跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/07 17:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:安巴嵐
研究生(外文):Balamurugan Ananthakrishnan
論文名稱:灼燒牡蠣殼消毒動力學及雨水回收抑菌裝置設計應用
論文名稱(外文):Disinfection Kinetics and Development of a Treatment Module Using Heated Oyster Shell Particles for Microbial Inactivation in Rainwater Harvesting Systems
指導教授:童心欣
指導教授(外文):Hsin-Hsin Tung
口試委員:于昌平林居慶陳俊堯江殷如
口試委員(外文):Chang-Ping YuChu-Ching LinChun-Yao ChenYin-Ru Chiang
口試日期:2020-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:英文
論文頁數:105
中文關鍵詞:低衝擊開發(LID)雨水收集系統(RWH)雨水直接處理程序灼燒牡蠣殼顆粒(HOSP)氧化鈣抑菌能力Ct消毒
外文關鍵詞:Low Impact Development (LID)Rainwater Harvesting (RWH) systemsmicrobial quality of rainwaterdirect rainwater treatmentheated oyster shell particles (HOSP)calcium oxideantimicrobial propertyCt disinfection
DOI:10.6342/NTU202003414
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雨水收集系統(RWH)容易受到各種來源的汙染,對於雨水收集系統中的水質造成負面影響,進而影響到用戶的使用意願。研究指出雨水收集系統中的污染很大一部分是屬於生物性污染,包括對人體有害之有活性或不具活性之致病菌,但以目前的傳統消毒技術在有效性、成本和操作維護上並不足有效地應用於雨水收集系統中,並有可能產生對人體有害之消毒副產物。有鑑於上述限制,本研究將以低衝擊開發(LID)的方式,探討以灼燒之牡蠣殼(HOSP)顆粒來取代傳統的直接消毒技術,評估其對於抑制雨水收集系統中微生物生長的能力,本研究主要包含三部分,一是比較牡蠣殼灼燒前處理之相關條件對於殺菌能力的影響,二是在可控的批次式反應裝置下探討灼燒牡蠣殼顆粒的消毒動力速率,最後,則是以灼燒牡蠣殼顆粒作為材料,設計開發雨水回收抑制裝置,並在實驗室條件下評估其可行性與消毒能力。
牡蠣殼之灼燒溫度、灼燒牡蠣殼顆粒使用劑量及接觸時間等參數,在文獻中被認為對於抑制孢子生長能力有著顯著地影響,但在本研究中發現不同灼燒溫度的牡蠣殼顆粒抑菌能力並沒有顯著地改變,表示牡蠣殼中的碳酸鹽化合物物質在高溫下會迅速地轉化成氧化物。由批次式實驗的結果發現灼燒牡蠣殼顆粒之劑量與接觸時間,這兩項參數對於批次式系統中抑制微生物生長的能力有所影響,與牡蠣殼中CaO經過水合反應所產生的Ca(OH)2,能夠有效地抑制枯草桿菌孢子的生長。灼燒之牡蠣殼顆粒抑制細菌與病毒生長的能力優於枯草桿菌孢子,研究結果顯示在少於孢子達到3-log抑制效果的牡蠣殼劑量下,即可以完全地抑制細菌及病毒的生長。此外,在250~300小時的接觸實驗下發現灼燒牡蠣殼顆粒之殺菌能力為非線性並會自然地減少,消毒反應動力學近似於Hom’s model。在實驗室環境下研究灼燒牡蠣殼顆粒所開發之裝置實際應用於雨水回收可行性之結果顯示,在低流速及低灼燒牡蠣殼顆粒劑量條件下,使用本研究所開發之雨水回收裝置抑制微生物生長的能力與先前批次式的實驗結果相同。
Rainwater harvesting (RWH) systems are prone to contamination from various sources. Numerous studies have reported on the impact of these contaminants on the quality of rainwater harvested in RWH systems and their ensuing effects on the end user. It is also well documented that a significant portion of these contaminants are biological in nature, which comprise of sizeable fraction of viable and non-viable forms of pathogenic microorganisms capable of causing disease in living beings. Conventional disinfection techniques that treat such contaminants in the harvesting systems are often inadequate in one or more aspects of effectiveness, cost, operation, maintenance, or the production of harmful by-products that are detrimental to human health. In view of these limitations, and in a strategic effort to adopt Low Impact Development (LID) solutions to improve the microbial quality of rainwater contained in RWH storage systems, this study attempts an alternate direct disinfection setup for RWH systems by exploring and exploiting the disinfection potency of heated oyster shell particles (HOSP) against microbes in the harvested rainwater. The study demonstrates this idea in parts, by i) Studying the relative effects of key parameters for oyster shell heat activation and treatment conditions on the disinfection efficiency in aqueous system, ii) Determination of disinfection kinetics of HOSP in aqueous system in controlled batch setup for the purpose of application in disinfection, iii) Designing and developing a simple prototype for a direct rainwater contacting module integrating the heat activated oyster shell compound, i) Finally, a lab-scale controlled operation of the treatment module loaded with HOSP is performed to assess its function and disinfection efficacy.
