跳到主要內容

臺灣博碩士論文加值系統

(100.26.176.111) 您好!臺灣時間:2024/07/16 14:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林珊珊
研究生(外文):Shan-Shan Lin
論文名稱:Dynamin-2在神經肌肉接合處後端所扮演的角色
論文名稱(外文):The Role of Dynamin-2 in Postsynaptic Neuromuscular Junction
指導教授:劉雅雯
指導教授(外文):Ya-Wen Liu
口試委員:李芳仁潘俊良姚季光傅琪鈺
口試委員(外文):Fang-Jen LeeChun-Liang PanChi-Kuang YaoChi-Yu Fu
口試日期:2021-01-08
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:153
中文關鍵詞:dynamin-2神經肌肉接合處發育足小體肌動蛋白綑綁蛋白質
外文關鍵詞:dynamin-2NMJ morphogenesispodosomeactin-bundling protein
DOI:10.6342/NTU202100043
相關次數:
  • 被引用被引用:0
  • 點閱點閱:105
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Dynamin是一種大型GTP水解酶,因其在胞吞過程中催化膜分裂而聞名。有越來越多研究發現dynamin的功能並不侷限於膜上,一些需要機動蛋白重塑的位置,例如足小體、侵襲體、以及板狀偽足上都可以見到dynamin的身影。儘管過去研究發現足小體可以調節神經肌肉接合處(neuromuscular junction, NMJ)的發育,且在這些足小體上可以看到dynamin的聚集,但dynamin是否以及如何調節NMJ的發育尚不清楚。在本篇研究中,我們從分子、細胞、及個體的角度來回答這個問題。我們發現廣泛存在於不同細胞的dynamin亞型:dynamin-2,具有能被GTP水解調控的肌動蛋白綑綁能力,他能聚集在足小體周圍來調控足小體的生長與功能。在動物實驗中,我們還發現dynamin-2會影響突觸後細胞骨架以及果蠅的電生理活性。總結來說,我們的研究證實dynamin-2能透過調節肌動蛋白骨架重塑,進而促進NMJ突觸後發育。
Dynamin is a large GTPase most-known for catalyzing membrane fission during endocytosis. Growing evidence suggests that the function of dynamin is not restricted to membrane but also required at sites where endocytosis-independent actin remodeling occurs: including podosome, invadopodium, and lamellipodium. Although podosome has been shown to regulate NMJ development, and dynamin has been shown enriched at muscle podosomes. Whether and how dynamin regulates NMJ development remained unclear. In this study, we address this question from molecular, cellular, and organismal levels. We revealed that the ubiquitously expressed isoform, dynamin-2, is an actin-bundler with its activity regulated by GTP hydrolysis. It assembles around podosomes to regulate their growth, turnover, and function. On the organismal level, we uncover the impact of dynamin-2 in postsynaptic cytoskeleton and electrophysiological properties. To summarize, our study revealed a novel role of dynamin-2 in actin remodeling, which facilitates the process of postsynaptic NMJ development.
