跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.174) 您好!臺灣時間:2024/12/03 20:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王熙姸
研究生(外文):Hsi-Yen Wang
論文名稱:生物可分解塑膠微粒吸脫附重金屬之研究
論文名稱(外文):Adsorption and Desorption Characteristics of Heavy Metals on Biodegradable Microplastics
指導教授:駱尚廉駱尚廉引用關係
指導教授(外文):Shang-Lien Lo
口試委員:郭繼汾胡 景堯
口試委員(外文):Ji-Fen GuoChing-Yao Hu
口試日期:2021-06-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:108
中文關鍵詞:塑膠微粒重金屬吸附脫附生物可分解塑膠
外文關鍵詞:microplasticheavy metaladsorptiondesorptionbiodegradable plastic
DOI:10.6342/NTU202101103
相關次數:
  • 被引用被引用:1
  • 點閱點閱:414
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於塑膠成本低、質量輕且具有生物惰性,被廣泛應用於一次性之包裝材料,但在塑膠為生活帶來便利的同時亦產生了塑膠微粒環境污染問題,而環境中的塑膠微粒會吸附重金屬,並進入食物鏈進而對人體健康造成負面影響。近年來,生物可分解塑膠被認為是塑膠污染之解決方案,其產量逐年增加,但許多生物可分解塑膠只能在特定環境下被分解,因此,生物可分解塑膠微粒污染亦會對環境造成負面影響。
本研究以「聚乙烯(Polyethylene, PE)」和「聚乳酸(Polylactide, PLA)」分別代表非生物分解和生物可分解塑膠微粒,進行鉛、銅、鋅和鎳之吸附研究。結果顯示,聚乳酸塑膠微粒「具有含氧官能基」、「較高的比表面積」和「較低的結晶度」,使聚乳酸塑膠微粒對重金屬的吸附量皆高於聚乙烯塑膠微粒,且重金屬吸附量大小為鉛 > 銅 > 鋅 > 鎳。除了鎳以外,塑膠微粒對於重金屬之吸附量隨著pH值增加而增加。「聚乙烯塑膠微粒吸附鉛和銅」及「聚乳酸塑膠微粒吸附鉛」在15 oC的條件下有較低的吸附量,鋅和鎳之吸附量在15至35 oC時受溫度的影響較不顯著。聚乳酸塑膠微粒吸附銅、鋅和鎳較符合Langmuir等溫吸附模式,吸附鉛時則是較符合Freundlich等溫吸附模式;而聚乙烯塑膠微粒吸附鉛和鎳時較符合Langmuir等溫吸附模式,吸附銅和鋅時,則是較符合Freundlich等溫吸附模式。
以先前吸附實驗的結果中,吸附量最大的「鉛」做為脫附實驗所探討之重金屬,將吸附鉛之塑膠微粒放入人工配置水樣中進行脫附。實驗結果顯示:聚乙烯和聚乳酸塑膠微粒在淡水及海水環境中僅有約10 %之脫附率,但在水生生物及恆溫動物的消化道中達到約100 %之脫附率。
Plastics are widely used as disposable packaging materials due to their low cost, lightweight, and biological inertness. However, while plastics bring convenience to life, they also cause environmental pollution problems. Microplastics can adsorb heavy metals in the environment and enter the food chain. In recent years, biodegradable plastics have been considered as a solution to plastic pollution, and their production has been increased. However, many biodegradable plastics can only be decomposed under certain conditions. Therefore, biodegradable microplastics still pose a threat to the environment.
In this study, polyethylene (PE) and polylactide (PLA) represent non-biodegradable and biodegradable microplastics, respectively, for the adsorption of lead, copper, zinc, and nickel. The results show that PLA microplastics have oxygen-containing functional groups and higher specific surface areas so that the amount of heavy metal adsorption onto PLA microplastics is higher than that of polyethylene microplastics. The adsorption capacities onto the microplastics are lead > copper > zinc > nickel. Except for nickel, the adsorption capacity of microplastics for heavy metals increases with the solution pH. The level of adsorption of lead and copper onto PE and that of lead onto PLA were lower at the lower temperature, 15 oC, while those of zinc and nickel were less affected by the temperature from 15 oC to 35 oC. The adsorption of copper, zinc, and nickel by the PLA microplastics fits the Langmuir isotherm well; while the adsorption of lead fits the Freundlich isotherm well. For the PE microplastics the adsorption of lead and nickel fits the Langmuir isotherm; while adsorption of copper and zinc is more in line with the Freundlich isotherm.
