跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 09:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:倪犇
研究生(外文):Ben Ni
論文名稱:可能調控鼠傷寒沙門氏菌fimY基因表現的基因選殖與環境因子之探討
論文名稱(外文):Determination of the genetic elements and the environmental factors that control fimY expression in Salmonella enterica serovar Typhimurium
指導教授:葉光勝
指導教授(外文):Kuang-Sheng Yeh
口試委員:鄭益謙楊翠青
口試委員(外文):Ivan-Chen ChengTsuey-Ching Yang
口試日期:2021-06-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:獸醫學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:70
中文關鍵詞:鼠傷寒沙門氏菌第一型線毛fimY基因體庫環境因子
外文關鍵詞:Salmonella Typhimuriumtype 1 fimbriaefimYgenomic libraryenvironmental factor
DOI:10.6342/NTU202101163
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
沙門氏菌(Salmonella)隸屬於腸內桿菌科(Enterobacteriaceae),為一兼性厭氧 型革蘭氏陰性菌,由其腸道沙門氏菌亞種的鼠傷寒沙門氏菌血清型(Salmonella enterica serovar Typhimurium, S. Typhimurium)所造成的感染則是重要的人畜共通傳染病之一。S. Typhimurium在小腸上皮細胞的黏附作用被視為其致病機制的初 始階段,與之相關的毒力因子即為第一型線毛(type 1 fimbriae, T1F)。T1F由fim gene cluster所編碼,在fim gene cluster內,fimA編碼T1F的主要結構蛋白,而fimZ是主要的正向調控基因。FimZ可以直接結合於fimA的啟動子部位並增強結構基因的表達。fimY則是另一個正向調控基因,可以直接增強fimZ的表達。先前的研究發現了許多可以調控fimZ的上游基因成分(genetic elements)和環境因子(environmental factors),而fimY上游的相關研究則十分有限。本研究旨在對T1F調控網絡fimY的部分進行探討,為能夠更完整地闡述S. Typhimurium的致病機理提供相關理論基礎。為了從S. Typhimurium中選殖能夠正向調控fimY的genetic elements,本研究使用質體pACYC184構建了一個平均插入片段大小約為2,000 bp的基因體庫(genomic library),並最終產生了8,000多個包含重組質體的菌落。將菌落接種於LB agar上培養48小時後,若其可以與酵母菌發生凝集反應,則很有可能是通過上調fimY的表達來增強了第一型線毛的表現,當然這需要反轉錄聚合酶鏈鎖反應的進一步驗證。為了將篩選到特定基因的機率提高至90%以上,根據Carbon-Clarke equation,超過5,591個菌落被挑選並測試,結果均為陰性。後又將可能的調控基因sirA選殖入同樣的質體,並轉形入S. Typhimurium進行測試,結果仍無法產生凝集。為了探測可能影響fimY表達的環境因子,通過將fimY的啟動子區域DNA選殖入載體pMC1403,並轉形至S. Typhimurium,也就是構建了一個fimY-lacZ reporter system於S. Typhimurium。將此菌株分別培養在25 °C、37 °C 和 42 °C的環境中,發現fimY啟動子的活力會隨溫度升高而增強,T1F的表現量也呈現出類似的趨勢。酸性和鹼性的環境壓力對於 fimY 表達的影響也詳加探討,與pH=7的培養環境相比,fimY啟動子在pH=4的環境中幾乎不表 現活力。而在pH=8的情況下fimY啟動子的活力要高於pH=7的情況。在低Mg2+濃度(10 μM)環境壓力下,fimY啟動子的活力與對照組類似,並無明顯差異。環境因素調控fimY表達的具體機制仍須進一步的研究闡明。
Salmonella is a Gram-negative facultatively anaerobic intracellular bacterium and Salmonella enterica serovar Typhimurium remains one of the leading causes of foodborne illness in human. The ability to adhere to intestinal epithelium cells is considered as one of the complicated pathogenesis mechanisms conferred by Salmonella and is a prerequisite step for infection. Type 1 fimbriae (T1F), encoded by the fim gene cluster, is one of the most commonly seen adhesive organelles in Salmonella. In the fim gene cluster, fimA encodes for the major subunit of T1F, while fimZ encodes for a DNA-binding protein which can directly bind to fimA promoter region and activate its expression. fimY acts as another T1F regulatory gene and FimY can directly activate fimZ expression. Previous studies have shown that several genetic elements and environmental factors can regulate fimZ expression, while reports regarding the regulation of fimY are limited. Elucidation of the type 1 fimbriae regulatory network involving fimY could provide an insight to understand the pathogenesis of Salmonella. In order to clone the genetic elements that may upregulate the expression of fimY, a genomic library containing more than 8,000 colonies was constructed by ligating the partially digested genomic DNA fragments into pACYC184 vector and transformed into