跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/05 02:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王靖雯
研究生(外文):Jing-Wen Wang
論文名稱:串聯微分電移動度粒徑分析儀和單顆粒感應耦合電漿質譜儀以粒徑維度分析水中金屬奈米顆粒
論文名稱(外文):Development of Hyphenated Differential Mobility Analyzer-spICP-MS Method for Size-resolved Analysis of Metallic Nanoparticles in Water
指導教授:林逸彬蕭大智蕭大智引用關係
指導教授(外文):Yi-Pin LinTa-Chih Hsiao
口試委員:侯文哲徐丞志
口試委員(外文):Wen-Che HouCheng-Chih Hsu
口試日期:2021-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:60
中文關鍵詞:金屬奈米顆粒串聯系統微分電移動度粒徑分析儀單顆粒感應耦合電漿質譜儀自來水
外文關鍵詞:metallic nanoparticleshyphenated systemdifferential mobility analyzerspICP-MStap water
DOI:10.6342/NTU202102361
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
因人類活動而產生釋放至環境中的人造奈米顆粒可能會對人體健康及環境造成傷害,其中奈米顆粒的特性及毒性和其大小、濃度及元素組成具有高度相關。此篇研究中使用了一套串聯霧化器(atomizer, ATM)、微分電移動度粒徑分析儀(differential mobility analyzer, DMA)和單顆粒感應耦合電漿質譜儀(single particle inductively coupled plasma mass spectrometry, spICP-MS)之系統藉以分析環境樣品中奈米顆粒之大小、濃度及元素組成。透過在霧化器後連結一個管狀高溫爐可提升該ATM-DMA-spICPMS串聯系統的表現,並通過標準金奈米顆粒的驗證。同時,也能以該系統分析得到金核/銀殼奈米顆粒的真實粒徑及元素組成。這套ATM-DMA-spICPMS串聯系統應用於分析自來水中的鐵及鉛奈米顆粒。結果顯示,串聯系統的分析可獲得奈米鐵和奈米鉛顆粒之大小及濃度,且粒徑分析結果和掃描式光學顯微鏡相符合。然而,樣品中的溶解態金屬離子亦被發現會對顆粒數目濃度之結果產生些微影響。總結來說,ATM-DMA-spICPMS串聯系統相較於單獨使用spICP-MS可更精確地提供水中金屬奈米顆粒的粒徑、濃度及元素組成的分析結果,對於了解環境中奈米顆粒的特性及毒性具有重要意義。
Release of engineered nanoparticles (NPs) produced by human activities may cause harm to the human health and the environment. The properties and toxicity of NPs are closely related to their size, concentration and elemental composition. In this study, a system hyphenated the atomizer (ATM), differential mobility analyzer (DMA) and single particle inductively coupled plasma mass spectrometry (spICP-MS) was used to characterize nanoparticles. By coupling with the tubular furnace after the ATM, the performance of the hyphenated ATM-DMA-spICP-MS system was validated using the standard Au nanoparticles (AuNPs). The actual size and the elemental composition of Ag-shelled AuNPs can also be observed. The hyphenated system was applied for FeNPs and PbNPs characterization in tap water samples. It was found that their size results from the hyphenated ATM-DMA-spICP-MS system were consistent with the SEM observations. However, the soluble metal ions in the sample was found to slightly interfere with the results of particle number concentration due to crystallization of the metal ions during the drying processes. To conclude, the hyphenated ATM-DMA-spICP-MS system can provide more accurate sizing results of metallic NPs in water than stand-alone spICP-MS, which is essential for better understanding the transport and toxicity of NPs in the environment.
摘要 I
Abstract II
Acronym IX
Chapter 1. Introduction 1
Chapter 2. Literature review 2
2.1 Concerns of nanoparticles in the environment 2
2.2 Traditional size-resolved analytical methods 3
2.3 Principle of hyphenated DMA-spICP-MS method 4
2.4 Effect of aerosol generation on the hyphenated system 11
2.5 Advantages of hyphenated system on size-resolved nanoparticle analysis 13
2.6 Application of spICP-MS for tap water sample in the distribution system 15
2.7 Objectives 17
Chapter 3. Materials and methods 18
3.1 Research framework 18
3.2 Configuration of the hyphenated ATM-furnace-DMA-spICP-MS system 19
3.3 Operation of the ATM-furnace-DMA-spICP-MS System 23
3.4 Materials and Chemicals 25
3.5 System evaluation, improvement, and validation 26
3.6 Environmental sample analysis 26
Chapter 4. Results and discussion 28
4.1 Performance evaluation and improvement of the hyphenated ATM-DMA-spICP-MS system 28
4.2 Validation of the hyphenated ATM-DMA-spICP-MS system 33
4.3 Tap water samples analysis 41
Chapter 5. Conclusions and recommendations 54
Reference 56
Adawi, H.I., Newbold, M.A., Reed, J.M., Vance, M.E., Feitshans, I.L., Bickford, L.R., Lewinski, N.A., 2018. Nano-enabled personal care products: Current developments in consumer safety. Nanoimpact 11, 170-179.