Comparison to the other metals, lead onto the microplastic shows a higher risk and conducted the desorption investigation. The results show that PE and PLA microplastics have a desorption rate of only about 10% in freshwater and seawater, but almost 100% in the digestive tracts of aquatic organisms and warm-blooded animals.
口試委員審定書I
致謝II
摘要III
目錄VI
圖目錄IX
表目錄XII
第一章、前言1
1-1研究緣起1
1-2研究目的2
第二章、文獻回顧3
2-1塑膠微粒3
2-1-1塑膠微粒污染現況3
2-1-2塑膠微粒特性與危害6
2-2聚乙烯與聚乳酸7
2-2-1聚乙烯7
2-2-2聚乳酸9
2-3重金屬11
2-3-1重金屬污染現況11
2-3-2重金屬特性與危害12
2-4吸附與脫附14
2-4-1塑膠微粒吸附重金屬機制14
2-4-2吸附動力模式15
2-4-3等溫吸附模式16
2-4-4塑膠微粒吸附與脫附重金屬對環境之影響17
第三章、材料與方法21
3-1實驗內容與架構21
3-2實驗藥品與設備22
3-2-1實驗藥品22
3-2-2實驗設備23
3-3實驗方法30
3-3-1塑膠微粒前處理與物化分析30
3-3-2吸附實驗30
3-3-3脫附實驗30
3-4數據分析31
3-5品質管制34
第四章、結果與討論37
4-1塑膠微粒物化特性分析37
4-1-1傅立葉轉換紅外線光譜分析37
4-1-2掃描式電子顯微鏡分析42
4-1-3界達電位分析44
4-1-4比表面積分析45
4-1-5熱重量分析與示差掃描熱量分46
4-2動力吸附模式48
4-2-1pH值對重金屬吸附之影響49
4-2-2溫度對重金屬吸附之影響61
4-3等溫吸附平衡模式70
4-4重金屬於不同環境之脫附實驗74
4-5塑膠微粒吸附重金屬機制探討76
第五章、結論與建議78
5-1結論78
5-2建議79
參考文獻80
附錄92
Agarwal, S. (2020). Biodegradable Polymers: Present Opportunities and Challenges in Providing a Microplastic‐Free Environment. Macromolecular Chemistry and Physics, 221(6). doi:10.1002/macp.202000017
Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596-1605
Arthur, C., Baker, J., Bamford, H., (2009). In: Proceedings of the International Research Workshop on the Occurrence, Effects and Fate of Microplastic Marine Debris, NOAA,Technical Memorandum NOS-OR & R-30. NOAA, Silver Spring. pp. 530.
Bagheri, A. R., Laforsch, C., Greiner, A. and Agarwal, S. (2017). Fate of So-Called Biodegradable Polymers in Seawater and Freshwater. Global Challenges, 1(4). doi:10.1002/gch2.201700048
Bancin, L. J., Walther, B. A., Lee, Y. and Kunz, A. (2019). Two-dimensional distribution and abundance of micro- and mesoplastic pollution in the surface sediment of Xialiao Beach, New Taipei City, Taiwan. Marine Pollution Bulletin, 140, 75-85.
Berges, J. A., Franklin, D. J. and Harrison, P. J. (2002). Evolution Of An Artificial Seawater Medium: Improvements In Enriched Seawater, Artificial Water Over The Last Two Decades. Journal of Phycology, 37(6), 1138-1145.
Brennecke, D., Duarte, B., Paiva, F., Caçador, I. and Canning-Clode, J. (2016). Microplastics as vector for heavy metal contamination from the marine environment. Estuarine, Coastal and Shelf Science, 178, 189-195.
Browne, M. A., Dissanayake, A., Galloway, T. S., Lowe, D. M. and Thompson, R. C. (2008). Ingested Microscopic Plastic Translocates to the Circulatory System of the Mussel,Mytilus edulis(L.). Environmental Science & Technology, 42(13), 5026-5031.