S. Typhimurium. According to Carbon-Clarke equation, in order to increase the possibility of finding the target genetic elements up to 90%, more than 5,591 colonies were tested for their ability to agglutinate to yeast cells when grown on LB agar. Any transformant that mediates agglutination may indicate the presence of the genetic determinants that activate the expression of type 1 fimbriae, possibly through upregulation of fimY. Nonetheless, this will be confirmed by RT-PCR. However, all the screened colonies turned out to be yeast agglutination negative. A possible regulatory gene sirA was also cloned into the same vector and still cannot
mediate agglutination. As to determine the environmental factors that may influence fimY expression, a fimY promoter-containing DNA fragment was cloned into the pMC1403 vector to construct a fimY-lacZ reporter molecule and transformed into S. Typhimurium. It was revealed that the fimY promoter activity increased as the temperature increased from 25 °C, 37 °C, to 42 °C. In addition, expression of T1F correlated with that of fimY expression. fimY expression in an acid or alkaline environment was also measured and its promoter activity was extremely low in pH=4 as compared to pH=7, while the promoter activity in pH=8 was higher than that in pH=7. fimY promoter activity in the low Mg2+ concentration (10 μM) environment was similar to that as observed when Salmonella was cultured in the rich media. What environmental factors that may regulate fimY expression still needs further investigation.
中文摘要.......... 1
Abstract........... 3

目 錄..........5
表目錄......... 8
圖目錄 ...... 9
附錄......... 10

第一章、文獻回顧..........11
第一節 沙門氏菌......... 11
第二節 S. Typhimurium 的致病機制 ........ 12
2.1 感染過程.......... 12
2.2 毒力因子(virulence determinants)....... 13
第三節 S. Typhimurium 第一型線毛 ........ 15
3.1 S.Typhimurium第一型線毛的受體........15
3.2 相變化(phase variation) ........... 16
3.3 fim gene cluster...... 16
第四節 fimY 在調控 S. Typhimurium 第一型線毛表達的過程中所扮演的角色 ............ 18
第五節 可能調控 fimY 表達的基因成分......... 20
5.1 sirA........20
5.2 lrp.........21
第六節 可能調控 fimY 表達的環境因子....... 22
6.1 溫度...... 22
6.2 pH........22
6.3 Mg2+ .........23

第二章、材料與方法........24
第一節 菌株的保存與培養......... 24
第二節 酵母菌凝集試驗.......... 24
第三節 細菌總 RNA(total RNA)的萃取......... 25
第四節 反轉錄聚合酶鏈鎖反應(reverse transcription PCR, RT-PCR) ....... 25
第五節 LB5010 NB1 菌株的構建......... 26
5.1 細菌菌體 DNA (genomic DNA) 的萃取 ......... 26
5.2 fimY基因的擴增..........26
5.3 pACYC184質體的萃取.......27
5.4 限制酶切割,黏接與轉形............ 28
5.5 LB5010勝任細胞的製備與重組質體的轉形........29
第六節 LB5010 genomic library 的構建........... 29
6.1 LB5010genomicDNA的萃取...........29
6.2 pACYC184質體的萃取...........29
6.3 限制酶切割............ 29
6.4 凝膠電泳,割膠回收與黏接........... 29
6.5 LB5010電穿孔勝任細胞的製備.........30
6.6 電穿孔(electroporation)............ 30
第七節 LB5010 genomic library 的篩選 .......... 31
7.1 菌株培養............. 31
7.2 酵母菌凝集試驗............ 31
7.3 反轉錄聚合酶鏈鎖反應(reverse transcription PCR, RT-PCR).............. 31
第八節 LB5010 NB2 菌株的構建.......... 31
第九節 Reporter system 的構建........... 32
9.1 pMC1403質體的萃取............32
9.2 fimYpromoter序列的擴增.........32
9.3 限制酶切割,黏接與轉形.......... 32
第十節 測量不同環境條件下 fimY promoter 的活力......... 33
10.1 不同溫度下菌株的培養方式........... 33
10.2 不同pH環境下菌株的培養方式......33
10.3 不同 Mg2+濃度環境下菌株的培養方式............. 34
10.4 β-半乳糖苷酶的活力測定(β-galactosidase activity assay)....... 34

第三章、實驗結果........... 36