Table of Contents
口試委員會審定書 i
致謝財團法人罕見疾病基金會 ii
致謝 iii
中文摘要 v
Abstract vi
Table of Contents vii
Chapter 1-Introduction 1
1.1 Dynamin, a well-known catalyzer for membrane fission 1
1.2 The potential function of dynamin at postsynaptic NMJ 3
1.3 Podosome and its role during NMJ development 5
1.4 A tale of dynamin and actin filaments 6
Chapter 2-Material and Methods 8
2.1 Drosophila stocks 8
2.2 Dissecting of Drosophila larval body wall muscle 8
2.3 Cell culture 9
2.4 Transfection, lentiviral and adenoviral infection 10
2.5 Immunofluorescent staining 11
2.6 Fluorescence microscopy 12
2.7 Matrix degradation assay 13
2.8 TEM of Drosophila NMJs 14
2.9 Electrophysiology of Drosophila NMJ 16
2.10 Image analysis 17
2.11 Dynamin expression and purification 17
2.12 F-actin bundle sedimentation assay 18
2.13 Transmission electron microscopy 20
2.14 Quantification and statistical analysis 21
Chapter 3-Results 21
3.1 Dyn2 is enriched at postsynaptic NMJ 21
3.2 Dyn2 affects postsynaptic cytoskeletal organization 22
3.3 CNM-Dyn2 interfere electrophysiological activity of Drosophila larval NMJ 24
3.4 Dyn2 forms belt-shaped structures around the actin core of podosomes 26
3.5 Dyn2 is required for podosome growth 29
3.6 Dyn2 regulates podosome turnover 30
3.7 Actin binding, self-assembly, and GTP hydrolysis activity of Dyn2 are involved in podosome growth 33
3.8 Actin binding, self-assembly, and GTP hydrolysis activity of Dyn2 are involved in podosome turnover 34
3.9 Dyn2 is required for podosome-mediated ECM degradation 36
3.10 Dyn2 regulates AChR cluster perforation through podosome 37
3.11 Dyn2 remodels actin cytoskeleton through actin bundling activity 38
3.12 Actin bundling activity of Dyn2 is regulated by GTP hydrolysis 39
3.13 Dyn2 oligomers assemble around actin filaments 42
3.14 CNM-associated Dyn2 mutant proteins are insensitive to GTP hydrolysis 45
3.15 Dyn2 bundles both linear and branched actin filaments 46
Chapter 4-Discussion 47
4.1 Dyn2 regulates NMJ development 47
4.2 Dyn2 promotes podosome growth through its actin bundling activity 48
4.3 Dyn2, a novel regulator for podosome turnover 50
4.4 Dyn2 is a bundling protein for actin filaments 51
Chapter 5-Figures and Tables 53
Figure 1. Structure and assembly of Dyn 53
Figure 2. Structure of podosome 55
Figure 3. Dyn2 enriched at Drosophila postsynaptic NMJ 57
Figure 4. Dyn2 affects postsynaptic cytoskeletal organization in Drosophila 59
Figure 5. Effects of Dyn2 at Drosophila postsynaptic NMJ 61
Figure 6. Dyn2 affects postsynaptic SSR density in Drosophila 63
Figure 7. Dyn2 affects electrophysiological activities in Drosophila 65
Figure 8. Dyn2 did not affect GluRIIA distribution 67
Figure 9. Endogenous Dyn2 is enriched at mouse postsynaptic NMJ 69
Figure 10. AChR clustering and perforation in C2C12 myotubes on laminin-coated glass coverslips 71
Figure 11. AChR clustering and perforation in C2C12 myotubes 73
Figure 12. Dyn2 formed belt-shaped structure around some podosome core 75
Figure 13. Dyn2-belt localize in between podosome core and the radical actin cables 77
Figure 14. Level of Dyn2 enrichment correlates with podosome size 79
Figure 15. Dyn2 is required for podosome growth 81
Figure 16. Dyn2 forms belt-shaped structure as podosome matures 83
Figure 17. The correlation of Dyn2 enrichment and podosome lifespan 85
Figure 18. Dyn2 is required for podosome turnover 87
Figure 19. Dyn2 GTPase activity is involved in podosome growth and turnover 89
Figure 20. Mutations used in this study 91
Figure 21. Effects of mutant Dyn2 on podosome morphology in wild type myotubes 93
Figure 22. Rescuing effects of mutant Dyn2 on podosome morphology in Dyn2-depleted myotubes 95
Figure 23. Dyn2 is essential for podosome growth 97
Figure 24. Dyn2 is essential for podosome turnover 99
