|
Chapter I. 1. Verma, N.; Singh, M., Biosensors for heavy metals. Biometals 2005, 18 (2), 121-9. 2. Nies, D. H., Microbial heavy-metal resistance. Appl Microbiol Biotechnol 1999, 51: 730-750. 3. Hossain, S.; Latifa, G. A.; Prianqa; Al Nayeem, A., Review of Cadmium Pollution in Bangladesh. J Health Pollut 2019, 9 (23), 190913. 4. Jarup, L., Cadmium overload and toxicity. Nephrol Dial Transplant 2002, 17 Suppl 2, 35- 9. 5. Permina, E. A.; Kazakov, A. E.; Kalinina, O. V.; Gelfand, M. S., Comparative genomics of regulation of heavy metal resistance in Eubacteria. BMC Microbiol 2006, 6, 49. 6. Bereza-Malcolm, L. T.; Mann, G.; Franks, A. E., Environmental Sensing of Heavy Metals Through Whole Cell Microbial Biosensors: A Synthetic Biology Approach. Acs Synthetic Biology 2015, 4 (5), 535-546. 7. Goers, L.; Kylilis, N.; Tomazou, M.; Wen, K. Y.; Freemont, P.; Polizzi, K., Engineering Microbial Biosensors. Method Microbiol 2013, 40, 119-156. 8. Park, M.; Tsai, S. L.; Chen, W., Microbial Biosensors: Engineered Microorganisms as the Sensing Machinery. Sensors-Basel 2013, 13 (5), 5777-5795. 9. Guo, Y. M.; Zhang, Y.; Shao, H. W.; Wang, Z.; Wang, X. F.; Jiang, X. Y., Label-Free Colorimetric Detection of Cadmium Ions in Rice Samples Using Gold Nanoparticles. Anal Chem 2014, 86 (17), 8530-8534. 10. Zhang, L. F.; Hu, W. P.; Yu, L. P.; Wang, Y., Click synthesis of a novel triazole bridged AIE active cyclodextrin probe for specific detection of Cd-2. Chem Commun 2015, 51 (20), 4298- 4301. 11. Gu, M. B.; Mitchell, R. J.; Kim, B. C., Whole-cell-based biosensors for environmental biomonitoring and application. Adv Biochem Eng Biotechnol 2004, 87, 269-305. 12. Yagi, K., Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl Microbiol Biotechnol 2007, 73 (6), 1251-8. 13. Wu, C. H.; Le, D.; Mulchandani, A.; Chen, W., Optimization of a Whole-Cell Cadmium Sensor with a Toggle Gene Circuit. Biotechnol Progr 2009, 25 (3), 898-903. 14. Tao, H. C.; Peng, Z. W.; Li, P. S.; Yu, T. A.; Su, J., Optimizing cadmium and mercury specificity of CadR-based E-coli biosensors by redesign of CadR. Biotechnol Lett 2013, 35 (8), 1253-1258. 15. Tauriainen, S.; Karp, M.; Chang, W.; Virta, M., Luminescent bacterial sensor for cadmium and lead. Biosens Bioelectron 1998, 13 (9), 931-938. 16. Joe, M. H.; Lee, K. H.; Lim, S. Y.; Im, S. H.; Song, H. P.; Lee, I. S.; Kim, D. H., Pigment-based whole-cell biosensor system for cadmium detection using genetically engineered Deinococcus radiodurans. Bioproc Biosyst Eng 2012, 35 (1-2), 265-272. 17. Ivask, A.; Francois, M.; Kahru, A.; Dubourguier, H. C.; Virta, M.; Douay, F., Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters. Chemosphere 2004, 55 (2), 147-156. 18. Waldron, K. J.; Robinson, N. J., How do bacterial cells ensure that metalloproteins get the correct metal? (vol 7, pg 25, 2009). Nature Reviews Microbiology 2009, 7 (2). 19. Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B. B.; Beeregowda, K. N., Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 2014, 7 (2), 60-72. 20. Browning, D. F.; Busby, S. J., Local and global regulation of transcription initiation in bacteria. Nat Rev Microbiol 2016, 14 (10), 638-50. 21. Brown, N. L.; Stoyanov, J. V.; Kidd, S. P.; Hobman, J. L., The MerR family of transcriptional regulators. Fems Microbiol Rev 2003, 27 (2-3), 145-63. 