第一節 LB5010 NB1 可以在 LB agar 上表現出第一型線毛........... 36
第二節 經過 LB5010 genomic library 的構建與篩選,並未找到酵母菌凝集陽性的菌株..........36
第三節 LB5010 NB2 無法在 LB agar 上表現出第一型線毛....... 36
第四節 fimY 的表達隨著溫度升高而增強........... 37
第五節 fimY 的表達隨 pH 變化而改變............ 37
第六節 低 Mg2+濃度的環境並未影響 fimY 的表達.............. 38

第四章、討論............... 39

參考文獻............. 45

Table 1. Bacterial strains used in this study............59
Table 2. Primers used in this study....................60

Figure 1. Phenotypic expression of type 1 fimbriae in LB5010, LB5010 V1, LB5010 NB1 analyzed by yeast agglutination test.......61
Figure 2. RT-PCR analysis for fimY and fimA transcription from LB5010, LB5010 V1 and LB5010 NB1 cultured on LB agar or in static LB broth..........62
Figure 3. Partial digestion of LB5010 genomic DNA.................63
Figure 4. Phenotypic expression of type 1 fimbriae in LB5010 NB2 analyzed by yeast agglutination test.................64
Figure 5. β-galactosidase activity of LB5010 NBP1 and the maximum dilution factor of LB5010 NBP1 that can induce the positive mannose-sensitive agglutination at different temperature..................65
Figure 6. β-galactosidase activity of LB5010 NBP1 and the maximum dilution factor of LB5010 NBP1 that can induce the positive mannose-sensitive agglutination in pH4 and pH7..................66
Figure 7. β-galactosidase activity of LB5010 NBP1 and the maximum dilution factor of LB5010 NBP1 that can induce the positive mannose-sensitive agglutination in pH8 and pH7................67
Figure 8. β-galactosidase activity of LB5010 NBP1 and the maximum dilution factor of LB5010 NBP1 that can induce the positive mannose-sensitive agglutination in limited Mg2+ concentration.........68
Figure 9. A possible regulatory route mediated by fimY in S. Typhimurium......69

Appendix 1. The fim gene cluster of S. Typhimurium....................70
1. Fàbrega A, Vila J: Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 2013, 26(2):308-341.
2. Pui CF, Wong WC, Chai LC, Nillian E, Ghazali FM, Cheah YK, Nakaguchi Y, Nishibuchi M, Radu S: Simultaneous detection of Salmonella spp., Salmonella Typhi and Salmonella Typhimurium in sliced fruits using multiplex PCR. Food Control 2011, 22(2):337-342.
3. Eng SK, Pusparajah P, Ab Mutalib NS, Ser HL, Chan KG, Lee LH: Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance. Front Life Sci 2015, 8(3):284-293.
4. Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B: Salmonella nomenclature. J Clin Microbiol 2000, 38(7):2465.
5. Kozak GK, MacDonald D, Landry L, Farber JM: Foodborne outbreaks in Canada linked to produce: 2001 through 2009. J Food Prot 2013, 76(1):173- 183.
6. Kariuki S, Revathi G, Kariuki N, Kiiru J, Mwituria J, Hart CA: Characterisation of community acquired non-typhoidal Salmonella from bacteraemia and diarrhoeal infections in children admitted to hospital in Nairobi, Kenya. BMC Microbiol 2006, 6(1):101.
7. Foster JW, Hall HK: Inducible pH homeostasis and the acid tolerance response of Salmonella Typhimurium. J Bacteriol 1991, 173(16):5129-5135.
8. Jones BD, Ghori N, Falkow S: Salmonella Typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J Exp Med 1994, 180(1):15-23.
9. Finlay BB, Ruschkowski S, Dedhar S: Cytoskeletal rearrangements accompanying Salmonella entry into epithelial cells. J Cell Sci 1991, 99(2):283.