Burns, E. E. and Boxall, A. B. (2018). Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps. Environmental Toxicology and Chemistry, 37(11), 2776-2796.
Carbery, M., Oconnor, W. and Palanisami, T. (2018). Trophic transfer of microplastics and mixed contaminants in the marine food web and implications for human health. Environment International, 115, 400-409.
Coffin, S., Lee, I., Gan, J. and Schlenk, D. (2019). Simulated digestion of polystyrene foam enhances desorption of diethylhexyl phthalate (DEHP) and In vitro estrogenic activity in a size-dependent manner. Environmental Pollution, 246, 452-462.
Denkhaus, E. and Salnikow, K. (2002). Nickel essentiality, toxicity, and carcinogenicity. Critical Reviews in Oncology/Hematology, 42(1), 35-56.
Deshmukh, K., Ahamed, M. B., Deshmukh, R., Pasha, S. K., Bhagat, P. and Chidambaram, K. (2017). Biopolymer Composites in Electronics. Retrieved from https://www.sciencedirect.com/science/article/pii/B9780128092613000036
Ding, C., Cheng, W., Wang, X., Wu, Z., Sun, Y., Chen, C., . . . Yu, S. (2020). Corrigendum: Competitive sorption of Pb(II), Cu(II) and Ni(II) on carbonaceous nanofibers: A spectroscopic and modeling approach. Journal of Hazardous Materials, 389, 122118.
Dong, Y., Gao, M., Song, Z., and Qiu, W. (2020). As(III) adsorption onto different-sized polystyrene microplastic particles and its mechanism. Chemosphere, 239, 124792.
Dressman J.B., Amidon G.L., Reppas C., Shah V.P. (1998) Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharmaceutical Research, 15, 11-22
Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V. and Tassin, B. (2017). A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution, 221, 453-458.
Eerkes-Medrano, D. and Thompson, R. (2018). Occurrence, Fate, and Effect of Microplastics in Freshwater Systems. Microplastic Contamination in Aquatic Environments, 95-132.
Elsawy, M. A., Kim, K., Park, J. and Deep, A. (2017). Hydrolytic degradation of polylactic acid (PLA) and its composites. Renewable and Sustainable Energy Reviews, 79, 1346-1352.
Encyclopedia Britannica, inc. (2019). Polyethylene. Retrieved July 29, 2020, from https://www.britannica.com/science/polyethylene
Foo, K. and Hameed, B. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2-10.
Freundlich, H., (1907). Udber die adsorption in Loesungen. Zeitschrift für Physikalische Chemie. 57, 385–470.
Fu, T., Abbott, U. R. and Hatzos, C. (2002). Digestibility of Food Allergens and Nonallergenic Proteins in Simulated Gastric Fluid and Simulated Intestinal FluidA Comparative Study. Journal of Agricultural and Food Chemistry, 50(24), 7154-7160.
Galia E., Horton J., Dressman J. B. (1999) Albendazole generics—a comparative in vitro study, Pharmaceutical Research,16 , 1871-1875
Gao, F., Li, J., Sun, C., Zhang, L., Jiang, F., Cao, W. and Zheng, L. (2019). Study on the capability and characteristics of heavy metals enriched on microplastics in marine environment. Marine Pollution Bulletin, 144, 61-67.
Geyer, R., Jambeck, J. R. and Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7). doi:10.1126/sciadv.1700782
Giacovelli C. (2018) Single-use plastic: a roadmap for sustainability. Nairobi: UNEP.
Gulmine, J., Janissek, P., Heise, H. and Akcelrud, L. (2002). Polyethylene characterization by FTIR. Polymer Testing, 21(5), 557-563.
Guo, X. and Wang, J. (2019). Sorption of antibiotics onto aged microplastics in freshwater and seawater. Marine Pollution Bulletin, 149. doi:10.1016/j.marpolbul.2019.110511
Guo, X., Wang, X., Zhou, X., Kong, X., Tao, S. and Xing, B. (2012). Sorption of Four Hydrophobic Organic Compounds by Three Chemically Distinct Polymers: Role of Chemical and Physical Composition. Environmental Science & Technology, 46(13), 7252-7259.
