|
1. Fàbrega A, Vila J: Salmonella enterica serovar Typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 2013, 26(2):308-341. 2. Pui CF, Wong WC, Chai LC, Nillian E, Ghazali FM, Cheah YK, Nakaguchi Y, Nishibuchi M, Radu S: Simultaneous detection of Salmonella spp., Salmonella Typhi and Salmonella Typhimurium in sliced fruits using multiplex PCR. Food Control 2011, 22(2):337-342. 3. Eng SK, Pusparajah P, Ab Mutalib NS, Ser HL, Chan KG, Lee LH: Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance. Front Life Sci 2015, 8(3):284-293. 4. Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B: Salmonella nomenclature. J Clin Microbiol 2000, 38(7):2465. 5. Kozak GK, MacDonald D, Landry L, Farber JM: Foodborne outbreaks in Canada linked to produce: 2001 through 2009. J Food Prot 2013, 76(1):173- 183. 6. Kariuki S, Revathi G, Kariuki N, Kiiru J, Mwituria J, Hart CA: Characterisation of community acquired non-typhoidal Salmonella from bacteraemia and diarrhoeal infections in children admitted to hospital in Nairobi, Kenya. BMC Microbiol 2006, 6(1):101. 7. Foster JW, Hall HK: Inducible pH homeostasis and the acid tolerance response of Salmonella Typhimurium. J Bacteriol 1991, 173(16):5129-5135. 8. Jones BD, Ghori N, Falkow S: Salmonella Typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J Exp Med 1994, 180(1):15-23. 9. Finlay BB, Ruschkowski S, Dedhar S: Cytoskeletal rearrangements accompanying Salmonella entry into epithelial cells. J Cell Sci 1991, 99(2):283. 10. Francis CL, Starnbach MN, Falkow S: Morphological and cytoskeletal changes in epithelial cells occur immediately upon interaction with Salmonella Typhimurium grown under low-oxygen conditions. Mol Microbiol 1992, 6(21):3077-3087. 11. Francis CL, Ryan TA, Jones BD, Smith SJ, Falkow S: Ruffles induced by Salmonella and other stimuli direct macropinocytosis of bacteria. Nature 1993, 364(6438):639-642. 12. Rydström A, Wick MJ: Monocyte recruitment, activation, and function in the gut-associated lymphoid tissue during oral Salmonella infection. J Immunol 2007, 178(9):5789. 13. Ohl ME, Miller SI: Salmonella: a model for bacterial pathogenesis. Annu Rev Med 2001, 52(1):259-274. 14. Kimbrough TG, Miller SI: Assembly of the type III secretion needle complex of Salmonella Typhimurium. Microb Infect 2002, 4(1):75-82. 15. Hansen-Wester I, Hensel M: Salmonella pathogenicity islands encoding type III secretion systems. Microb Infect 2001, 3(7):549-559. 16. Jennings E, Thurston TLM, Holden DW: Salmonella SPI-2 type III secretion system effectors: molecular mechanisms and physiological consequences. Cell Host Microbe 2017, 22(2):217-231. 17. Rotger R, Casadesús J: The virulence plasmids of Salmonella. Int Microbiol 1999, 2(3):177-184. 18. Grob P, Guiney DG: In vitro binding of the Salmonella dublin virulence plasmid regulatory protein SpvR to the promoter regions of spvA and spvR. J Bacteriol 1996, 178(7):1813-1820. 19. Otto H, Tezcan-Merdol D, Girisch R, Haag F, Rhen M, Koch-Nolte F: The spvB gene-product of the Salmonella enterica virulence plasmid is a mono(ADP-ribosyl)transferase. Mol Microbiol 2000, 37(5):1106-1115. 20. Mazurkiewicz P, Thomas J, Thompson JA, Liu M, Arbibe L, Sansonetti P, Holden DW: SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases. Mol Microbiol 2008, 67(6):1371-1383. 