Key factors such as oyster shell baking temperature, HOSP treatment dosage and contact time in aqueous medium were observed to have significant influence on the sporicidal effect, consistent with prior studies on sea shells of comparable origin. Whereas, the effect of oyster shell baking time was identified to be insignificant in comparison, indicating that the rate of conversion of the carbonate compound in the shell material to oxide occurs rapidly at high calcination temperatures. From the effect of HOSP dosage and contact time on the microbicidal effect in batch system, it is understood that soluble compounds resulting from hydration of CaO, i.e. Ca(OH)2, in the treated medium affect B. subtilis spore survival significantly. Vegetative cells of bacteria and viral forms were highly sensitive to HOSP compared to spore form of bacteria. Results showed that complete inactivation of virus and vegetative forms of bacteria were attained rather quickly at HOSP doses at least a magnitude less compared to what was normally applied to achieve 3-log inactivation of spore forms of bacteria. Furthermore, sporicidal effect over a prolonged contact time of 250-300 hours was identified to be nonlinear and decelerating in nature, where Hom’s model of disinfection offered the closest fit compared to other non-linear models of disinfection kinetics such as Modified Chick-Watson or Collin Selleck’s. In the last part, feasibility for rainwater treatment using HOSP loaded treatment module was studied under controlled operational setup. The discharged quantity of the disinfectant and the corresponding disinfection rate observed at lower flow rates through the prototype correspond with the rate of inactivation at low dosage in batch test in the same test medium, indicating operational consistency.
ACKNOWLEDGEMENT................................................................................................ I
ABSTRACT (CHINESE) ............................................................................................... II
ABSTRACT (ENGLISH) .............................................................................................. IV
TABLE OF CONTENTS ............................................................................................... VI
LIST OF FIGURES ......................................................................................................... X
LIST OF TABLES ....................................................................................................... XIII
LIST OF ABBREVIATIONS ....................................................................................... XV
CHAPTER 1: INTRODUCTION ..................................................................................... 1
1.1 Background .............................................................................................. 1
1.2 Aim and objectives of the study ............................................................... 2
1.2.1 Objectives ..................................................................................... 2
1.2.2 Specific aims ................................................................................ 2
1.3 Knowledge gaps in current practices ........................................................ 3
1.4 Problem statement .................................................................................... 3
1.5 Novelty of study ....................................................................................... 4
1.6 Strength and weakness of study ................................................................ 4
1.7 Expected outcomes ................................................................................... 5
CHAPTER 2: LITERATURE REVIEW .......................................................................... 6
2.1 Water resources in Taiwan ....................................................................... 6
2.2 Biological contaminants in rainfall, contamination of RWH systems, and
the potential hazard to humans ................................................................. 6
2.3 Measures to control contamination in RWH systems ............................... 7
2.4 Calcined sea shells as disinfectant .......................................................... 10
CHAPTER 3: MATERIALS AND METHODS ............................................................. 14
3.1 Schematic framework of study ............................................................... 14
3.2 Preparation of materials for study ........................................................... 15
3.2.1 Pre-processing raw oyster shells for tests and storage ................ 15
3.2.2 Preparation of standard Escherichia coli test culture .................. 16
3.2.3 Preparation of standard Bacillus subtilis endospore stock .......... 17
3.2.4 Cultivation of standard MS2 Bacteriophage stock and phage
potency assay .............................................................................. 18
3.2.5 Phosphate Buffered Saline solution ............................................ 19
3.2.6 Nutrient media ............................................................................ 19