Figure 25. Dyn2 is essential for podosome growth in c-Src transformed NIH3T3 cells 101
Figure 26. Dyn2 is essential for podosome turnover in c-Src transformed NIH3T3 cells 103
Figure 27. Dyn2 regulates podosome lifespan in c-Src transformed NIH3T3 cells 105
Figure 28. Dyn2 regulates podosome-mediated matrix degradation 107
Figure 29. Expressing Dyn2 hyper self-assembly mutant perturbs matrix degradation activity in wild type myotubes 109
Figure 30. Dyn2 mediates AChR cluster organization 111
Figure 31. Expressing Dyn2 hyper self-assembly mutant perturbs AChR perforation 113
Figure 32. Dyn2 bundles in vitro reconstituted actin filaments 115
Figure 33. GTP, GDP, and GTPS addition reduced Dyn2-bundled actin 117
Figure 34. GTP hydrolysis reduced Dyn2-bundled actin 119
Figure 35. GTP hydrolysis induced disassembly of Dyn2-bundled actin 121
Figure 36. PRD domain of Dyn2 is not required for its actin bundling activity 123
Figure 37. Physical interruption failed to generate single actin bundles 125
Figure 38. Reducing temperature and Dyn2 concentration generated small actin bundles 127
Figure 39. Small actin bundles can be visualized under negative stain and CryoEM activity in wild type myotubes 129
Figure 40. Actin filaments packed inside the Dyn2 helix 131
Figure 41. Actin filaments bundled by hyper self-assembly Dyn2 mutant was less sensitive to GTP 133
Figure 42. Actin filaments bundled by CNM-Dyn2 mutant were less sensitive to GTP 135
Figure 43. Dyn2 bundles branched actin 137
Figure 44. GTP hydrolysis regulates disassembly of branched-actin bundles 139
Figure 45. branched-actin bundled by CNM-Dyn2 were less sensitive to GTP hydrolysis 141
Figure 46. Working model of Dyn2 in podosome turnover and its distinct role in pre- and postsynaptic NMJ 143
Table 1. Plasmids used in this study 145
Table 2. Antibodies used in this study 146
Chapter 6-References 147
Antonny, B., Burd, C., De Camilli, P., Chen, E., Daumke, O., Faelber, K., Ford, M., Frolov, V.A., Frost, A., Hinshaw, J.E., et al. (2016). Membrane fission by dynamin: what we know and what we need to know. The EMBO journal 35, 2270-2284.
Au - Murray, L., Au - Gillingwater, T.H., and Au - Kothary, R. (2014). Dissection of the Transversus Abdominis Muscle for Whole-mount Neuromuscular Junction Analysis. JoVE, e51162.
Bashkirov, P.V., Akimov, S.A., Evseev, A.I., Schmid, S.L., Zimmerberg, J., and Frolov, V.A. (2008). GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell 135, 1276-1286.
Bernadzki, K.M., Rojek, K.O., and Prószyński, T.J. (2014). Podosomes in muscle cells and their role in the remodeling of neuromuscular postsynaptic machinery. European Journal of Cell Biology 93, 478-485.
Bezakova, G., and Ruegg, M.A. (2003). New insights into the roles of agrin. Nat Rev Mol Cell Biol 4, 295-308.
Bitoun, M., Maugenre, S., Jeannet, P.Y., Lacene, E., Ferrer, X., Laforet, P., Martin, J.J., Laporte, J., Lochmuller, H., Beggs, A.H., et al. (2005). Mutations in dynamin 2 cause dominant centronuclear myopathy. Nature genetics 37, 1207-1209.
Blunk, A.D., Akbergenova, Y., Cho, R.W., Lee, J., Walldorf, U., Xu, K., Zhong, G., Zhuang, X., and Littleton, J.T. (2014). Postsynaptic actin regulates active zone spacing and glutamate receptor apposition at the Drosophila neuromuscular junction. Mol Cell Neurosci 61, 241-254.
Bruzzaniti, A., Neff, L., Sanjay, A., Horne, W.C., De Camilli, P., and Baron, R. (2005). Dynamin forms a Src kinase-sensitive complex with Cbl and regulates podosomes and osteoclast activity. Molecular biology of the cell 16, 3301-3313.
Budnik, V., Koh, Y.H., Guan, B., Hartmann, B., Hough, C., Woods, D., and Gorczyca, M. (1996). Regulation of synapse structure and function by the Drosophila tumor suppressor gene dlg. Neuron 17, 627-640.