21. Wilson JA, Gulig PA: Regulation of the spvR gene of the Salmonella Typhimurium virulence plasmid during exponential-phase growth in intracellular salts medium and at stationary phase in L broth. Microbiol 1998, 144(7):1823-1833. 22. Chilcott GS, Hughes KT: Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar Typhimurium and Escherichia coli. Microbiol Mol Biol Rev 2000, 64(4):694-708. 23. Heuner K, Brand BC, Hacker J: The expression of the flagellum of Legionella pneumophila is modulated by different environmental factors. FEMS Microbiol Lett 1999, 175(1):69-77. 24. Sano G-i, Takada Y, Goto S, Maruyama K, Shindo Y, Oka K, Matsui H, Matsuo K: Flagella facilitate escape of Salmonella from oncotic macrophages. J Bacteriol 2007, 189(22):8224. 25. Franchi L, Amer A, Body-Malapel M, Kanneganti T-D, Özören N, Jagirdar R, Inohara N, Vandenabeele P, Bertin J, Coyle A et al: Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in Salmonella-infected macrophages. Nat Immunol 2006, 7(6):576-582. 26. Yang X, Thornburg T, Suo Z, Jun S, Robison A, Li J, Lim T, Cao L, Hoyt T, Avci R et al: Flagella overexpression attenuates Salmonella pathogenesis. PLoS One 2012, 7(10):e46828. 27. Martinez B, Tomkins J, Wackett LP, Wing R, Sadowsky MJ: Complete nucleotide sequence and organization of the atrazine catabolic plasmid pADP-1 from Pseudomonas sp. strain ADP. J Bacteriol 2001, 183(19):5684. 28. Humphries AD, Raffatellu M, Winter S, Weening EH, Kingsley RA, Droleskey R, Zhang S, Figueiredo J, Khare S, Nunes J et al: The use of flow cytometry to detect expression of subunits encoded by 11 Salmonella enterica serotype Typhimurium fimbrial operons. Mol Microbiol 2003, 48(5):1357-1376. 29. Humphries A, Deridder S, Bäumler AJ: Salmonella enterica serotype Typhimurium fimbrial proteins serve as antigens during infection of mice. Infect Immun 2005, 73(9):5329-5338. 30. van der Velden AW, Bäumler AJ, Tsolis RM, Heffron F: Multiple fimbrial adhesins are required for full virulence of Salmonella Typhimurium in mice. Infect Immun 1998, 66(6):2803-2808. 31. Duguid JP, and Gillies, R. R. : Fimbriae and haemagglutinating activity in Salmonella, Klebsiella, Proteus and Chromobacterium. J Pathol Bacteriol 1958, 75(2):517-523. 32. Firon N, Ofek I, Sharon N: Carbohydrate specificity of the surface lectins of Escherichia coli, Klebsiella pneumoniae, and Salmonella Typhimurium. Carbohydr Res 1983, 120:235-249. 33. Firon N, Ofek I, Sharon N: Carbohydrate-binding sites of the mannose- specific fimbrial lectins of enterobacteria. Infect Immun 1984, 43(3):1088-1090. 34. Kukkonen M, Raunio T, Virkola R, Lähteenmäki K, Mäkelä PH, Klemm P, Clegg S, Korhonen TK: Basement membrane carbohydrate as a target for bacterial adhesion: binding of type I fimbriae of Salmonella enterica and Escherichia coli to laminin. Mol Microbiol 1993, 7(2):229-237. 35. Ghosh S, Mittal A, Vohra H, Ganguly NK: Interaction of a rat intestinal brush border membrane glycoprotein with type-1 fimbriae of Salmonella Typhimurium. Mol Cell Biochem 1996, 158(2):125-131. 36. Hase K, Kawano K, Nochi T, Pontes GS, Fukuda S, Ebisawa M, Kadokura K, Tobe T, Fujimura Y, Kawano S et al: Uptake through glycoprotein 2 of FimH+ bacteria by M cells initiates mucosal immune response. Nature 2009, 462(7270):226-230. 37. Old DC, Duguid JP: Selective outgrowth of fimbriate bacteria in static liquid medium. J Bacteriol 1970, 103(2):447-456. 