3.2.7 Luria Bertani (LB) media ........................................................... 20
3.2.8 Synthetic rainwater .................................................................... 20
3.3 Measurement of physical parameters ...................................................... 21
3.3.1 pH ............................................................................................... 21
3.3.2 Dissolved calcium metal ............................................................. 21
3.4 Relative effects of oyster shell heat activation and treatment conditions on
the microbicidal efficacy ........................................................................ 21
3.4.1 Test conditions and experimental design for Phosphate Buffered
Saline medium ............................................................................ 22
3.4.2 Test conditions and experimental design for rainwater medium
spiked with test organism ........................................................... 24
3.5 Disinfection kinetic study and determination of Ct values for HOSP .... 24
3.5.1 Effect of HOSP dosage and time on the inactivation capacity .... 24
3.5.2 Determination of inactivation kinetics of HOSP ......................... 26
3.6 Design of prototype for direct rainwater treatment with HOSP and
estimation of operational conditions for optimum microbial inactivation
................................................................................................................ 28
3.6.1 Design and development of prototype ........................................ 28
3.6.2 Disinfection tests using prototype ............................................... 29
CHAPTER 4: RESULTS AND DISCUSSION .............................................................. 32
4.1 Relationship between oyster shell heat activation and treatment conditions
on the microbial inactivation efficacy ..................................................... 32
4.1.1 In Phosphate-Buffered Saline medium ....................................... 32
4.1.2 In rainwater medium ................................................................... 41
4.2 Disinfection kinetics and estimation of disinfection Ct for HOSP ......... 51
4.2.1 Effect of HOSP dosage and treatment time on the microbicidal rate
.................................................................................................... 51
(i) PBS medium spiked with B. subtilis endospores ............ 51
(ii) Rainwater medium spiked with B. subtilis endospores ... 55
(iii) PBS medium spiked with E. coli K12 vegetative cells ... 59
(iv) Rainwater medium spiked with E. coli K12 vegetative cells
........................................................................................ 60
(v) PBS medium spiked with MS2 bacteriophage ................ 61
(vi) Rainwater medium spiked with MS2 bacteriophage ....... 62
4.2.2 Disinfection kinetics in phosphate-buffered saline medium spiked
with B. subtilis endospores ......................................................... 63
4.2.3 Disinfection kinetics in rainwater medium spiked with B. subtilis
endospores .................................................................................. 65
4.2.4 Effect of solute composition ....................................................... 66
4.3 Prototype design for direct rainwater treatment with HOSP and
estimation of operational conditions for optimum efficiency ................. 68
4.3.1 Design and development of prototype ........................................ 68
(i) Disinfectant .................................................................... 68
(ii) Disinfectant holding/shielding component ..................... 69
(iii) Rainwater channeling component .................................. 69
(iv) Housing unit ................................................................... 70
(v) Function and operation ................................................... 74
4.3.2 Disinfection tests using prototype ............................................... 77
(i) Reservoir dimensions and theoretical retention time ...... 77
(ii) Rainwater treatment using prototype and disinfection
kinetics - Sporicidal effect in batch system ..................... 79
(iii) HOSP dosage estimate in treated water .......................... 80
(iv) Disinfection rates ............................................................ 81
(v) Effect of retention times on disinfection rate .................. 82
CHAPTER 5: CONCLUSION AND SUGGESTIONS .................................................. 83
5.1 Summary ................................................................................................ 83
5.2 Suggestions and future work ................................................................... 85
REFERENCES ............................................................................................................... 87
ANNEXURE .................................................................................................................. 98
ACGIH, American Conference of Governmental Industrial Hygienists. Guidelines for the assessment of bioaerosols in the indoor environment. Ohio: ACGIH, Cincinnati; 1999.