Cervero, P., Wiesner, C., Bouissou, A., Poincloux, R., and Linder, S. (2018). Lymphocyte-specific protein 1 regulates mechanosensory oscillation of podosomes and actin isoform-based actomyosin symmetry breaking. Nature communications 9, 515-515.
Chan, Z.C.-K., Kwan, H.-L.R., Wong, Y.S., Jiang, Z., Zhou, Z., Tam, K.W., Chan, Y.-S., Chan, C.B., and Lee, C.W. (2020). Site-directed MT1-MMP trafficking and surface insertion regulate AChR clustering and remodeling at developing NMJs. eLife 9, e54379.
Chappie, J.S., Acharya, S., Leonard, M., Schmid, S.L., and Dyda, F. (2010). G domain dimerization controls dynamin's assembly-stimulated GTPase activity. Nature 465, 435-440.
Chappie, J.S., Mears, J.A., Fang, S., Leonard, M., Schmid, S.L., Milligan, R.A., Hinshaw, J.E., and Dyda, F. (2011). A pseudoatomic model of the dynamin polymer identifies a hydrolysis-dependent powerstroke. Cell 147, 209-222.
Chin, Y.H., Lee, A., Kan, H.W., Laiman, J., Chuang, M.C., Hsieh, S.T., and Liu, Y.W. (2015). Dynamin-2 mutations associated with centronuclear myopathy are hypermorphic and lead to T-tubule fragmentation. Human molecular genetics 24, 5542-5554.
Chuang, M.C., Lin, S.S., Ohniwa, R.L., Lee, G.H., Su, Y.A., Chang, Y.C., Tang, M.J., and Liu, Y.W. (2019). Tks5 and Dynamin-2 enhance actin bundle rigidity in invadosomes to promote myoblast fusion. The Journal of cell biology 218, 1670-1685.
Cowling, B.S., Toussaint, A., Amoasii, L., Koebel, P., Ferry, A., Davignon, L., Nishino, I., Mandel, J.L., and Laporte, J. (2011). Increased expression of wild-type or a centronuclear myopathy mutant of dynamin 2 in skeletal muscle of adult mice leads to structural defects and muscle weakness. Am J Pathol 178, 2224-2235.
Destaing, O., Ferguson, S.M., Grichine, A., Oddou, C., De Camilli, P., Albiges-Rizo, C., and Baron, R. (2013). Essential Function of Dynamin in the Invasive Properties and Actin Architecture of v-Src Induced Podosomes/Invadosomes. PLoS One 8, e77956.
Destaing, O., Saltel, F., Géminard, J.-C., Jurdic, P., and Bard, F. (2002). Podosomes Display Actin Turnover and Dynamic Self-Organization in Osteoclasts Expressing Actin-Green Fluorescent Protein. Molecular Biology of the Cell 14, 407-416.
Faelber, K., Gao, S., Held, M., Posor, Y., Haucke, V., Noe, F., and Daumke, O. (2013). Oligomerization of dynamin superfamily proteins in health and disease. Prog Mol Biol Transl Sci 117, 411-443.
Ferguson, S.M., Brasnjo, G., Hayashi, M., Wolfel, M., Collesi, C., Giovedi, S., Raimondi, A., Gong, L.W., Ariel, P., Paradise, S., et al. (2007). A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. Science 316, 570-574.
Ferguson, S.M., and De Camilli, P. (2012). Dynamin, a membrane-remodelling GTPase. Nat Rev Mol Cell Biol 13, 75-88.
Ferraro, E., Molinari, F., and Berghella, L. (2012). Molecular control of neuromuscular junction development. Journal of cachexia, sarcopenia and muscle 3, 13-23.
Gibbs, E.M., Clarke, N.F., Rose, K., Oates, E.C., Webster, R., Feldman, E.L., and Dowling, J.J. (2013). Neuromuscular junction abnormalities in DNM2-related centronuclear myopathy. Journal of molecular medicine (Berlin, Germany) 91, 727-737.
Gibbs, E.M., Davidson, A.E., Telfer, W.R., Feldman, E.L., and Dowling, J.J. (2014). The myopathy-causing mutation DNM2-S619L leads to defective tubulation in vitro and in developing zebrafish. Dis Model Mech 7, 157-161.