38. Patterson SK, Borewicz K, Johnson T, Xu W, Isaacson RE: Characterization and differential gene expression between two phenotypic phase variants in Salmonella enterica serovar Typhimurium. PLoS One 2012, 7(8):e43592. 39. Klemm P: Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J 1986, 5(6):1389- 1393. 40. Gally DL, Leathart J, Blomfield IC: Interaction of FimB and FimE with the fim switch that controls the phase variation of type 1 fimbriae in Escherichia coli K-12. Mol Microbiol 1996, 21(4):725-738. 41. Gally DL, Rucker TJ, Blomfield IC: The leucine-responsive regulatory protein binds to the fim switch to control phase variation of type 1 fimbrial expression in Escherichia coli K-12. J Bacteriol 1994, 176(18):5665. 42. Dorman CJ, Higgins CF: Fimbrial phase variation in Escherichia coli: dependence on integration host factor and homologies with other site-specific recombinases. J Bacteriol 1987, 169(8):3840. 43. O′gara JP, Dorman CJ: Effects of local transcription and H-NS on inversion of the fim switch of Escherichia coli. Mol Microbiol 2000, 36(2):457-466. 44. Clegg S, Hancox LS, Yeh KS: Salmonella Typhimurium fimbrial phase variation and FimA expression. J Bacteriol 1996, 178(2):542-545. 45. Hahn E, Wild P, Hermanns U, Sebbel P, Glockshuber R, Häner M, Taschner N, Burkhard P, Aebi U, Müller SA: Exploring the 3D molecular architecture of Escherichia coli type 1 pili. J Mol Biol 2002, 323(5):845-857. 46. Kisiela DI, Kramer JJ, Tchesnokova V, Aprikian P, Yarov-Yarovoy V, Clegg S, Sokurenko EV: Allosteric catch bond properties of the FimH adhesin from Salmonella enterica serovar Typhimurium. J Biol Chem 2011, 286(44):38136-38147. 47. Zeiner SA, Dwyer BE, Clegg S: FimA, FimF, and FimH are necessary for assembly of type 1 fimbriae on Salmonella enterica serovar Typhimurium. Infect Immun 2012, 80(9):3289. 48. Waksman G, Hultgren SJ: Structural biology of the chaperone–usher pathway of pilus biogenesis. Nat Rev Microbiol 2009, 7(11):765-774. 49. Valenski ML, Harris SL, Spears PA, Horton JR, Orndorff PE: The product of the fimI gene is necessary for Escherichia coli type 1 pilus biosynthesis. J Bacteriol 2003, 185(16):5007-5011. 50. Yeh KS, Tinker JK, Clegg S: FimZ binds the Salmonella Typhimurium fimA promoter region and may regulate its own expression with FimY. Microbiol Immunol 2002, 46(1):1-10. 51. Tinker JK, Clegg S: Characterization of FimY as a coactivator of type 1 fimbrial expression in Salmonella enterica serovar Typhimurium. Infect Immun 2000, 68(6):3305-3313. 52. Wang KC, Hsu YH, Huang YN, Lin JH, Yeh KS: FimY of Salmonella enterica serovar Typhimurium functions as a DNA-binding protein and binds the fimZ promoter. Microbiol Res 2014, 169(7):496-503. 53. Tinker JK, Hancox LS, Clegg S: FimW is a negative regulator affecting type 1 fimbrial expression in Salmonella enterica serovar Typhimurium. J Bacteriol 2001, 183(2):435-442. 54. Wang KC, Hsu YH, Huang YN, Yeh KS: A previously uncharacterized gene stm0551 plays a repressive role in the regulation of type 1 fimbriae in Salmonella enterica serotype Typhimurium. BMC Microbiol 2012, 12(1):111. 55. Schirmer T, Jenal U: Structural and mechanistic determinants of c-di-GMP signalling. Nat Rev Microbiol 2009, 7(10):724-735. 56. Tinker JK, Clegg S: Control of FimY translation and type 1 fimbrial production by the arginine tRNA encoded by fimU in Salmonella enterica serovar Typhimurium. Mol Microbiol 2001, 40(3):757-768. 