22. Fang, C.; Li, L.; Zhao, Y.; Wu, X.; Philips, S. J.; You, L.; Zhong, M.; Shi, X.; O'Halloran, T. V.; Li, Q.; Zhang, Y., The bacterial multidrug resistance regulator BmrR distorts promoter DNA to activate transcription. Nat Commun 2020, 11 (1), 6284. 23. Fang, C.; Philips, S. J.; Wu, X.; Chen, K.; Shi, J.; Shen, L.; Xu, J.; Feng, Y.; O'Halloran, T. V.; Zhang, Y., CueR activates transcription through a DNA distortion mechanism. Nat Chem Biol 2021, 17 (1), 57-64. 24. Lee, S. W.; Glickmann, E.; Cooksey, D. A., Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl Environ Microb 2001, 67 (4), 1437-1444. 25. Cayron, J.; Effantin, G.; Prudent, E.; Rodrigue, A., Original sequence divergence among Pseudomonas putida CadRs drive specificity. Res Microbiol 2020, 171 (1), 21-27. 26. Lin, Y.-J. Highly sensitive cadmium biosensors identified by phylogenetic approaches. Bachelor Thesis, National Taiwan University 2019. Chapter II. 1. Kao, Y. L. Characterization of the metal specificity of the CueR metal-binding domain by saturation mutagenesis. Master Thesis, National Taiwan University 2018. 2. Wu, C. H.; Le, D.; Mulchandani, A.; Chen, W., Optimization of a Whole-Cell Cadmium Sensor with a Toggle Gene Circuit. Biotechnol Progr 2009, 25 (3), 898-903. 3. Hynninen, A.; Tonismann, K.; Virta, M., Improving the sensitivity of bacterial bioreporters for heavy metals. Bioeng Bugs 2010, 1 (2), 132-8. 4. Tang, X.; Zeng, G.; Fan, C.; Zhou, M.; Tang, L.; Zhu, J.; Wan, J.; Huang, D.; Chen, M.; Xu, P.; Zhang, C.; Lu, Y.; Xiong, W., Chromosomal expression of CadR on Pseudomonas aeruginosa for the removal of Cd(II) from aqueous solutions. Sci Total Environ 2018, 636, 1355- 1361. 5. Lo, W. Y., Improvement of a cell-based biosensor. Bachelor Thesis, National Taiwan University 2018. 6. Lin, Y.-J. Highly sensitive cadmium biosensors identified by phylogenetic approaches. Bachelor Thesis, National Taiwan University 2019. 7. Kuo, S. T.; Jahn, R. L.; Cheng, Y. J.; Chen, Y. L.; Lee, Y. J.; Hollfelder, F.; Wen, J. D.; Chou, H. D., Global fitness landscapes of the Shine-Dalgarno sequence. Genome Res 2020, 30 (5), 711-723. 8. Bryksin, A. V.; Matsumura, I., Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. Biotechniques 2010, 48 (6), 463-5. 9. Chou, H. H.; Marx, C. J.; Sauer, U., Transhydrogenase promotes the robustness and evolvability of E. coli deficient in NADPH production. PLoS Genet 2015, 11 (2), e1005007. 10. Guo, K. H.; Chen, P. H.; Lin, C.; Chen, C. F.; Lee, I. R.; Yeh, Y. C., Determination of Gold Ions in Human Urine Using Genetically Engineered Microorganisms on a Paper Device. ACS Sens 2018, 3 (4), 744-748. 11. Zaslaver, A.; Bren, A.; Ronen, M.; Itzkovitz, S.; Kikoin, I.; Shavit, S.; Liebermeister, W.; Surette, M. G.; Alon, U., A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 2006, 3 (8), 623-8. 12. Gerosa, L.; Kochanowski, K.; Heinemann, M.; Sauer, U., Dissecting specific and global transcriptional regulation of bacterial gene expression. Mol Syst Biol 2013, 9, 658. 13. He, M. Y.; Lin, Y. J.; Kao, Y. L.; Kuo, P.; Grauffel, C.; Lim, C.; Cheng, Y. S.; Chou, H. D., Sensitive and Specific Cadmium Biosensor Developed by Reconfiguring Metal Transport and Leveraging Natural Gene Repositories. ACS Sens 2021. 