]A. Gacek, "An introduction to ECG signal processing and analysis," in ECG Signal Processing, Classification and Interpretation: Springer, 2012, pp. 21-46.
[54]H. E. Redmond, K. D. Dial, and J. E. Thompson, "Light scattering and absorption by wind blown dust: Theory, measurement, and recent data," Aeolian Research, vol. 2, no. 1, pp. 5-26, 2010.
[55]C. Bohren, D. Huffman, and Z. Kam, "Book-review-absorption and scattering of light by small particles," Nature, vol. 306, no. 5943, p. 625, 1983.
[56]C. Doppler, Über das farbige Licht der Doppelsterne. 1903.
[57]J. Lequeux, "The Doppler-Fizeau effect," in Hippolyte Fizeau: EDP Sciences, 2021, pp. 27-44.
[58]P. F. d. A. Tafner, F. K. Chen, R. Rabello Filho, T. D. Corrêa, R. C. d. F. Chaves, and A. Serpa Neto, "Recent advances in bedside microcirculation assessment in critically ill patients," Revista Brasileira de terapia intensiva, vol. 29, no. 2, pp. 238-247, 2017.
[59]A. P. Shepherd and P. Å. Öberg, Laser-Doppler blood flowmetry. Springer Science & Business Media, 2013.
[60]祁忠勇. "FFT與訊號處理簡介." 中央研究院 數學傳播 十八卷四期. https://web.math.sinica.edu.tw/math_media/d184/18403.pdf (accessed Jul 19, 2021).
[61]R. Klabunde, Cardiovascular physiology concepts. Lippincott Williams & Wilkins, 2011.
[62]王俊雄, "基於小波函數解析之創新光學系統研究與開發:光子都卜勒干涉儀及生理訊號量測," 博士, 應用力學研究所, 國立臺灣大學, 台北市, 2020.
[63]R. Seeley, T. Stephens, and P. Tate, "Anatomy and Physiology, edn," Mosby College, 1995.
[64]A. R. Dyer et al., "Pulse pressure—III. Prognostic significance in four Chicago epidemiologic studies," Journal of chronic diseases, vol. 35, no. 4, pp. 283-294, 1982.
[65]G. F. Mitchell et al., "Sphygmomanometrically determined pulse pressure is a powerful independent predictor of recurrent events after myocardial infarction in patients with impaired left ventricular function," Circulation, vol. 96, no. 12, pp. 4254-4260, 1997.
[66]周先樂, 人體生理學. 藝軒圖書出版社, 2001.
[67]K. Nishihara et al., "Development of a wireless sensor for the measurement of chicken blood flow using the laser Doppler blood flow meter technique," IEEE Transactions on Biomedical Engineering, vol. 60, no. 6, pp. 1645-1653, 2013.
[68]D. Kernick, J. Tooke, and A. Shore, "The biological zero signal in laser Doppler fluximetry–origins and practical implications," Pflügers Archiv, vol. 437, no. 4, pp. 624-631, 1999.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top