57. Kolenda R, Ugorski M, Grzymajlo K: Everything you always wanted to know about Salmonella type 1 fimbriae, but were afraid to ask. Front Microbiol 2019, 10(1017). 58. Yeh KS, Hancox LS, Clegg S: Construction and characterization of a fimZ mutant of Salmonella Typhimurium. J Bacteriol 1995, 177(23):6861-6865. 59. Saini S, Pearl JA, Rao CV: Role of FimW, FimY, and FimZ in regulating the expression of type I fimbriae in Salmonella enterica serovar Typhimurium. J Bacteriol 2009, 191(9):3003. 60. Zeiner SA, Dwyer BE, Clegg S: FimY does not interfere with FimZ-FimW interaction during type 1 fimbria production by Salmonella enterica serovar Typhimurium. Infect Immun 2013, 81(12):4453-4460. 61. Teplitski M, Al-Agely A, Ahmer BMM: Contribution of the SirA regulon to biofilm formation in Salmonella enterica serovar Typhimurium. Microbiol 2006, 152(11):3411-3424. 62. Lawhon SD, Maurer R, Suyemoto M, Altier C: Intestinal short-chain fatty acids alter Salmonella Typhimurium invasion gene expression and virulence through BarA/SirA. Mol Microbiol 2002, 46(5):1451-1464. 63. Blomfield IC, Calie PJ, Eberhardt KJ, McClain MS, Eisenstein BI: Lrp stimulates phase variation of type 1 fimbriation in Escherichia coli K-12. J Bacteriol 1993, 175(1):27-36. 64. McFarland KA, Lucchini S, Hinton JCD, Dorman CJ: The leucine-responsive regulatory protein, Lrp, activates transcription of the fim operon in Salmonella enterica serovar Typhimurium via the fimZ regulatory gene. J Bacteriol 2008, 190(2):602-612. 65. Baek C-H, Kang H-Y, Roland KL, Curtiss R, III: Lrp acts as both a positive and negative regulator for type 1 fimbriae production in Salmonella enterica serovar Typhimurium. PLoS One 2011, 6(10):e26896. 66. Shi J, Biek DP: A versatile low-copy-number cloning vector derived from plasmid F. Gene 1995, 164(1):55-58. 67. Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S: Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 2016, 14(9):563-575. 68. Boddicker JD, Ledeboer NA, Jagnow J, Jones BD, Clegg S: Differential binding to and biofilm formation on, HEp-2 cells by Salmonella enterica serovar Typhimurium is dependent upon allelic variation in the fimH gene of the fim gene cluster. Mol Microbiol 2002, 45(5):1255-1265. 69. Ledeboer NA, Jones BD: Exopolysaccharide sugars contribute to biofilm formation by Salmonella enterica serovar Typhimurium on HEp-2 Cells and chicken intestinal epithelium. J Bacteriol 2005, 187(9):3214. 70. Ledeboer NA, Frye JG, McClelland M, Jones BD: Salmonella enterica serovar Typhimurium requires the Lpf, Pef, and Tafi fimbriae for biofilm formation on HEp-2 tissue culture cells and chicken intestinal epithelium. Infect Immun 2006, 74(6):3156. 71. De Oliveira DCV, Fernandes Júnior A, Kaneno R, Silva MG, Araújo Júnior JP, Silva NCC, Rall VLM: Ability of Salmonella spp. to produce biofilm is dependent on temperature and surface material. Foodborne Path Dis 2014, 11(6):478-483. 72. Gally DL, Bogan JA, Eisenstein BI, Blomfield IC: Environmental regulation of the fim switch controlling type 1 fimbrial phase variation in Escherichia coli K-12: effects of temperature and media. J Bacteriol 1993, 175(19):6186. 73. Olsen PB, Schembri MA, Gally DL, Klemm P: Differential temperature modulation by H-NS of the fimB and fimE recombinase genes which control the orientation of the type 1 fimbrial phase switch. FEMS Microbiol Lett 1998, 162(1):17-23. 