Adler, I., Hudson-Edwards, K. A., & Campos, L. C. (2011). Converting rain into drinking water: quality issues and technological advances. Water Science and Technology: Water Supply, 11(6), 659-667.
Ahmed, W., Brandes, H., Gyawali, P., Sidhu, J. P. S., & Toze, S. (2014). Opportunistic pathogens in roof-captured rainwater samples, determined using quantitative PCR. Water Research, 53, 361-369.
Ahmed, W., Gardner, T., & Toze, S. (2011). Microbiological quality of roof-harvested rainwater and health risks: a review. Journal of Environmental Quality, 40(1), 13-21.
Ahmed, W., Goonetilleke, A., & Gardner, T. (2010). Implications of fecal indicator bacteria for the microbiological assessment of roof-harvested rainwater quality in Southeast Queensland, Australia. Canadian Journal of Microbiology, 56(6), 471-479.
Albrecht, A., Witzenberger, R., Bernzen, U., & Jackel, U. (2007). Detection of airborne microbes in a composting facility by cultivation based and cultivation-independent methods. Annals of Agricultural and Environmental Medicine, 14(1).
American Public Health Association, American Water Works Association, Water Pollution Control Federation, & Water Environment Federation. (2017). Standard methods for the examination of water and wastewater. American Public Health Association.
Amin, M. T., Alazba, A. A., Amin, M. N., & Han, M. Y. (2014). Cost-effective and sustainable solutions to enhance the solar disinfection efficiency improving the microbiological quality of rooftop-harvested rainwater. Desalination and Water Treatment, 52(28-30), 5252-5263.
Amin, M. T., Nawaz, M., Amin, M. N., & Han, M. (2014). Solar disinfection of Pseudomonas aeruginosa in harvested rainwater: a step towards potability of rainwater. PLoS one, 9(3), e90743.
Azzellino, A., Antonelli, M., Canziani, R., Malpei, F., Marinetti, M., & Nurizzo, C. (2011). Multivariate modelling of disinfection kinetics: A comparison among three different disinfectants. Desalination and Water Treatment, 29(1-3), 128-139.
Bae, D. H., Yeon, J. H., Park, S. Y., Lee, D. H., & Ha, S. D. (2006). Bactericidal effects of CaO (scallop-shell powder) on foodborne pathogenic bacteria. Archives of Pharmacal Research, 29(4), 298-301.
Bae, S., Maestre, J. P., Kinney, K. A., & Kirisits, M. J. (2019). An examination of the microbial community and occurrence of potential human pathogens in rainwater harvested from different roofing materials. Water Research, 159, 406-413.
Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F., & Puxbaum, H. (2002). The contribution of bacterial and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmospheric Research, 64(1-4), 109-119.
Cheng, C. L., & Liao, W. J. (2011, December). Current situation and sustainability of water resource in Taiwan. In Proceedings of 1st Asian Water Saving Council Conference (Vol. 141148).
Crittenden, J. C., & Harza, B. M. W. (2005). Water treatment: principles and design. John Wiley & Sons.
De Kwaadsteniet, M., Dobrowsky, P. H., Van Deventer, A., Khan, W., & Cloete, T. E. (2013). Domestic rainwater harvesting: microbial and chemical water quality and point-of-use treatment systems. Water, Air, & Soil Pollution, 224(7), 1629.
Despins, C., Farahbakhsh, K., & Leidl, C. (2009). Assessment of rainwater quality from rainwater harvesting systems in Ontario, Canada. Journal of Water Supply: Research and Technology-Aqua, 58(2), 117-134.
Freeman, B. A., & Crapo, J. D. (1982). Biology of disease: free radicals and tissue injury. Laboratory investigation; a journal of technical methods and pathology, 47(5), 412.
Grabow, W. O., Middendorff, I. G., & Basson, N. C. (1978). Role of lime treatment in the removal of bacteria, enteric viruses, and coliphages in a wastewater reclamation plant. Applied and Environmental Microbiology, 35(4), 663-669.