14. Tao, H. C.; Peng, Z. W.; Li, P. S.; Yu, T. A.; Su, J., Optimizing cadmium and mercury specificity of CadR-based E-coli biosensors by redesign of CadR. Biotechnol Lett 2013, 35 (8), 1253-1258. 15. Tang, X.; Zeng, G. M.; Fan, C. Z.; Zhou, M.; Tang, L.; Zhu, J. J.; Wan, J.; Huang, D. L.; Chen, M.; Xu, P.; Zhang, C.; Lu, Y.; Xiong, W. P., Chromosomal expression of CadR on Pseudomonas aeruginosa for the removal of Cd(II) from aqueous solutions. Sci Total Environ 2018, 636, 1355-1361. 16. Permina, E. A.; Kazakov, A. E.; Kalinina, O. V.; Gelfand, M. S., Comparative genomics of regulation of heavy metal resistance in Eubacteria. BMC Microbiol 2006, 6, 49. 17. Kang, Y.; Lee, W.; Kim, S.; Jang, G.; Kim, B. G.; Yoon, Y., Enhancing the copper- sensing capability of Escherichia coli-based whole-cell bioreporters by genetic engineering. Appl Microbiol Biotechnol 2018, 102 (3), 1513-1521. 18. Waldron, K. J.; Robinson, N. J., How do bacterial cells ensure that metalloproteins get the correct metal? (vol 7, pg 25, 2009). Nature Reviews Microbiology 2009, 7 (2). 19. Brocklehurst, K. R.; Megit, S. J.; Morby, A. P., Characterisation of CadR from Pseudomonas aeruginosa: a Cd(II)-responsive MerR homologue. Biochem Bioph Res Co 2003, 308 (2), 234-239. 20. Rensing, C.; Mitra, B.; Rosen, B. P., The zntA gene of Escherichia coli encodes a Zn(II)- translocating P-type ATPase. Proc Natl Acad Sci U S A 1997, 94 (26), 14326-31. 21. Fan, B.; Rosen, B. P., Biochemical characterization of CopA, the Escherichia coli Cu(I)- translocating P-type ATPase. J Biol Chem 2002, 277 (49), 46987-92. 22. Delmar, J. A.; Su, C. C.; Yu, E. W., Heavy metal transport by the CusCFBA efflux system. Protein Sci 2015, 24 (11), 1720-36. 23. Brocklehurst, K. R.; Hobman, J. L.; Lawley, B.; Blank, L.; Marshall, S. J.; Brown, N. L.; Morby, A. P., ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Molecular Microbiology 1999, 31 (3), 893-902. 24. Stoyanov, J. V.; Hobman, J. L.; Brown, N. L., CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Molecular Microbiology 2001, 39 (2), 502-511. 25. Brocklehurst, K. R.; Megit, S. J.; Morby, A. P., Characterisation of CadR from Pseudomonas aeruginosa: a Cd(II)-responsive MerR homologue. Biochem. Biophys. Res. Commun. 2003, 308 (2), 234-9. 26. Lee, S. W.; Glickmann, E.; Cooksey, D. A., Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl. Environ. Microbiol. 2001, 67 (4), 1437-44. 27. Chao, Y.; Fu, D., Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter, ZitB. Journal of Biological Chemistry 2004, 279 (13), 12043-12050. 28. Rahman, M.; Patching, S. G.; Ismat, F.; Henderson, P. J.; Herbert, R. B.; Baldwin, S. A.; McPherson, M. J., Probing metal ion substrate-binding to the E. coli ZitB exporter in native membranes by solid state NMR. Mol Membr Biol 2008, 25 (8), 683-90. 29. Osman, D.; Foster, A. W.; Chen, J. J.; Svedaite, K.; Steed, J. W.; Lurie-Luke, E.; Huggins, T. G.; Robinson, N. J., Fine control of metal concentrations is necessary for cells to discern zinc from cobalt. Nature Communications 2017, 8. 30. Yoon, Y.; Kang, Y.; Lee, W.; Oh, K. C.; Jang, G.; Kim, B. G., Modulating the properties of metal-sensing whole-cell bioreporters by interfering with Escherichia coli metal homeostasis. J Microbiol Biotechnol 2018, 28 (2), 323-329. 