|
1.Chiang, S.-C., et al., The Timely Needs for Infantile Onset Pompe Disease Newborn Screening—Practice in Taiwan. 2020. 6(2): p. 30. 2.Chien, Y.-H., et al., Pompe disease in infants: improving the prognosis by newborn screening and early treatment. 2009. 124(6): p. e1116-e1125. 3.Chien, Y.-H., et al., Long-term prognosis of patients with infantile-onset Pompe disease diagnosed by newborn screening and treated since birth. 2015. 166(4): p. 985-991. e2. 4.Darrow, J.J.J.D.D.T., Luxturna: FDA documents reveal the value of a costly gene therapy. 2019. 24(4): p. 949-954. 5.Conlon, T.J., et al., Preclinical toxicology and biodistribution studies of recombinant adeno-associated virus 1 human acid α-glucosidase. 2013. 24(3): p. 127-133. 6.Corti, M., et al., Evaluation of readministration of a recombinant adeno-associated virus vector expressing acid alpha-glucosidase in Pompe disease: preclinical to clinical planning. 2015. 26(3): p. 185-193. 7.Lim, J.-A., L. Li, and N.J.F.i.a.n. Raben, Pompe disease: from pathophysiology to therapy and back again. 2014. 6: p. 177. 8.Kohler, L., R. Puertollano, and N.J.N. Raben, Pompe disease: from basic science to therapy. 2018. 15(4): p. 928-942. 9.Taverna, S., et al., Pompe disease: pathogenesis, molecular genetics and diagnosis. 2020. 12(15): p. 15856. 10.Concolino, D., F. Deodato, and R.J.I.J.o.P. Parini, Enzyme replacement therapy: efficacy and limitations. 2018. 44(2): p. 117-126. 11.Fiumara, A. Enzyme replacement therapy (ERT) in pompe disease. in Italian journal of pediatrics. 2014. Springer. 12.Salabarria, S., et al., Advancements in AAV-mediated gene therapy for Pompe disease. 2020. 7(1): p. 15-31. 13.Khanna, R., et al., The pharmacological chaperone AT2220 increases recombinant human acid α-glucosidase uptake and glycogen reduction in a mouse model of Pompe disease. 2012. 7(7): p. e40776. 14.Byrne, B.J., et al., Pompe disease gene therapy. 2011. 20(R1): p. R61-R68. 15.Bak, R.O., N. Gomez-Ospina, and M.H.J.T.i.G. Porteus, Gene editing on center stage. 2018. 34(8): p. 600-611. 16.Ledford, H. and E.J.N. Callaway, PIONEERS OF CRISPR GENE EDITING WIN CHEMISTRY NOBEL. 2020. 586(7829): p. 346-347. 17.Li, H., et al., Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. 2020. 5(1): p. 1-23. 18.FDA. What is Gene Therapy? 2018 07/25/2018 [cited 2018 07/25]; Available from: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/what-gene-therapy. 19.Gardlík, R., et al., Vectors and delivery systems in gene therapy. 2005. 11(4): p. RA110-RA121. 20.Corti, M., et al., Safety of intradiaphragmatic delivery of adeno-associated virus-mediated alpha-glucosidase (rAAV1-CMV-hGAA) gene therapy in children affected by Pompe disease. 2017. 28(4): p. 208-218. 21.Ronzitti, G., et al., Progress and challenges of gene therapy for Pompe disease. 2019. 7(13). 22.Hordeaux, J., et al., Long-term neurologic and cardiac correction by intrathecal gene therapy in Pompe disease. 2017. 5(1): p. 1-19. 23.Ou, L., et al., ZFN-mediated in vivo genome editing corrects murine hurler syndrome. 2019. 27(1): p. 178-187. 24.Chandrasegaran, S.J.C. and g.t. insights, Recent advances in the use of ZFN-mediated gene editing for human gene therapy. 2017. 3(1): p. 33. 25.Wang, Q., et al., CRISPR-Cas9-mediated in vivo gene integration at the albumin locus recovers hemostasis in neonatal and adult hemophilia B mice. 2020. 18: p. 520-531. 26.Seluanov, A., Z. Mao, and V.J.J. Gorbunova, Analysis of DNA double-strand break (DSB) repair in mammalian cells. 2010(43): p. e2002. 27.Zhang, J.-P., et al., Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage. 2017. 18(1): p. 1-18. 28.Persons, D.A.J.M.T., Lentiviral vector gene therapy: effective and safe? 2010. 18(5): p. 861-862. 29.Venditti, C.P.J.N.B., Safety questions for AAV gene therapy. 2021. 39(1): p. 24-26.
|