10. Francis CL, Starnbach MN, Falkow S: Morphological and cytoskeletal changes in epithelial cells occur immediately upon interaction with Salmonella Typhimurium grown under low-oxygen conditions. Mol Microbiol 1992, 6(21):3077-3087.
11. Francis CL, Ryan TA, Jones BD, Smith SJ, Falkow S: Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature 1993, 364(6438):639-642.
12. Rydström A, Wick MJ: Monocyte recruitment, activation, and function in the gut-associated lymphoid tissue during oral Salmonella infection. J Immunol 2007, 178(9):5789.
13. Ohl ME, Miller SI: Salmonella: a model for bacterial pathogenesis. Annu Rev Med 2001, 52(1):259-274.
14. Kimbrough TG, Miller SI: Assembly of the type III secretion needle complex of Salmonella Typhimurium. Microb Infect 2002, 4(1):75-82.
15. Hansen-Wester I, Hensel M: Salmonella pathogenicity islands encoding type III secretion systems. Microb Infect 2001, 3(7):549-559.
16. Jennings E, Thurston TLM, Holden DW: Salmonella SPI-2 type III secretion system effectors: molecular mechanisms and physiological consequences. Cell Host Microbe 2017, 22(2):217-231.
17. Rotger R, Casadesús J: The virulence plasmids of Salmonella. Int Microbiol 1999, 2(3):177-184.
18. Grob P, Guiney DG: In vitro binding of the Salmonella dublin virulence plasmid regulatory protein SpvR to the promoter regions of spvA and spvR. J Bacteriol 1996, 178(7):1813-1820.
19. Otto H, Tezcan-Merdol D, Girisch R, Haag F, Rhen M, Koch-Nolte F: The spvB gene-product of the Salmonella enterica virulence plasmid is a mono(ADP-ribosyl)transferase. Mol Microbiol 2000, 37(5):1106-1115.
20. Mazurkiewicz P, Thomas J, Thompson JA, Liu M, Arbibe L, Sansonetti P, Holden DW: SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases. Mol Microbiol 2008, 67(6):1371-1383.
21. Wilson JA, Gulig PA: Regulation of the spvR gene of the Salmonella Typhimurium virulence plasmid during exponential-phase growth in intracellular salts medium and at stationary phase in L broth. Microbiol 1998, 144(7):1823-1833.
22. Chilcott GS, Hughes KT: Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar Typhimurium and Escherichia coli. Microbiol Mol Biol Rev 2000, 64(4):694-708.
23. Heuner K, Brand BC, Hacker J: The expression of the flagellum of Legionella pneumophila is modulated by different environmental factors. FEMS Microbiol Lett 1999, 175(1):69-77.
24. Sano G-i, Takada Y, Goto S, Maruyama K, Shindo Y, Oka K, Matsui H, Matsuo K: Flagella facilitate escape of Salmonella from oncotic macrophages. J Bacteriol 2007, 189(22):8224.
25. Franchi L, Amer A, Body-Malapel M, Kanneganti T-D, Özören N, Jagirdar R, Inohara N, Vandenabeele P, Bertin J, Coyle A et al: Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in Salmonella-infected macrophages. Nat Immunol 2006, 7(6):576-582.
26. Yang X, Thornburg T, Suo Z, Jun S, Robison A, Li J, Lim T, Cao L, Hoyt T, Avci R et al: Flagella overexpression attenuates Salmonella pathogenesis. PLoS One 2012, 7(10):e46828.
27. Martinez B, Tomkins J, Wackett LP, Wing R, Sadowsky MJ: Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 2001, 183(19):5684.
28. Humphries AD, Raffatellu M, Winter S, Weening EH, Kingsley RA, Droleskey R, Zhang S, Figueiredo J, Khare S, Nunes J et al: The use of flow cytometry to detect expression of subunits encoded by 11 Salmonella enterica serotype Typhimurium fimbrial operons. Mol Microbiol 2003, 48(5):1357-1376.
29. Humphries A, Deridder S, Bäumler AJ: Salmonella enterica serotype Typhimurium fimbrial proteins serve as antigens during infection of mice. Infect Immun 2005, 73(9):5329-5338.
30. van der Velden AW, Bäumler AJ, Tsolis RM, Heffron F: Multiple fimbrial adhesins are required for full virulence of Salmonella Typhimurium in mice. Infect Immun 1998, 66(6):2803-2808.