74. Kenney LJ: The role of acid stress in Salmonella pathogenesis. Curr Opin Microbiol 2019, 47:45-51. 75. Wang KC, Hsu YH, Huang YN, Chen TH, Lin JH, Hsuan SL, Chien MS, Lee WC, Yeh KS: A low-pH medium in vitro or the environment within a macrophage decreases the transcriptional levels of fimA, fimZ and lrp in Salmonella enterica serovar Typhimurium. J Biosci 2013, 38(3):499-507. 76. Moncrief MB, Maguire ME: Magnesium and the role of MgtC in growth of Salmonella Typhimurium. Infect Immun 1998, 66(8):3802-3809. 77. Papp-Wallace K, Maguire M: Magnesium transport and magnesium homeostasis. EcoSal Plus 2008. 78. Soncini FC, García Véscovi E, Solomon F, Groisman EA: Molecular basis of the magnesium deprivation response in Salmonella Typhimurium: identification of PhoP-regulated genes. J Bacteriol 1996, 178(17):5092. 79. Miller SI, Mekalanos JJ: Constitutive expression of the phoP regulon attenuates Salmonella virulence and survival within macrophages. J Bacteriol 1990, 172(5):2485-2490. 80. Véscovi EG, Soncini FC, Groisman EA: Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 1996, 84(1):165-174. 81. Baxter MA, Jones BD: Two-component regulators control hilA expression by controlling fimZ and hilE expression within Salmonella enterica serovar Typhimurium. Infect Immun 2015, 83(3):978-985. 82. Struble JM, Handke P, Gill RT: Genome sequence databases: genomic, construction of libraries. In: Encyclopedia of Microbiology (Third Edition). Edited by Schaechter M. Oxford: Academic Press; 2009: 185-195. 83. Bearson S, Bearson B, Foster JW: Acid stress responses in enterobacteria. FEMS Microbiol Lett 1997, 147(2):173-180. 84. Nelson DL, Kennedy EP: Magnesium transport in Escherichia coli. inhibition by cobaltous ion. J Biol Chem 1971, 246(9):3042-3049. 85. Clarke L, Carbon J: A colony bank containing synthetic CoI EI hybrid plasmids representative of the entire E. coli genome. Cell 1976, 9(1):91-99. 86. Herman A, Serfecz J, Kinnally A, Crosby K, Youngman M, Wykoff D, Wilson JW: The bacterial iprA gene is conserved across enterobacteriaceae, is involved in oxidative stress resistance, and influences gene expression in Salmonella enterica serovar Typhimurium. J Bacteriol 2016, 198(16):2166- 2179. 87. Davies D: Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2003, 2(2):114-122. 88. Danese PN, Pratt LA, Kolter R: Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 2000, 182(12):3593-3596. 89. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O: Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 2010, 35(4):322-332. 90. Jensen P, Givskov M, Bjarnsholt T, Moser C: The immune system vs. Pseudomonas aeruginosa biofilms. FEMS Immunol Med Microbiol 2010, 59(3):292-305. 91. Solano C, García B, Valle J, Berasain C, Ghigo JM, Gamazo C, Lasa I: Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 2002, 43(3):793-808. 92. Davies DG, Chakrabarty AM, Geesey GG: Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Appl Environ Microbiol 1993, 59(4):1181-1186. 93. Römling U, Bian Z, Hammar M, Sierralta WD, Normark S: Curli fibers are highly conserved between Salmonella Typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 1998, 180(3):722-731. 94. Borges K, Furian T, Souza S, Menezes R, Tondo E, Salle C, Moraes H, Nascimento V: Biofilm formation capacity of Salmonella serotypes at different temperature conditions. Pesq Vet Bras 2018, 38:71-76. 