Ha, S. A., Kim, I. S., Son, K. S., & Wang, J. P. (2013). Development of rainwater purification and reclaimed water treatment systems using a high-efficiency air-cooled ozone generator. In Applied Mechanics and Materials (Vol. 423, pp. 1383-1387). Trans Tech Publications.
Hamilton, K. A., Ahmed, W., Palmer, A., Smith, K., Toze, S., & Haas, C. N. (2017). Seasonal assessment of opportunistic premise plumbing pathogens in roof-harvested rainwater tanks. Environmental Science & Technology, 51(3), 1742-1753.
Hewitt, C. J., Bellara, S. R., Andreani, A., Nebe-von-Caron, G., & McFarlane, C. M. (2001). An evaluation of the anti-bacterial action of ceramic powder slurries using multi-parameter flow cytometry. Biotechnology Letters, 23(9), 667-675.
Hijikata, N., Tezuka, R., Kazama, S., Otaki, M., Ushijima, K., Ito, R., ... & Funamizu, N. (2016). Bactericidal and virucidal mechanisms in the alkaline disinfection of compost using calcium lime and ash. Journal of Environmental Management, 181, 721-727.
Hou, M., Chu, W., Wang, F., Deng, Y., Gao, N., & Zhang, D. (2018). The contribution of atmospheric particulate matter to the formation of CX3R-type disinfection by-products in rainwater during chlorination. Water Research, 145, 531-540.
Hsu, S. K. (1995). Shortage indices for water-resources planning in Taiwan. Journal of Water Resources Planning and Management, 121(2), 119-131.
Huh, J. H., Choi, Y. H., Lee, H. J., Choi, W. J., Ramakrishna, C., Lee, H. W., ... & Ahn, J. W. (2016). The use of oyster shell powders for water quality improvement of lakes by algal blooms removal. Journal of the Korean Ceramic Society, 53(1), 1-6.
Hwang, C. C., & Weng, C. H. (2017). Key factors contributing to simultaneous nitrification-denitrification in a biological aerated filter system using oyster shell medium. Environment Protection Engineering, 43(1).
Hwang, B. F., Jaakkola, J. J., & Guo, H. R. (2008). Water disinfection by-products and the risk of specific birth defects: a population-based cross-sectional study in Taiwan. Environmental Health, 7(1), 23.
Idris, M. A., Hammed, A., Jami, S., & Jamal, P. (2006). Multivariate regression analysis of disinfection kinetics using Moringa oleifera defatted seed extract.
Jordan, F. L., Seaman, R., Riley, J. J., & Yoklic, M. R. (2008). Effective removal of microbial contamination from harvested rainwater using a simple point of use filtration and UV-disinfection device. Urban Water Journal, 5(3), 209-218.
Kaushik, R., & Balasubramanian, R. (2012a). Assessment of bacterial pathogens in fresh rainwater and airborne particulate matter using Real-Time PCR. Atmospheric Environment, 46, 131-139.
Kaushik, R., Balasubramanian, R., & Armah, A. (2012b). Influence of air quality on the composition of microbial pathogens in fresh rainwater. Appl. Environ. Microbiol., 78(8), 2813-2818.
Kaushik, R., Balasubramanian, R., & Dunstan, H. (2014). Microbial quality and phylogenetic diversity of fresh rainwater and tropical freshwater reservoir. PLoS One, 9(6), e100737.
King, A. D., Bayne, H. G., & Alderton, G. (1979). Nonlogarithmic death rate calculations for Byssochlamys fulva and other microorganisms. Applied and Environmental Microbiology, 37(3), 596-600.
Kubo, M., Ohshima, Y., Irie, F., Kikuchi, M., & Sawai, J. (2013). Disinfection treatment of heated scallop-shell powder on biofilm of Escherichia coli ATCC 25922 surrogated for E. coli O157: H7. Journal of Biomaterials and Nanobiotechnology, 4(04), 10.
Lambert, R. J. W., & Johnston, M. D. (2000). Disinfection kinetics: a new hypothesis and model for the tailing of log‐survivor/time curves. Journal of Applied Microbiology, 88(5), 907-913.