31. Duguid JP, and Gillies, R. R. : Fimbriae and haemagglutinating activity in Salmonella, Klebsiella, Proteus and Chromobacterium. J Pathol Bacteriol 1958, 75(2):517-523.
32. Firon N, Ofek I, Sharon N: Carbohydrate specificity of the surface lectins of Escherichia coli, Klebsiella pneumoniae, and Salmonella Typhimurium. Carbohydr Res 1983, 120:235-249.
33. Firon N, Ofek I, Sharon N: Carbohydrate-binding sites of the mannose- specific fimbrial lectins of enterobacteria. Infect Immun 1984, 43(3):1088-1090.
34. Kukkonen M, Raunio T, Virkola R, Lähteenmäki K, Mäkelä PH, Klemm P, Clegg S, Korhonen TK: Basement membrane carbohydrate as a target for bacterial adhesion: binding of type I fimbriae of Salmonella enterica and Escherichia coli to laminin. Mol Microbiol 1993, 7(2):229-237.
35. Ghosh S, Mittal A, Vohra H, Ganguly NK: Interaction of a rat intestinal brush border membrane glycoprotein with type-1 fimbriae of Salmonella Typhimurium. Mol Cell Biochem 1996, 158(2):125-131.
36. Hase K, Kawano K, Nochi T, Pontes GS, Fukuda S, Ebisawa M, Kadokura K, Tobe T, Fujimura Y, Kawano S et al: Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature 2009, 462(7270):226-230.
37. Old DC, Duguid JP: Selective outgrowth of fimbriate bacteria in static liquid medium. J Bacteriol 1970, 103(2):447-456.
38. Patterson SK, Borewicz K, Johnson T, Xu W, Isaacson RE: Characterization and differential gene expression between two phenotypic phase variants in Salmonella enterica serovar Typhimurium. PLoS One 2012, 7(8):e43592.
39. Klemm P: Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J 1986, 5(6):1389- 1393.
40. Gally DL, Leathart J, Blomfield IC: Interaction of FimB and FimE with the fim switch that controls the phase variation of type 1 fimbriae in Escherichia coli K-12. Mol Microbiol 1996, 21(4):725-738.
41. Gally DL, Rucker TJ, Blomfield IC: The leucine-responsive regulatory protein binds to the fim switch to control phase variation of type 1 fimbrial expression in Escherichia coli K-12. J Bacteriol 1994, 176(18):5665.
42. Dorman CJ, Higgins CF: Fimbrial phase variation in Escherichia coli: dependence on integration host factor and homologies with other site-specific recombinases. J Bacteriol 1987, 169(8):3840.
43. O′gara JP, Dorman CJ: Effects of local transcription and H-NS on inversion of the fim switch of Escherichia coli. Mol Microbiol 2000, 36(2):457-466.
44. Clegg S, Hancox LS, Yeh KS: Salmonella Typhimurium fimbrial phase variation and FimA expression. J Bacteriol 1996, 178(2):542-545.
45. Hahn E, Wild P, Hermanns U, Sebbel P, Glockshuber R, Häner M, Taschner N, Burkhard P, Aebi U, Müller SA: Exploring the 3D molecular architecture of Escherichia coli type 1 pili. J Mol Biol 2002, 323(5):845-857.
46. Kisiela DI, Kramer JJ, Tchesnokova V, Aprikian P, Yarov-Yarovoy V, Clegg S, Sokurenko EV: Allosteric catch bond properties of the FimH adhesin from Salmonella enterica serovar Typhimurium. J Biol Chem 2011, 286(44):38136-38147.
47. Zeiner SA, Dwyer BE, Clegg S: FimA, FimF, and FimH are necessary for assembly of type 1 fimbriae on Salmonella enterica serovar Typhimurium. Infect Immun 2012, 80(9):3289.
48. Waksman G, Hultgren SJ: Structural biology of the chaperone–usher pathway of pilus biogenesis. Nat Rev Microbiol 2009, 7(11):765-774.
49. Valenski ML, Harris SL, Spears PA, Horton JR, Orndorff PE: The product of the fimI gene is necessary for Escherichia coli type 1 pilus biosynthesis. J Bacteriol 2003, 185(16):5007-5011.