Gu, C., Yaddanapudi, S., Weins, A., Osborn, T., Reiser, J., Pollak, M., Hartwig, J., and Sever, S. (2010). Direct dynamin-actin interactions regulate the actin cytoskeleton. The EMBO journal 29, 3593-3606.
Guiet, R., Verollet, C., Lamsoul, I., Cougoule, C., Poincloux, R., Labrousse, A., Calderwood, D.A., Glogauer, M., Lutz, P.G., and Maridonneau-Parini, I. (2012). Macrophage mesenchymal migration requires podosome stabilization by filamin A. J Biol Chem 287, 13051-13062.
Hinshaw, J.E. (2000). Dynamin and Its Role in Membrane Fission. Annual review of cell and developmental biology 16, 483-519.
Hohendahl, A., Roux, A., and Galli, V. (2016). Structural insights into the centronuclear myopathy-associated functions of BIN1 and dynamin 2. J Struct Biol 196, 37-47.
Jameson, D.M. (2014). Introduction to Fluorescence (CRC Press).
Kenniston, J.A., and Lemmon, M.A. (2010). Dynamin GTPase regulation is altered by PH domain mutations found in centronuclear myopathy patients. The EMBO journal 29, 3054-3067.
Kishi, M., Kummer, T.T., Eglen, S.J., and Sanes, J.R. (2005). LL5beta: a regulator of postsynaptic differentiation identified in a screen for synaptically enriched transcripts at the neuromuscular junction. The Journal of cell biology 169, 355-366.
Kong, L., Sochacki, K.A., Wang, H., Fang, S., Canagarajah, B., Kehr, A.D., Rice, W.J., Strub, M.P., Taraska, J.W., and Hinshaw, J.E. (2018). Cryo-EM of the dynamin polymer assembled on lipid membrane. Nature 560, 258-262.
Kummer , T.T., Misgeld , T., Lichtman , J.W., and Sanes , J.R. (2004). Nerve-independent formation of a topologically complex postsynaptic apparatus. The Journal of cell biology 164, 1077-1087.
Labernadie, A., Bouissou, A., Delobelle, P., Balor, S., Voituriez, R., Proag, A., Fourquaux, I., Thibault, C., Vieu, C., Poincloux, R., et al. (2014). Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes. Nat Commun 5, 5343.
Lee, G., and Schwarz, T.L. (2016). Filamin, a synaptic organizer in Drosophila, determines glutamate receptor composition and membrane growth. eLife 5, e19991.
Lin, S.-S., Chuang, M.-C., and Liu, Y.-W. (2019). F-actin Bundle Sedimentation Assay. Bio-protocol 9, e3419.
Lin, S.-S., Hsieh, T.-L., Liou, G.-G., Li, T.-N., Lin, H.-C., Chang, C.-W., Wu, H.-Y., Yao, C.-K., and Liu, Y.-W. (2020). Dynamin-2 Regulates Postsynaptic Cytoskeleton Organization and Neuromuscular Junction Development. Cell Reports 33, 108310.
Lin, W., Burgess, R.W., Dominguez, B., Pfaff, S.L., Sanes, J.R., and Lee, K.F. (2001). Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse. Nature 410, 1057-1064.
Linder, S. (2007). The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends in Cell Biology 17, 107-117.
Linder, S., and Aepfelbacher, M. (2003). Podosomes: adhesion hot-spots of invasive cells. Trends in Cell Biology 13, 376-385.
Linder, S., and Kopp, P. (2005). Podosomes at a glance. J Cell Sci 118, 2079.
Linder, S., and Wiesner, C. (2016). Feel the force: Podosomes in mechanosensing. Experimental Cell Research 343, 67-72.
Liu, Y.W., Neumann, S., Ramachandran, R., Ferguson, S.M., Pucadyil, T.J., and Schmid, S.L. (2011). Differential curvature sensing and generating activities of dynamin isoforms provide opportunities for tissue-specific regulation. Proc Natl Acad Sci U S A 108, E234-242.