Adisa, I.O., Pullagurala, V.L.R., Peralta-Videa, J.R., Dimkpa, C.O., Elmer, W.H., Gardea-Torresdey, J.L., White, J.C., 2019. Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environ Sci-Nano 6, 2002-2030.
Allen, M.D., Raabe, O.G., 1985. Slip Correction Measurements of Spherical Solid Aerosol-Particles in an Improved Millikan Apparatus. Aerosol Sci Tech 4, 269-286.
Beckett, R., 1991. Field-Flow Fractionation-Icp-Ms - a Powerful New Analytical Tool for Characterizing Macromolecules and Particles. Atom Spectrosc 12, 228-232.
Cheng, Y.-S., 2001. Condensation detection and diffusion size separation techniques. Aerosol measurement: Principles, techniques, and applications, 569-601.
Degueldre, C., Favarger, P.Y., 2003. Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloid Surface A 217, 137-142.
Degueldre, C., Favarger, P.Y., 2004. Thorium colloid analysis by single particle inductively coupled plasma-mass spectrometry. Talanta 62, 1051-1054.
Degueldre, C., Favarger, P.Y., Bitea, C., 2004. Zirconia colloid analysis by single particle inductively coupled plasma-mass spectrometry. Anal. Chim. Acta 518, 137-142.
Degueldre, C., Favarger, P.Y., Rosse, R., Wold, S., 2006a. Uranium colloid analysis by single particle inductively coupled plasma-mass spectrometry. Talanta 68, 623-628.
Degueldre, C., Favarger, P.Y., Wold, S., 2006b. Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode. Anal. Chim. Acta 555, 263-268.
Delay, M., Frimmel, F.H., 2012. Nanoparticles in aquatic systems. Analytical and Bioanalytical Chemistry 402, 583-592.
Diegoli, S., Manciulea, A.L., Begum, S., Jones, I.P., Lead, J.R., Preece, J.A., 2008. Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Sci Total Environ 402, 51-61.
Elzey, S., Tsai, D.H., Yu, L.L., Winchester, M.R., Kelley, M.E., Hackley, V.A., 2013. Real-time size discrimination and elemental analysis of gold nanoparticles using ES-DMA coupled to ICP-MS. Analytical and Bioanalytical Chemistry 405, 2279-2288.
George, S., Gardner, H., Seng, E.K., Chang, H., Wang, C.Y., Fang, C.H.Y., Richards, M., Valiyayeettil, S., Chan, W.K., 2014. Differential Effect of Solar Light in Increasing the Toxicity of Silver and Titanium Dioxide Nanoparticles to a Fish Cell Line and Zebrafish Embryos. Environ Sci Technol 48, 6374-6382.
Glover, R.D., Miller, J.M., Hutchison, J.E., 2011. Generation of Metal Nanoparticles from Silver and Copper Objects: Nanoparticle Dynamics on Surfaces and Potential Sources of Nanoparticles in the Environment. Acs Nano 5, 8950-8957.
Gondikas, A.P., von der Kammer, F., Reed, R.B., Wagner, S., Ranville, J.F., Hofmann, T., 2014. Release of TiO2 Nanoparticles from Sunscreens into Surface Waters: A One-Year Survey at the Old Danube Recreational Lake. Environ Sci Technol 48, 5415-5422.
Gray, A.L., 1985. Solid Sample Introduction by Laser Ablation for Inductively Coupled Plasma Source-Mass Spectrometry. Analyst 110, 551-556.
Hess, A., Tarik, M., Losert, S., Ilari, G., Ludwig, C., 2016. Measuring air borne nanoparticles for characterizing hyphenated RDD-SMPS-ICPMS instrumentation. Journal of Aerosol Science 92, 130-141.
Hess, A., Tarik, M., Ludwig, C., 2015. A hyphenated SMPS-ICPMS coupling setup: Size-resolved element specific analysis of airborne nanoparticles. Journal of Aerosol Science 88, 109-118.