50. Yeh KS, Tinker JK, Clegg S: FimZ binds the Salmonella Typhimurium fimA promoter region and may regulate its own expression with FimY. Microbiol Immunol 2002, 46(1):1-10.
51. Tinker JK, Clegg S: Characterization of FimY as a coactivator of type 1 fimbrial expression in Salmonella enterica serovar Typhimurium. Infect Immun 2000, 68(6):3305-3313.
52. Wang KC, Hsu YH, Huang YN, Lin JH, Yeh KS: FimY of Salmonella enterica serovar Typhimurium functions as a DNA-binding protein and binds the fimZ promoter. Microbiol Res 2014, 169(7):496-503.
53. Tinker JK, Hancox LS, Clegg S: FimW is a negative regulator affecting type 1 fimbrial expression in Salmonella enterica serovar Typhimurium. J Bacteriol 2001, 183(2):435-442.
54. Wang KC, Hsu YH, Huang YN, Yeh KS: A previously uncharacterized gene stm0551 plays a repressive role in the regulation of type 1 fimbriae in Salmonella enterica serotype Typhimurium. BMC Microbiol 2012, 12(1):111.
55. Schirmer T, Jenal U: Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol 2009, 7(10):724-735.
56. Tinker JK, Clegg S: Control of FimY translation and type 1 fimbrial production by the arginine tRNA encoded by fimU in Salmonella enterica serovar Typhimurium. Mol Microbiol 2001, 40(3):757-768.
57. Kolenda R, Ugorski M, Grzymajlo K: Everything you always wanted to know about Salmonella type 1 fimbriae, but were afraid to ask. Front Microbiol 2019, 10(1017).
58. Yeh KS, Hancox LS, Clegg S: Construction and characterization of a fimZ mutant of Salmonella Typhimurium. J Bacteriol 1995, 177(23):6861-6865.
59. Saini S, Pearl JA, Rao CV: Role of FimW, FimY, and FimZ in regulating the expression of type I fimbriae in Salmonella enterica serovar Typhimurium. J Bacteriol 2009, 191(9):3003.
60. Zeiner SA, Dwyer BE, Clegg S: FimY does not interfere with FimZ-FimW interaction during type 1 fimbria production by Salmonella enterica serovar Typhimurium. Infect Immun 2013, 81(12):4453-4460.
61. Teplitski M, Al-Agely A, Ahmer BMM: Contribution of the SirA regulon to biofilm formation in Salmonella enterica serovar Typhimurium. Microbiol 2006, 152(11):3411-3424.
62. Lawhon SD, Maurer R, Suyemoto M, Altier C: Intestinal short-chain fatty acids alter Salmonella Typhimurium invasion gene expression and virulence through BarA/SirA. Mol Microbiol 2002, 46(5):1451-1464.
63. Blomfield IC, Calie PJ, Eberhardt KJ, McClain MS, Eisenstein BI: Lrp stimulates phase variation of type 1 fimbriation in Escherichia coli K-12. J Bacteriol 1993, 175(1):27-36.
64. McFarland KA, Lucchini S, Hinton JCD, Dorman CJ: The leucine-responsive regulatory protein, Lrp, activates transcription of the fim operon in Salmonella enterica serovar Typhimurium via the fimZ regulatory gene. J Bacteriol 2008, 190(2):602-612.
65. Baek C-H, Kang H-Y, Roland KL, Curtiss R, III: Lrp acts as both a positive and negative regulator for type 1 fimbriae production in Salmonella enterica serovar Typhimurium. PLoS One 2011, 6(10):e26896.
66. Shi J, Biek DP: A versatile low-copy-number cloning vector derived from plasmid F. Gene 1995, 164(1):55-58.
67. Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S: Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 2016, 14(9):563-575.
68. Boddicker JD, Ledeboer NA, Jagnow J, Jones BD, Clegg S: Differential binding to and biofilm formation on, HEp-2 cells by Salmonella enterica serovar Typhimurium is dependent upon allelic variation in the fimH gene of the fim gene cluster. Mol Microbiol 2002, 45(5):1255-1265.
69. Ledeboer NA, Jones BD: Exopolysaccharide sugars contribute to biofilm formation by Salmonella enterica serovar Typhimurium on HEp-2 Cells and chicken intestinal epithelium. J Bacteriol 2005, 187(9):3214.