Lange, J. L., Thorne, P. S., & Lynch, N. (1997). Application of flow cytometry and fluorescent in situ hybridization for assessment of exposures to airborne bacteria. Appl. Environ. Microbiol., 63(4), 1557-1563.
Lee, Y. J., & Nam, S. H. (2002). Reflection on kinetic models to the chlorine disinfection for drinking water production. The Journal of Microbiology, 40(2), 119-124.
Letardi, P., Barat, B. R., & Cano, E. (2017, September). Analysis of the influence of the electrochemical cell setup for corrosion measurements on metallic cultural heritage. In European Corrosion Congress-EUROCORR, Prague.
Lighthart, B. (2000). Mini-review of the concentration variations found in the alfresco atmospheric bacterial populations. Aerobiologia, 16(1), 7-16.
Lopez, J. (2014). Progress in large-scale ozone generation using microplasmas. In Complex Plasmas (pp. 427-453). Springer, Cham.
Mansoor Ahammed, M., Dave, S., & Nair, A. T. (2015). Effect of water quality parameters on solar water disinfection: a statistical experiment design approach. Desalination and Water Treatment, 56(2), 315-326.
Martin, T. D., Brockhoff, C. A., Creed, J. T., & Long, S. E. (1992). Determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry. Methods for the Determination of Metals in Environmental Samples, 33-91.
Mendonca, A. F., Amoroso, T. L., & Knabel, S. J. (1994). Destruction of gram-negative food-borne pathogens by high pH involves disruption of the cytoplasmic membrane. Applied and Environmental Microbiology, 60(11), 4009-4014.
Mohamed, M., Rashidi, N. A., Yusup, S., Teong, L. K., Rashid, U., & Ali, R. M. (2012a). Effects of experimental variables on conversion of cockle shell to calcium oxide using thermal gravimetric analysis. Journal of Cleaner Production, 37, 394-397.
Mohamed, M., Yusup, S., & Maitra, S. (2012b). Decomposition study of calcium carbonate in cockle shell. Journal of Engineering Science and Technology, 7(1), 1-10.
Mohamad, S. F. S., Mohamad, S., & Jemaat, Z. (2016). Study of calcination condition on decomposition of calcium carbonate in waste cockle shell to calcium oxide using thermal gravimetric analysis. ARPN Journal of Engineering and Applied Sciences, 11(16), 9917-9921.
Morris, J. P. (2012). Disinfection of Bacillus subtilis spores using ultraviolet light emitting diodes (Doctoral dissertation, Ohio University).
Neto, R. F. M., Calijuri, M. L., de Castro Carvalho, I., & da Fonseca Santiago, A. (2012). Rainwater treatment in airports using slow sand filtration followed by chlorination: efficiency and costs. Resources, Conservation and Recycling, 65, 124-129.
Nordin, N., Hamzah, Z., Hashim, O., Kasim, F. H., & Abdullah, R. (2015). Effect of temperature in calcination process of seashells. Malaysian Journal of Analytical Sciences, 19(1), 65-70.
Oikawa, K., Asada, T., Yamamoto, K., Wakabayashi, H., Sasaki, M., Sato, M., & Matsuda, J. (2000). Antibacterial activity of calcined shell calcium prepared from wild surf clam. Journal of Health Science, 46(2), 98-103.
Oosterom, H. A., Koenhen, D. M., & Bos, M. (2000). Production of demineralized water out of rainwater: environmentally saving, energy efficient and cost effective. Desalination, 131(1-3), 345-352.
Pennell, K. G., Aronson, A. I., & Blatchley III, E. R. (2008). Phenotypic persistence and external shielding ultraviolet radiation inactivation kinetic model. Journal of Applied Microbiology, 104(4), 1192-1202.
Peter, H., Hörtnagl, P., Reche, I., & Sommaruga, R. (2014). Bacterial diversity and composition during rain events with and without Saharan dust influence reaching a high mountain lake in the Alps. Environmental Microbiology Reports, 6(6), 618-624.
Rashidi, N. A., Mohamed, M., & Yusup, S. (2011). A study of calcination and carbonation of cockle shell.