95. Nguyen HDN, Yang YS, Yuk HG: Biofilm formation of Salmonella Typhimurium on stainless steel and acrylic surfaces as affected by temperature and pH level. LWT - Food Sci Technol 2014, 55(1):383-388. 96. Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SCJ: Salmonella biofilms: an overview on occurrence, structure, regulation and eradication. Food Res Int 2012, 45(2):502-531. 97. Knodler LA, Elfenbein JR: Salmonella enterica. Trends Microbiol 2019, 27(11):964-965. 98. Alatossava T, Jütte H, Kuhn A, Kellenberger E: Manipulation of intracellular magnesium content in polymyxin B nonapeptide-sensitized Escherichia coli by ionophore A23187. J Bacteriol 1985, 162(1):413-419. 99. Yeom J, Shao Y, Groisman EA: Small proteins regulate Salmonella survival inside macrophages by controlling degradation of a magnesium transporter. PNAS 2020, 117(33):20235-20243. 100. Christensen DG, Orr JS, Rao CV, Wolfe AJ: Increasing growth yield and decreasing acetylation in Escherichia coli by optimizing the carbon-to- magnesium ratio in peptide-based media. Appl Environ Microbiol 2017, 83(6):e03034-03016. 101. Li R, Jin M, Du J, Li M, Chen S, Yang S: The magnesium concentration in yeast extracts is a major determinant affecting ethanol fermentation performance of Zymomonas mobilis. Front Bioeng Biotechnol 2020, 8(957). 102. Hmiel SP, Snavely MD, Miller CG, Maguire ME: Magnesium transport in Salmonella Typhimurium: characterization of magnesium influx and cloning of a transport gene. J Bacteriol 1986, 168(3):1444. 103. Miao EA, Freeman JA, Miller SI: Transcription of the SsrAB regulon is repressed by alkaline pH and is independent of PhoPQ and magnesium concentration. J Bacteriol 2002, 184(5):1493-1497. 104. Park MH, Wong BB, Lusk JE: Mutants in three genes affecting transport of magnesium in Escherichia coli: genetics and physiology. J Bacteriol 1976,126(3):1096-1103. 105. Snavely MD, Gravina SA, Cheung TT, Miller CG, Maguire ME: Magnesium transport in Salmonella Typhimurium. Regulation of mgtA and mgtB expression. J Biol Chem 1991, 266(2):824-829. 106. Stock AM, Robinson VL, Goudreau PN: Two-component signal transduction. Annu Rev Biochem 2000, 69(1):183-215. 107. Gao R, Stock AM: Biological insights from structures of two-component proteins. Annu Rev Microbiol 2009, 63(1):133-154. 108. Zschiedrich CP, Keidel V, Szurmant H: Molecular mechanisms of two-component signal transduction. J Mol Biol 2016, 428(19):3752-3775. 109. Chakraborty S, Li M, Chatterjee C, Sivaraman J, Leung KY, Mok Y-K: Temperature and Mg2+ sensing by a novel PhoP-PhoQ two-component system for regulation of virulence in Edwardsiella tarda. J Biol Chem 2010, 285(50):38876-38888. 110. Dhiman A, Gopalani M, Bhatnagar R: WalRK two component system of Bacillus anthracis responds to temperature and antibiotic stress. Biochem Biophys Res Commun 2015, 459(4):623-628. 111. Perez JC, Groisman EA: Acid pH activation of the PmrA/PmrB two-component regulatory system of Salmonella enterica. Mol Microbiol 2007, 63(1):283-293. 112. Bullas LR, Ryu JI: Salmonella Typhimurium LT2 strains which are r- m+ for all three chromosomally located systems of DNA restriction and modification. J Bacteriol 1983, 156(1):471. 113. Casadaban MJ, Chou J, Cohen SN: In vitro gene fusions that join an enzymatically active beta-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J Bacteriol 1980, 143(2):971-980.
|