Luxenburg, C., Geblinger, D., Klein, E., Anderson, K., Hanein, D., Geiger, B., and Addadi, L. (2007). The architecture of the adhesive apparatus of cultured osteoclasts: from podosome formation to sealing zone assembly. PLoS One 2, e179-e179.
Luxenburg, C., Winograd-Katz, S., Addadi, L., and Geiger, B. (2012). Involvement of actin polymerization in podosome dynamics. Journal of cell science 125, 1666-1672.
Marques, M.J., Conchello, J.-A., and Lichtman, J.W. (2000). From Plaque to Pretzel: Fold Formation and Acetylcholine Receptor Loss at the Developing Neuromuscular Junction. The Journal of Neuroscience 20, 3663.
Marrus, S.B., Portman, S.L., Allen, M.J., Moffat, K.G., and DiAntonio, A. (2004). Differential localization of glutamate receptor subunits at the Drosophila neuromuscular junction. J Neurosci 24, 1406-1415.
McNiven, M.A., Kim, L., Krueger, E.W., Orth, J.D., Cao, H., and Wong, T.W. (2000). Regulated Interactions between Dynamin and the Actin-Binding Protein Cortactin Modulate Cell Shape. The Journal of cell biology 151, 187.
Menon, M., and Schafer, D.A. (2013). Chapter Three - Dynamin: Expanding Its Scope to the Cytoskeleton. In International Review of Cell and Molecular Biology, K.W. Jeon, ed. (Academic Press), pp. 187-219.
Mooren, O.L., Kotova, T.I., Moore, A.J., and Schafer, D.A. (2009). Dynamin2 GTPase and cortactin remodel actin filaments. J Biol Chem 284, 23995-24005.
Newton, A.J., Kirchhausen, T., and Murthy, V.N. (2006). Inhibition of dynamin completely blocks compensatory synaptic vesicle endocytosis. Proceedings of the National Academy of Sciences 103, 17955-17960.
Obar, R.A., Collins, C.A., Hammarback, J.A., Shpetner, H.S., and Vallee, R.B. (1990). Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins. Nature 347, 256-261.
Ochoa, G.-C., Slepnev, V.I., Neff, L., Ringstad, N., Takei, K., Daniell, L., Kim, W., Cao, H., McNiven, M., Baron, R., et al. (2000). A Functional Link between Dynamin and the Actin Cytoskeleton at Podosomes. The Journal of cell biology 150, 377.
Pan, Y.R., Chen, C.L., and Chen, H.C. (2011). FAK is required for the assembly of podosome rosettes. J Cell Biol 195, 113-129.
Peng, J.-J., Lin, S.-H., Liu, Y.-T., Lin, H.-C., Li, T.-N., and Yao, C.-K. (2019). A circuit-dependent ROS feedback loop mediates glutamate excitotoxicity to sculpt the Drosophila motor system. eLife 8, e47372.
Pęziński, M., Daszczuk, P., Pradhan, B.S., Lochmüller, H., and Prószyński, T.J. (2020). An improved method for culturing myotubes on laminins for the robust clustering of postsynaptic machinery. Scientific Reports 10, 4524.
Pielage, J., Fetter, R.D., and Davis, G.W. (2006). A postsynaptic Spectrin scaffold defines active zone size, spacing, and efficacy at the Drosophila neuromuscular junction. The Journal of cell biology 175, 491.
Proszynski, T.J., Gingras, J., Valdez, G., Krzewski, K., and Sanes, J.R. (2009a). Podosomes are present in a postsynaptic apparatus and participate in its maturation. Proceedings of the National Academy of Sciences 106, 18373.
Proszynski, T.J., Gingras, J., Valdez, G., Krzewski, K., and Sanes, J.R. (2009b). Podosomes are present in a postsynaptic apparatus and participate in its maturation. Proceedings of the National Academy of Sciences of the United States of America 106, 18373-18378.
Proszynski, T.J., and Sanes, J.R. (2013). Amotl2 interacts with LL5beta, localizes to podosomes and regulates postsynaptic differentiation in muscle. J Cell Sci 126, 2225-2235.