70. Ledeboer NA, Frye JG, McClelland M, Jones BD: Salmonella enterica serovar Typhimurium requires the Lpf, Pef, and Tafi fimbriae for biofilm formation on HEp-2 tissue culture cells and chicken intestinal epithelium. Infect Immun 2006, 74(6):3156.
71. De Oliveira DCV, Fernandes Júnior A, Kaneno R, Silva MG, Araújo Júnior JP, Silva NCC, Rall VLM: Ability of Salmonella spp. to produce biofilm is dependent on temperature and surface material. Foodborne Path Dis 2014, 11(6):478-483.
72. Gally DL, Bogan JA, Eisenstein BI, Blomfield IC: Environmental regulation of the fim switch controlling type 1 fimbrial phase variation in Escherichia coli K-12: effects of temperature and media. J Bacteriol 1993, 175(19):6186.
73. Olsen PB, Schembri MA, Gally DL, Klemm P: Differential temperature modulation by H-NS of the fimB and fimE recombinase genes which control the orientation of the type 1 fimbrial phase switch. FEMS Microbiol Lett 1998, 162(1):17-23.
74. Kenney LJ: The role of acid stress in Salmonella pathogenesis. Curr Opin Microbiol 2019, 47:45-51.
75. Wang KC, Hsu YH, Huang YN, Chen TH, Lin JH, Hsuan SL, Chien MS, Lee WC, Yeh KS: A low-pH medium in vitro or the environment within a macrophage decreases the transcriptional levels of fimA, fimZ and lrp in Salmonella enterica serovar Typhimurium. J Biosci 2013, 38(3):499-507.
76. Moncrief MB, Maguire ME: Magnesium and the role of MgtC in growth of Salmonella Typhimurium. Infect Immun 1998, 66(8):3802-3809.
77. Papp-Wallace K, Maguire M: Magnesium transport and magnesium homeostasis. EcoSal Plus 2008.
78. Soncini FC, García Véscovi E, Solomon F, Groisman EA: Molecular basis of the magnesium deprivation response in Salmonella Typhimurium: identification of PhoP-regulated genes. J Bacteriol 1996, 178(17):5092.
79. Miller SI, Mekalanos JJ: Constitutive expression of the phoP regulon attenuates Salmonella virulence and survival within macrophages. J Bacteriol 1990, 172(5):2485-2490.
80. Véscovi EG, Soncini FC, Groisman EA: Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 1996, 84(1):165-174.
81. Baxter MA, Jones BD: Two-component regulators control hilA expression by controlling fimZ and hilE expression within Salmonella enterica serovar Typhimurium. Infect Immun 2015, 83(3):978-985.
82. Struble JM, Handke P, Gill RT: Genome sequence databases: genomic, construction of libraries. In: Encyclopedia of Microbiology (Third Edition). Edited by Schaechter M. Oxford: Academic Press; 2009: 185-195.
83. Bearson S, Bearson B, Foster JW: Acid stress responses in enterobacteria. FEMS Microbiol Lett 1997, 147(2):173-180.
84. Nelson DL, Kennedy EP: Magnesium transport in Escherichia coli. inhibition by cobaltous ion. J Biol Chem 1971, 246(9):3042-3049.
85. Clarke L, Carbon J: A colony bank containing synthetic CoI EI hybrid plasmids representative of the entire E. coli genome. Cell 1976, 9(1):91-99.
86. Herman A, Serfecz J, Kinnally A, Crosby K, Youngman M, Wykoff D, Wilson JW: The bacterial iprA gene is conserved across enterobacteriaceae, is involved in oxidative stress resistance, and influences gene expression in Salmonella enterica serovar Typhimurium. J Bacteriol 2016, 198(16):2166- 2179.
87. Davies D: Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2003, 2(2):114-122.
88. Danese PN, Pratt LA, Kolter R: Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 2000, 182(12):3593-3596.
89. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O: Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 2010, 35(4):322-332.
90. Jensen P, Givskov M, Bjarnsholt T, Moser C: The immune system vs. Pseudomonas aeruginosa biofilms. FEMS Immunol Med Microbiol 2010, 59(3):292-305.
91. Solano C, García B, Valle J, Berasain C, Ghigo JM, Gamazo C, Lasa I: Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 2002, 43(3):793-808.
92. Davies DG, Chakrabarty AM, Geesey GG: Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Appl Environ Microbiol 1993, 59(4):1181-1186.