Hineman, A., Stephan, C., 2014. Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality. J Anal Atom Spectrom 29, 1252-1257.
Hsieh, Y.-C., Wang, J.-W., Hsiao, T.-C., Hou, W.-C., 2021. Atomizer Differential Mobility Analyzer Hyphenated with Single Particle Inductively Coupled Plasma-Mass Spectrometry (DMA-spICP-MS): Development and Performance Evaluation. International Conference on Nanotoxicology, virtual.
Iskandar, F., Gradon, L., Okuyama, K., 2003. Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. J Colloid Interf Sci 265, 296-303.
Jiang, J.K., Attoui, M., Heim, M., Brunelli, N.A., McMurry, P.H., Kasper, G., Flagan, R.C., Giapis, K., Mouret, G., 2011. Transfer Functions and Penetrations of Five Differential Mobility Analyzers for Sub-2 nm Particle Classification. Aerosol Sci Tech 45, 480-492.
Karlsson, M.N.A., Martinsson, B.G., 2003. Methods to measure and predict the transfer function size dependence of individual DMAs. Journal of Aerosol Science 34, 603-625.
Khan, I., Saeed, K., Khan, I., 2019. Nanoparticles: Properties, applications and toxicities. Arab J Chem 12, 908-931.
Kim, H.A., Lee, B.T., Na, S.Y., Kim, K.W., Ranville, J.F., Kim, S.O., Jo, E., Eom, I.C., 2017. Characterization of silver nanoparticle aggregates using single particle-inductively coupled plasma-mass spectrometry (spICP-MS). Chemosphere 171, 468-475.
Knutson, E.O., Whitby, K.T., 1975. Aerosol classification by electric mobility: apparatus, theory, and applications. Journal of Aerosol Science 6, 443-451.
Kumar, P., Mulheron, M., Som, C., 2012. Release of ultrafine particles from three simulated building processes. J Nanopart Res 14.
Lee, S., Bi, X.Y., Reed, R.B., Ranville, J.F., Herckes, P., Westerhoff, P., 2014. Nanoparticle Size Detection Limits by Single Particle ICP-MS for 40 Elements. Environ Sci Technol 48, 10291-10300.
Lenggoro, I.W., Hata, T., Iskandar, F., Lunden, M.M., Okuyama, K., 2000. An experimental and modeling investigation of particle production by spray pyrolysis using a laminar flow aerosol reactor. J Mater Res 15, 733-743.
Lenggoro, I.W., Widiyandari, H., Hogan, C.J., Biswas, P., Okuyama, K., 2007. Colloidal nanoparticle analysis by nanoelectrospray size spectrometry with a heated flow. Anal. Chim. Acta 585, 193-201.
Levard, C., Hotze, E.M., Lowry, G.V., Brown, G.E., 2012. Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity. Environ Sci Technol 46, 6900-6914.
Limbeck, A., Galler, P., Bonta, M., Bauer, G., Nischkauer, W., Vanhaecke, F., 2015. Recent advances in quantitative LA-ICP-MS analysis: challenges and solutions in the life sciences and environmental chemistry. Analytical and Bioanalytical Chemistry 407, 6593-6617.
Madhura, L., Singh, S., Kanchi, S., Sabela, M., Bisetty, K., Inamuddin, 2019. Nanotechnology-based water quality management for wastewater treatment. Environ Chem Lett 17, 65-121.
McNeill, L.S., Edwards, M., 2004. Importance of Pb and Cu particulate species for corrosion control. J Environ Eng-Asce 130, 136-144.
Meisterjahn, B., Neubauer, E., Von der Kammer, F., Hennecke, D., Hofmann, T., 2014. Asymmetrical flow-field-flow fractionation coupled with inductively coupled plasma mass spectrometry for the analysis of gold nanoparticles in the presence of natural nanoparticles. J Chromatogr A 1372, 204-211.
Moens, C., Waegeneers, N., Fritzsche, A., Nobels, P., Smolders, E., 2019. A systematic evaluation of Flow Field Flow Fractionation and single-particle ICP-MS to obtain the size distribution of organo-mineral iron oxyhydroxide colloids. J Chromatogr A 1599, 203-214.
Mourdikoudis, S., Pallares, R.M., Thanh, N.T.K., 2018. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10, 12871-12934.
Myojo, T., Takaya, M., Ono-Ogasawara, M., 2002. DMA as a gas converter from aerosol to "Argonsol" for real-time chemical analysis using ICP-MS. Aerosol Sci Tech 36, 76-83.