31. Grass, G.; Fan, B.; Rosen, B. P.; Franke, S.; Nies, D. H.; Rensing, C., ZitB (YbgR), a member of the cation diffusion facilitator family, is an additional zinc transporter in Escherichia coli. J Bacteriol 2001, 183 (15), 4664-7. 32. Shetty, R. S.; Deo, S. K.; Shah, P.; Sun, Y.; Rosen, B. P.; Daunert, S., Luminescence- based whole-cell-sensing systems for cadmium and lead using genetically engineered bacteria. Anal Bioanal Chem 2003, 376 (1), 11-7. 33. Joe, M. H.; Lee, K. H.; Lim, S. Y.; Im, S. H.; Song, H. P.; Lee, I. S.; Kim, D. H., Pigment-based whole-cell biosensor system for cadmium detection using genetically engineered Deinococcus radiodurans. Bioproc Biosyst Eng 2012, 35 (1-2), 265-272. 34. Matsuura, H.; Yamamoto, Y.; Muraoka, M.; Akaishi, K.; Hori, Y.; Uemura, K.; Tsuji, N.; Harada, K.; Hirata, K.; Bamba, T.; Miyasaka, H.; Kuroda, K.; Ueda, M., Development of surface-engineered yeast cells displaying phytochelatin synthase and their application to cadmium biosensors by the combined use of pyrene-excimer fluorescence. Biotechnol Prog 2013, 29 (5), 1197-202. Chapter III. 1. Bereza-Malcolm, L. T.; Mann, G.; Franks, A. E., Environmental Sensing of Heavy Metals Through Whole Cell Microbial Biosensors: A Synthetic Biology Approach. Acs Synthetic Biology 2015, 4 (5), 535-546. 2. Rueden, C. T.; Schindelin, J.; Hiner, M. C.; DeZonia, B. E.; Walter, A. E.; Arena, E. T.; Eliceiri, K. W., ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 2017, 18 (1), 529. 3. He, M. Y.; Lin, Y. J.; Kao, Y. L.; Kuo, P.; Grauffel, C.; Lim, C.; Cheng, Y. S.; Chou, H. D., Sensitive and Specific Cadmium Biosensor Developed by Reconfiguring Metal Transport and Leveraging Natural Gene Repositories. ACS Sens 2021. 4. World Health Organization, Cadmium in drinking-water. WHO/SDE/WSH/03.04/80/Rev/1 ed.; World Health Organization: Geneva, 2011. 5. Li, H.; Yao, Y.; Han, C.; Zhan, J., Triazole-ester modified silver nanoparticles: click synthesis and Cd2+ colorimetric sensing. Chem Commun (Camb) 2009, (32), 4812-4. 6. Guo, Y. M.; Zhang, Y.; Shao, H. W.; Wang, Z.; Wang, X. F.; Jiang, X. Y., Label-Free Colorimetric Detection of Cadmium Ions in Rice Samples Using Gold Nanoparticles. Anal Chem 2014, 86 (17), 8530-8534. 7. Zhang, L. F.; Hu, W. P.; Yu, L. P.; Wang, Y., Click synthesis of a novel triazole bridged AIE active cyclodextrin probe for specific detection of Cd-2. Chem Commun 2015, 51 (20), 4298- 4301. 8. Lin, L.; Wang, Y.; Xiao, Y.; Liu, W., Hydrothermal synthesis of carbon dots codoped with nitrogen and phosphorus as a turn-on fluorescent probe for cadmium(II). Mikrochim Acta 2019, 186 (3), 147. 9. Wang, H.; Da, L.; Yang, L.; Chu, S.; Yang, F.; Yu, S.; Jiang, C., Colorimetric fluorescent paper strip with smartphone platform for quantitative detection of cadmium ions in real samples. J Hazard Mater 2020, 392, 122506. 10. Zeng, L.; Gong, J.; Rong, P.; Liu, C.; Chen, J., A portable and quantitative biosensor for cadmium detection using glucometer as the point-of-use device. Talanta 2019, 198, 412-416. 11. Blake, D. A.; Jones, R. M.; Blake, R. C., 2nd; Pavlov, A. R.; Darwish, I. A.; Yu, H., Antibody-based sensors for heavy metal ions. Biosens Bioelectron 2001, 16 (9-12), 799-809. 