Guzzetti, E., Sureda, A., Tejada, S. and Faggio, C. (2018). Microplastic in marine organism: Environmental and toxicological effects. Environmental Toxicology and Pharmacology, 64, 164-171.
Hodson, M. E., Duffus-Hodson, C. A., Clark, A., Prendergast-Miller, M. T. and Thorpe, K. L. (2017). Plastic Bag Derived-Microplastics as a Vector for Metal Exposure in Terrestrial Invertebrates. Environmental Science & technology, 51(8), 4714-4721.
Holmes, L. A., Turner, A. and Thompson, R. C. (2012). Adsorption of trace metals to plastic resin pellets in the marine environment. Environmental Pollution, 160, 42-48.
Holmes, L. A., Turner, A. and Thompson, R. C. (2014). Interactions between trace metals and plastic production pellets under estuarine conditions. Marine Chemistry, 167, 25-32.
Ho, Y., Mckay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Research, 34(3), 735-742.
IARC (1990) Chromium, Nickel and Welding. IARC monographs on the evaluation of carcinogenic risks to humans, vol 49, International Agency for Research on Cancer, Lyon
IARC (1987) Overall evaluation of carcinogenicity: an updating of monographs. IARC monographs on the evaluation of carcinogenic risks to humans, vols 1–42, Suppl 7. International Agency for Research on Cancer, Lyon
John, M., Heuss-Aßbichler, S., Ullrich, A., Rettenwander, D. (2016). Purification of heavy metal loaded wastewater from electroplating industry under synthesis of delafossite (ABO2) by “Lt-delafossite process”. Water Research, 100, 98-104
Jovanovic, B. (2017). Ingestion of microplastics by fish and its potential consequences from a physical perspective. Integrated Environmental Assessment and Management, 13(3), 510-515.
Kabata-Pendias, A. (2011) Trace elements in soils and plants CRC Press, USA. doi:10.1201/9781420039900
Kale, G., Auras, R., Singh, S. P. and Narayan, R. (2007). Biodegradability of polylactide bottles in real and simulated composting conditions. Polymer Testing, 26(8), 1049-1061.
Khoo, R., Ismail, H. and Chow, W. (2016). Thermal and Morphological Properties of Poly (Lactic Acid)/Nanocellulose Nanocomposites. Procedia Chemistry, 19, 788-794.
Kong, Y. and Hay, J.N. (2002) The measurement of the. crystallinity of polymers by DSC. Polymer, 43, 3873- 3878. doi:10.1016/S0032-3861(02)00235-5
Kumar, V., Parihar, R. D., Sharma, A., Bakshi, P., Sidhu, G. P., Bali, A. S., . . . Rodrigo-Comino, J. (2019). Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere, 236. doi:10.1016/j.chemosphere.2019.124364
Kunz, A., Walther, B. A., Löwemark, L. and Lee, Y. (2016). Distribution and quantity of microplastic on sandy beaches along the northern coast of Taiwan. Marine Pollution Bulletin, 111(1-2), 126-135.
Lagergren, S., (1898). About theory of so-called adsorption of soluble substances. Kungliga SvenskaVetenskapsakad. Andl. 24, 1–39.
Langmuir, I. (1918). The Adsorption Of Gases On Plane Surfaces Of Glass, Mica And Platinum. Journal of the American Chemical Society, 40(9), 1361-1403.
Limousin, G., Gaudet, J., Charlet, L., Szenknect, S., Barthès, V. and Krimissa, M. (2007). Sorption isotherms: A review on physical bases, modeling and measurement. Applied Geochemistry, 22(2), 249-275.