Nishiguchi, K., Utani, K., Fujimori, E., 2008. Real-time multielement monitoring of airborne particulate matter using ICP-MS instrument equipped with gas converter apparatus. J Anal Atom Spectrom 23, 1125-1129.
Pace, H.E., Rogers, N.J., Jarolimek, C., Coleman, V.A., Higgins, C.P., Ranville, J.F., 2011. Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry 83, 9361-9369.
Prasad, M., Lambe, U.P., Brar, B., Shah, I., Manimegalai, J., Ranjan, K., Rao, R., Kumar, S., Mahant, S., Khurana, S.K., Iqbal, H.M.N., Dhama, K., Misri, J., Prasad, G., 2018. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother 97, 1521-1537.
Ronkko, T., Timonen, H., 2019. Overview of Sources and Characteristics of Nanoparticles in Urban Traffic-Influenced Areas. J Alzheimers Dis 72, 15-28.
Sajid, M., Ilyas, M., Basheer, C., Tariq, M., Daud, M., Baig, N., Shehzad, F., 2015. Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environ Sci Pollut R 22, 4122-4143.
Sanchis, J., Jimenez-Lamana, J., Abad, E., Szpunar, J., Farre, M., 2020. Occurrence of Cerium-, Titanium-, and Silver-Bearing Nanoparticles in the Besos and Ebro Rivers. Environ Sci Technol 54, 3969-3978.
Senftle, F.E., Thorpe, A.N., Grant, J.R., Barkatt, A., 2007. Superparamagnetic nanoparticles in tap water. Water Res 41, 3005-3011.
Sharma, V.K., Siskova, K.M., Zboril, R., Gardea-Torresdey, J.L., 2014. Organic-coated silver nanoparticles in biological and environmental conditions: Fate, stability and toxicity. Adv Colloid Interfac 204, 15-34.
Tan, J.J., Liu, J.Y., Li, M.D., El Hadri, H., Hackley, V.A., Zechariah, M.R., 2016. Electrospray-Differential Mobility Hyphenated with Single Particle Inductively Coupled Plasma Mass Spectrometry for Characterization of Nanoparticles and Their Aggregates. Analytical Chemistry 88, 8548-8555.
Tan, J.J., Yang, Y., El Hadri, H., Li, M.D., Hackley, V.A., Zachariah, M.R., 2019. Fast quantification of nanorod geometry by DMA-spICP-MS. Analyst 144, 2275-2283.
Thomas, R., 2013. Practical Guide to ICP-MS, 3rd ed. CRC Press, Boca Raton.
Tiede, K., Boxall, A.B.A., Tiede, D., Tear, S.P., David, H., Lewis, J., 2009. A robust size-characterisation methodology for studying nanoparticle behaviour in 'real' environmental samples, using hydrodynamic chromatography coupled to ICP-MS. J Anal Atom Spectrom 24, 964-972.
Venkatesan, A.K., Rodriguez, B.T., Marcotte, A.R., Bi, X.Y., Schoepf, J., Ranville, J.F., Herckes, P., Westerhoff, P., 2018. Using single-particle ICP-MS for monitoring metal-containing particles in tap water. Environ Sci-Wat Res 4, 1923-1932.
Vert, M., Doi, Y., Hellwich, K.H., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., Schue, F., 2012. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem 84, 377-408.
Vogt, R., Mozhayeva, D., Steinhoff, B., Schardt, A., Spelz, B.T.F., Philippe, A., Kurtz, S., Schaumann, G.E., Engelhard, C., Schonherr, H., Lamatsch, D.K., Wanzenbock, J., 2019. Spatiotemporal distribution of silver and silver-containing nanoparticles in a prealpine lake in relation to the discharge from a wastewater treatment plant. Sci Total Environ 696.
Wei, C.J., Crank, M.C., Shiver, J., Graham, B.S., Mascola, J.R., Nabel, G.J., 2020. Next-generation influenza vaccines: opportunities and challenges. Nat Rev Drug Discov 19, 239-252.
Wiedensohler, A., 1988. An Approximation of the Bipolar Charge-Distribution for Particles in the Sub-Micron Size Range. Journal of Aerosol Science 19, 387-389.
Wilson, I.D., Brinkman, U.A.T., 2003. Hyphenation and hypernation - The practice and prospects of multiple hyphenation. J Chromatogr A 1000, 325-356.
Wu, S.M., Zhang, S.H., Gong, Y., Shi, L., Zhou, B.S., 2020. Identification and quantification of titanium nanoparticles in surface water: A case study in Lake Taihu, China. J Hazard Mater 382.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top