12. Song, S. S. Z., S. Z.; Zhu, J. P.; Liu, L. Q.; Kuang, H., Immunochromatographic paper sensor for ultrasensitive colorimetric detection of cadmium. Food Agric. Immunol. 2018, 29 (1), 3-13. Chapter IV. 1. Lee, S. W.; Glickmann, E.; Cooksey, D. A., Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl Environ Microb 2001, 67 (4), 1437-1444. 2. Hall, M. D.; Yasgar, A.; Peryea, T.; Braisted, J. C.; Jadhav, A.; Simeonov, A.; Coussens, N. P., Fluorescence polarization assays in high-throughput screening and drug discovery: a review. Methods Appl Fluoresc 2016, 4 (2), 022001. 3. Rossi, A. M.; Taylor, C. W., Analysis of protein-ligand interactions by fluorescence polarization. Nat Protoc 2011, 6 (3), 365-87. 4. Moerke, N. J., Fluorescence Polarization (FP) Assays for Monitoring Peptide-Protein or Nucleic Acid-Protein Binding. Curr Protoc Chem Biol 2009, 1 (1), 1-15. 5. Anderson, B. J.; Larkin, C.; Guja, K.; Schildbach, J. F., Using Fluorophore-Labeled Oligonucleotides to Measure Affinities of Protein-DNA Interactions. Method Enzymol 2008, 450, 253-272. 6. Liu, X.; Hu, Q.; Yang, J.; Huang, S.; Wei, T.; Chen, W.; He, Y.; Wang, D.; Liu, Z.; Wang, K.; Gan, J.; Chen, H., Selective cadmium regulation mediated by a cooperative binding mechanism in CadR. Proc Natl Acad Sci U S A 2019, 116 (41), 20398-20403. 7. Mikhaylina, A.; Ksibe, A. Z.; Scanlan, D. J.; Blindauer, C. A., Bacterial zinc uptake regulator proteins and their regulons. Biochem Soc Trans 2018, 46 (4), 983-1001. 8. O'Halloran, T. V.; Frantz, B.; Shin, M. K.; Ralston, D. M.; Wright, J. G., The MerR heavy metal receptor mediates positive activation in a topologically novel transcription complex. Cell 1989, 56 (1), 119-29. 9. Joshi, C. P.; Panda, D.; Martell, D. J.; Andoy, N. M.; Chen, T. Y.; Gaballa, A.; Helmann, J. D.; Chen, P., Direct substitution and assisted dissociation pathways for turning off transcription by a MerR-family metalloregulator. Proc Natl Acad Sci U S A 2012, 109 (38), 15121-6. 10. Andoy, N. M.; Sarkar, S. K.; Wang, Q.; Panda, D.; Benitez, J. J.; Kalininskiy, A.; Chen, P., Single-molecule study of metalloregulator CueR-DNA interactions using engineered Holliday junctions. Biophys J 2009, 97 (3), 844-52. 11. Osman, D.; Foster, A. W.; Chen, J. J.; Svedaite, K.; Steed, J. W.; Lurie-Luke, E.; Huggins, T. G.; Robinson, N. J., Fine control of metal concentrations is necessary for cells to discern zinc from cobalt. Nature Communications 2017, 8. 12. Xu, J.; Matthews, K. S., Flexibility in the inducer binding region is crucial for allostery in the Escherichia coli lactose repressor. Biochemistry 2009, 48 (22), 4988-98. Chapter V. 1. Corbisier, P.; Ji, G.; Nuyts, G.; Mergeay, M.; Silver, S., luxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258. Fems Microbiol Lett 1993, 110 (2), 231-8. 2. World Health Organization, Cadmium in drinking-water. WHO/SDE/WSH/03.04/80/Rev/1 ed.; World Health Organization: Geneva, 2011. Supplementary information 1. He, M. Y.; Lin, Y. J.; Kao, Y. L.; Kuo, P.; Grauffel, C.; Lim, C.; Cheng, Y. S.; Chou, H. D., Sensitive and Specific Cadmium Biosensor Developed by Reconfiguring Metal Transport and Leveraging Natural Gene Repositories. ACS Sens 2021.
|