Rinsoz, T., Duquenne, P., Greff-Mirguet, G., & Oppliger, A. (2008). Application of real-time PCR for total airborne bacterial assessment: Comparison with epifluorescence microscopy and culture-dependent methods. Atmospheric Environment, 42(28), 6767-6774.
Roy, S., Sengupta, S., & Das, P. (2017). Integral approach of adsorption and chemical treatment of fluoride containing wastewater: Batch and optimization using RSM. Journal of Environmental Chemical Engineering, 5(1), 274-282.
Sánchez, A. S., Cohim, E., & Kalid, R. A. (2015). A review on physicochemical and microbiological contamination of roof-harvested rainwater in urban areas. Sustainability of Water Quality and Ecology, 6, 119-137.
Sawai, J., Kawada, E., Kanou, F., Igarashi, H., Hashimoto, A., Kokugan, T., & Shimizu, M. (1996). Detection of active oxygen generated from ceramic powders having antibacterial activity. Journal of Chemical Engineering of Japan, 29(4), 627-633.
Sawai, J., Shiga, H., & Kojima, H. (2001). Kinetic analysis of the bactericidal action of heated scallop-shell powder. International Journal of Food Microbiology, 71(2-3), 211-218.
Sawai, J., Miyoshi, H., & Kojima, H. (2003). Sporicidal kinetics of Bacillus subtilis spores by heated scallop shell powder. Journal of Food Protection, 66(8), 1482-1485.
Sawai, J., & Yoshikawa, T. (2004). Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. Journal of Applied Microbiology, 96(4), 803-809.
Sawai, J. (2011). Antimicrobial characteristics of heated scallop shell powder and its application. Biocontrol Science, 16(3), 95-102.
Schets, F. M., Italiaander, R., Van Den Berg, H. H. J. L., & de Roda Husman, A. M. (2010). Rainwater harvesting: quality assessment and utilization in The Netherlands. Journal of Water and Health, 8(2), 224-235.
Siqueira Jr, J. F., & Lopes, H. P. (1999). Mechanisms of antimicrobial activity of calcium hydroxide: a critical review. International Endodontic Journal, 32(5), 361-369.
Spinks, A. T., Dunstan, R. H., Harrison, T., Coombes, P., & Kuczera, G. (2006). Thermal inactivation of water-borne pathogenic and indicator bacteria at sub-boiling temperatures. Water Research, 40(6), 1326-1332.
Watanabe, T., Fujimoto, R., Sawai, J. U. N., Kikuchi, M., Yahata, S., & Satoh, S. (2014). Antibacterial characteristics of heated scallop-shell nano-particles. Biocontrol Science, 19(2), 93-97.
Worm, J. (2006). AD43E Rainwater harvesting for domestic use. Agromisa Foundation.
Xie, Y., Chen, L., & Liu, R. (2016). Oxidation of AOX and organic compounds in pharmaceutical wastewater in RSM-optimized-Fenton system. Chemosphere, 155, 217-224.
Xing, R., Qin, Y., Guan, X., Liu, S., Yu, H., & Li, P. (2013). Comparison of antifungal activities of scallop shell, oyster shell and their pyrolyzed products. The Egyptian Journal of Aquatic Research, 39(2), 83-90.
Yaziz, M. I., Gunting, H., Sapari, N., & Ghazali, A. W. (1989). Variations in rainwater quality from roof catchments. Water Research, 23(6), 761-765.
Yasue, S., Sawai, J., & Kikuchi, M. (2011). Sporicidal Activity of Heated Dolomite Powder against Bacillus subtilis Spore. Transactions of the Materials Research Society of Japan, 36(4), 607-610.
Yasue, S., Sawai, J., Kikuchi, M., Nakakuki, T., Sano, K., & Kikuchi, T. (2014). Sporicidal characteristics of heated dolomite powder against Bacillus subtilis spores. Biocontrol Science, 19(3), 113-119.
Yoon, G. L., Kim, B. T., Kim, B. O., & Han, S. H. (2003). Chemical–mechanical characteristics of crushed oyster-shell. Waste Management, 23(9), 825-834.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top