93. Römling U, Bian Z, Hammar M, Sierralta WD, Normark S: Curli fibers are highly conserved between Salmonella Typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 1998, 180(3):722-731.
94. Borges K, Furian T, Souza S, Menezes R, Tondo E, Salle C, Moraes H, Nascimento V: Biofilm formation capacity of Salmonella serotypes at different temperature conditions. Pesq Vet Bras 2018, 38:71-76.
95. Nguyen HDN, Yang YS, Yuk HG: Biofilm formation of Salmonella Typhimurium on stainless steel and acrylic surfaces as affected by temperature and pH level. LWT - Food Sci Technol 2014, 55(1):383-388.
96. Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SCJ: Salmonella biofilms: an overview on occurrence, structure, regulation and eradication. Food Res Int 2012, 45(2):502-531.
97. Knodler LA, Elfenbein JR: Salmonella enterica. Trends Microbiol 2019, 27(11):964-965.
98. Alatossava T, Jütte H, Kuhn A, Kellenberger E: Manipulation of intracellular magnesium content in polymyxin B nonapeptide-sensitized Escherichia coli by ionophore A23187. J Bacteriol 1985, 162(1):413-419.
99. Yeom J, Shao Y, Groisman EA: Small proteins regulate Salmonella survival inside macrophages by controlling degradation of a magnesium transporter. PNAS 2020, 117(33):20235-20243.
100. Christensen DG, Orr JS, Rao CV, Wolfe AJ: Increasing growth yield and decreasing acetylation in Escherichia coli by optimizing the carbon-to- magnesium ratio in peptide-based media. Appl Environ Microbiol 2017, 83(6):e03034-03016.
101. Li R, Jin M, Du J, Li M, Chen S, Yang S: The magnesium concentration in yeast extracts is a major determinant affecting ethanol fermentation performance of Zymomonas mobilis. Front Bioeng Biotechnol 2020, 8(957).
102. Hmiel SP, Snavely MD, Miller CG, Maguire ME: Magnesium transport in Salmonella Typhimurium: characterization of magnesium influx and cloning of a transport gene. J Bacteriol 1986, 168(3):1444.
103. Miao EA, Freeman JA, Miller SI: Transcription of the SsrAB regulon is repressed by alkaline pH and is independent of PhoPQ and magnesium concentration. J Bacteriol 2002, 184(5):1493-1497.
104. Park MH, Wong BB, Lusk JE: Mutants in three genes affecting transport of magnesium in Escherichia coli: genetics and physiology. J Bacteriol 1976,126(3):1096-1103.
105. Snavely MD, Gravina SA, Cheung TT, Miller CG, Maguire ME: Magnesium transport in Salmonella Typhimurium. Regulation of mgtA and mgtB expression. J Biol Chem 1991, 266(2):824-829.
106. Stock AM, Robinson VL, Goudreau PN: Two-component signal transduction. Annu Rev Biochem 2000, 69(1):183-215.
107. Gao R, Stock AM: Biological insights from structures of two-component proteins. Annu Rev Microbiol 2009, 63(1):133-154.
108. Zschiedrich CP, Keidel V, Szurmant H: Molecular mechanisms of two-component signal transduction. J Mol Biol 2016, 428(19):3752-3775.
109. Chakraborty S, Li M, Chatterjee C, Sivaraman J, Leung KY, Mok Y-K: Temperature and Mg2+ sensing by a novel PhoP-PhoQ two-component system for regulation of virulence in Edwardsiella tarda. J Biol Chem 2010, 285(50):38876-38888.
110. Dhiman A, Gopalani M, Bhatnagar R: WalRK two component system of Bacillus anthracis responds to temperature and antibiotic stress. Biochem Biophys Res Commun 2015, 459(4):623-628.
111. Perez JC, Groisman EA: Acid pH activation of the PmrA/PmrB two-component regulatory system of Salmonella enterica. Mol Microbiol 2007, 63(1):283-293.
112. Bullas LR, Ryu JI: Salmonella Typhimurium LT2 strains which are r- m+ for all three chromosomally located systems of DNA restriction and modification. J Bacteriol 1983, 156(1):471.
113. Casadaban MJ, Chou J, Cohen SN: In vitro gene fusions that join an enzymatically active beta-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J Bacteriol 1980, 143(2):971-980.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