Pucadyil, T.J., and Schmid, S.L. (2008). Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell 135, 1263-1275.
Raimondi, A., Ferguson, S.M., Lou, X., Armbruster, M., Paradise, S., Giovedi, S., Messa, M., Kono, N., Takasaki, J., Cappello, V., et al. (2011). Overlapping role of dynamin isoforms in synaptic vesicle endocytosis. Neuron 70, 1100-1114.
Romero, N.B. (2010). Centronuclear myopathies: a widening concept. Neuromuscul Disord 20, 223-228.
Schafer, D.A. (2004). Regulating actin dynamics at membranes: a focus on dynamin. Traffic 5, 463-469.
Seals, D.F., Azucena, E.F., Jr., Pass, I., Tesfay, L., Gordon, R., Woodrow, M., Resau, J.H., and Courtneidge, S.A. (2005). The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer cell 7, 155-165.
Shi, L., Fu, A.K., and Ip, N.Y. (2012). Molecular mechanisms underlying maturation and maintenance of the vertebrate neuromuscular junction. Trends Neurosci 35, 441-453.
Sidiropoulos, P.N., Miehe, M., Bock, T., Tinelli, E., Oertli, C.I., Kuner, R., Meijer, D., Wollscheid, B., Niemann, A., and Suter, U. (2012). Dynamin 2 mutations in Charcot-Marie-Tooth neuropathy highlight the importance of clathrin-mediated endocytosis in myelination. Brain 135, 1395-1411.
Tinelli, E., Pereira, J.A., and Suter, U. (2013). Muscle-specific function of the centronuclear myopathy and Charcot–Marie–Tooth neuropathy-associated dynamin 2 is required for proper lipid metabolism, mitochondria, muscle fibers, neuromuscular junctions and peripheral nerves. Human molecular genetics 22, 4417-4429.
Van Audenhove, I., Debeuf, N., Boucherie, C., and Gettemans, J. (2015). Fascin actin bundling controls podosome turnover and disassembly while cortactin is involved in podosome assembly by its SH3 domain in THP-1 macrophages and dendritic cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1853, 940-952.
van den Dries, K., Bolomini-Vittori, M., and Cambi, A. (2014). Spatiotemporal organization and mechanosensory function of podosomes. Cell Adh Migr 8, 268-272.
van den Dries, K., Meddens, M.B.M., de Keijzer, S., Shekhar, S., Subramaniam, V., Figdor, C.G., and Cambi, A. (2013). Interplay between myosin IIA-mediated contractility and actin network integrity orchestrates podosome composition and oscillations. Nature Communications 4, 1412.
van der Bliek, A.M., and Meyerowitz, E.M. (1991). Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351, 411-414.
Wu, H., Xiong, W.C., and Mei, L. (2010). To build a synapse: signaling pathways in neuromuscular junction assembly. Development 137, 1017-1033.
Yang, X., Arber, S., William, C., Li, L., Tanabe, Y., Jessell, T.M., Birchmeier, C., and Burden, S.J. (2001). Patterning of Muscle Acetylcholine Receptor Gene Expression in the Absence of Motor Innervation. Neuron 30, 399-410.
Zhang, R., Lee, D.M., Jimah, J.R., Gerassimov, N., Yang, C., Kim, S., Luvsanjav, D., Winkelman, J., Mettlen, M., Abrams, M.E., et al. (2020). Dynamin regulates the dynamics and mechanical strength of the actin cytoskeleton as a multifilament actin-bundling protein. Nature Cell Biology.
Zhao, M., Maani, N., and Dowling, J.J. (2018). Dynamin 2 (DNM2) as Cause of, and Modifier for, Human Neuromuscular Disease. Neurotherapeutics 15, 966-975.
Zuchner, S., Noureddine, M., Kennerson, M., Verhoeven, K., Claeys, K., De Jonghe, P., Merory, J., Oliveira, S.A., Speer, M.C., Stenger, J.E., et al. (2005). Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-Marie-Tooth disease. Nature genetics 37, 289-294.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top