Liu, P., Wu, X., Liu, H., Wang, H., Lu, K. and Gao, S. (2020). Desorption of pharmaceuticals from pristine and aged polystyrene microplastics under simulated gastrointestinal conditions. Hazardous Materials, 392, doi:10.1016/j.jhazmat.2020.122346
Luo, H., Zhao, Y., Li, Y., Xiang, Y., He, D. and Pan, X. (2020). Aging of microplastics affects their surface properties, thermal decomposition, additives leaching and interactions in simulated fluids. Science of The Total Environment, 714. doi:10.1016/j.scitotenv.2020.136862
Lwanga, E. H., Vega, J. M., Quej, V. K., Chi, J. D., Cid, L. S., Chi, C., Geissen, V. (2017). Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports, 7(1). doi:10.1038/s41598-017-14588-2
Mirabella, F. M. and Bafna, A. (2002). Determination of the crystallinity of polyethylene/α-olefin copolymers by thermal analysis: Relationship of the heat of fusion of 100% polyethylene crystal and the density. Journal of Polymer Science Part B: Polymer Physics, 40(15), 1637-1643.
Moore, C. J. (2008). Synthetic polymers in the marine environment: A rapidly increasing, long-term threat.Environmental Research, 108(2), 131-139.
Nampoothiri, K. M., Nair, N. R. and John, R. P. (2010). An overview of the recent developments in polylactide (PLA) research. Bioresource Technology, 101(22), 8493-8501.
Nightingale, E. R. (1959). Phenomenological Theory of Ion Solvation. Effective Radii of Hydrated Ions. The Journal of Physical Chemistry, 63(9), 1381-1387.
Ostle, C., Thompson, R. C., Broughton, D., Gregory, L., Wootton, M. and Johns, D. G. (2019). The rise in ocean plastics evidenced from a 60-year time series. Nature Communications, 10(1), doi:10.1038/s41467-019-09506-1
Paciorek-Sadowska, J., Borowicz, M. and Isbrandt, M. (2019). New Poly(lactide-urethane-isocyanurate) Foams Based on Bio-Polylactide Waste. Polymers, 11(3), 481.
Palabiyik, M. and Bahadur, S. (2000). Mechanical and tribological properties of polyamide 6 and high density polyethylene polyblends with and without compatibilizer. Wear, 246(1-2), 149-158
Paul, D. (2017). Research on heavy metal pollution of river Ganga: A review. Annals of Agrarian Science, 15(2), 278-286.
Penjumras, P., Rahman, R. A., Talib, R. A. and Abdan, K. (2015). Response Surface Methodology for the Optimization of Preparation of Biocomposites Based on Poly(lactic acid) and Durian Peel Cellulose. The Scientific World Journal, 2015, 1-12.
Pierre A.C. (2020) Peptization of Colloidal Sols. In: Introduction to Sol-Gel Processing. Springer, Cham. https://doi.org/10.1007/978-3-030-38144-8_6
Poma, N., Vivaldi, F., Bonini, A., Carbonaro, N., Rienzo, F. D., Melai, B., Francesco, F. D. (2019). Remote monitoring of seawater temperature and pH by low cost sensors. Microchemical Journal, 148, 248-252.
Qi, R., Jones, D. L., Liu, Q., Liu, Q., Li, Z. and Yan, C. (2021). Field test on the biodegradation of poly(butylene adipate-co-terephthalate) based mulch films in soil. Polymer Testing, 93, 107009.
Sadri, S. S. and Thompson, R. C. (2014). On the quantity and composition of floating plastic debris entering and leaving the Tamar Estuary, Southwest England. Marine Pollution Bulletin, 81(1), 55-60.
Saha, U. K., Taniguchi, S. and Sakurai, K. (2002). Simultaneous Adsorption of Cadmium, Zinc, and Lead on Hydroxyaluminum- and Hydroxyaluminosilicate-Montmorillonite Complexes. Soil Science Society of America Journal, 66(1), 117.
Scheurer, M. and Bigalke, M. (2018). Microplastics in Swiss Floodplain Soils. Environmental Science & Technology, 52(6), 3591-3598.
Shim, W. J., Hong, S. H. and Eo, S. (2018). Marine Microplastics: Abundance, Distribution, and Composition, Microplastic Contamination on Aquatic Environments, 1-26
Simonin, J. (2016). On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 300, 254-263.
Su, L., Xue, Y., Li, L., Yang, D., Kolandhasamy, P., Li, D. and Shi, H. (2016). Microplastics in Taihu Lake, China. Environmental Pollution, 216, 711-719.
Tang, S., Lin, L., Wang, X., Feng, A. and Yu, A. (2020). Pb(II) uptake onto nylon microplastics: Interaction mechanism and adsorption performance. Hazardous Materials, 386. doi:10.1016/j.jhazmat.2019.121960
Tang, S., Lin, L., Wang, X., Yu, A. and Sun, X. (2021). Interfacial interactions between collected nylon microplastics and three divalent metal ions (Cu(II), Ni(II), Zn(II)) in aqueous solutions. Journal of Hazardous Materials, 403, 123548.
Tchounwou P.B., Yedjou C.G., Patlolla A.K., Sutton D.J. (2012) Heavy Metal Toxicity and the Environment. Experientia Supplementum, 101, 133-164.
Tourinho, P. S., Kočí, V., Loureiro, S. and Gestel, C. A. (2019). Partitioning of chemical contaminants to microplastics: Sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation. Environmental Pollution, 252, 1246-1256.
Tudorachi, N. and Lipsa, R. (2006). Comparative study on starch modification with lactic acid and poly(lactic acid). Polimery, 51(06), 425-430.
Vardhan, K. H., Kumar, P. S. and Panda, R. C. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 290. doi:10.1016/j.molliq.2019.111197
Vareda, J. P., Valente, A. J. and Durães, L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of Environmental Management, 246, 101-118.
Verla, A. W., Enyoh, C. E., Verla, E. N. and Nwarnorh, K. O. (2019). Microplastic–toxic chemical interaction: A review study on quantified levels, mechanism and implication. SN Applied Sciences, 1(11). doi:10.1007/s42452-019-1352-0
Vertzoni, M., Dressman, J., Butler, J., Hempenstall, J. and Reppas, C. (2005). Simulation of fasting gastric conditions and its importance for the in vivo dissolution of lipophilic compounds. European Journal of Pharmaceutics and Biopharmaceutics, 60(3), 413-417.
Vethaak, A. D. and Leslie, H. A. (2016). Plastic Debris Is a Human Health Issue. Environmental Science & Technology, 50(13), 6825-6826.
Wang, C., Wang, Y., Dang, Y., Jiao, Q., Li, H., Wu, Q. and Zhao, Y. (2015). Synthesis of a novel titanium complex catalyst and its catalytic performance for olefin polymerization. Russian Journal of Applied Chemistry, 88(10), 1723-1727.
Wang, F., Yang, W., Cheng, P., Zhang, S., Zhang, S., Jiao, W. and Sun, Y. (2019). Adsorption characteristics of cadmium onto microplastics from aqueous solutions. Chemosphere, 235, 1073-1080.
Wang, Q., Zhang, Y., Wangjin, X., Wang, Y., Meng, G. and Chen, Y. (2020). The adsorption behavior of metals in aqueous solution by microplastics effected by UV radiation. Journal of Environmental Sciences, 87, 272-280.
Wong, G., Lowemark, L. and Kunz, A. (2020). Microplastic pollution of the Tamsui River and its tributaries in northern Taiwan: Spatial heterogeneity and correlation with precipitation. Environmental Pollution, 260. doi:10.1016/j.envpol.2020.113935
Wu, X., Liu, P., Huang, H. and Gao, S. (2020). Adsorption of triclosan onto different aged polypropylene microplastics: Critical effect of cations. Science of The Total Environment, 717, 137033.
Xu, B., Liu, F., Brookes, P. C. and Xu, J. (2018). Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter. Environmental Pollution, 240, 87-94.
Zeledon-Toruno, Z., Lao-Luque, C. and Solé-Sardans, M. (2005). Nickel and copper removal from aqueous solution by an immature coal (leonardite): Effect of pH, contact time and water hardness. Journal of Chemical Technology & Biotechnology, 80(6), 649-656.
Zhang, Q., Chen, P., Xie, X. and Cao, X. (2009). An effective method to identify the type and content of α-olefin in polyolefine copolymer by Fourier Transform Infrared-Differential Scanning Calorimetry. Journal of Applied Polymer Science, 113(5), 3027-3032.
Zou, J., Liu, X., Zhang, D. and Yuan, X. (2020). Adsorption of three bivalent metals by four chemical distinct microplastics. Chemosphere, 248, 126064.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