跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/05 23:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王彥文
研究生(外文):Yen-Wen Wang
論文名稱:使用某醫學中心及其分院之住院病歷評估全民健康保險研究資料庫中精神病症疾患診斷的效度
論文名稱(外文):Validation Study of Psychotic Disorder Diagnosis in the National Health Insurance Research Database in Taiwan using Inpatient Medical Records in a Medical Center and Its Branches
指導教授:陳為堅陳為堅引用關係
指導教授(外文):Wei J. Chen
口試委員:郭柏秀陳錫中劉震鐘
口試委員(外文):Po-Hsiu KuoHsi-Chung ChenChen-Chung Liu
口試日期:2021-08-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:流行病學與預防醫學研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:44
中文關鍵詞:精神醫學精神病症健康保險資料庫效度評分者間信度電子健康記錄醫學中心
外文關鍵詞:psychiatrypsychotic disordershealth insurance databasevalidityinter-rater reliabilityelectronic health recordsmedical center
DOI:10.6342/NTU202103622
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
背景及目的
精神病症是一種嚴重的精神疾病,包括了思覺失調症和與精神病相關的疾患。而全民健康保險研究資料庫則已廣泛用於研究各種疾病的流行病學和健康服務利用,然而卻很少去檢驗這些申報資料中的診斷代碼之效度,特別是對於精神疾病。此外,評估的醫師在城市或鄉村醫院可能存在診斷不一致的情況,而評分者之間的信度也是檢測效度的其中一個面向。為此,本研究之目的為:(1) 評估全民健康保險研究資料庫當中的精神病症診斷之效度,以醫療中心及其分院的病歷為標準,並計算陽性預測值和敏感度作為效度指標;(2) 並檢查精神科醫生之間的評分者間信度,以組內相關係數為指標; (3) 更探討根據醫院分院和診斷標準分層的診斷差異。
方法
研究對像是來自醫療中心及其分院,包括台北總院、新竹分院、竹東分院、雲林分院,且出院診斷為精神病症或非精神病性情感疾患的精神科住院患者。總共有 800 名年齡在 18-65 歲的住院患者從八大類精神或非精神病性情感障礙中選出,其中 2015 年有 400 人(ICD-9 診斷碼),2017 年有 400 人(ICD-10 診斷碼)。在 800 名患者中,隨機抽選 50 份病歷記錄作為評估精神科醫師之間的信度,以組內相關係數 (ICC) 表示,其中 2 名不符合診斷標準的患者被排除在外。此外,每份出院病歷摘要均由 4 位精神科醫生分別進行檢查。其餘 750 例病歷進行效度分析,每一份由 16 名經驗豐富的精神科醫生當中的一位醫師根據 DSM-5 標準進行獨立評估,其中 23 名不符合診斷標準的患者被排除在外。最後使用病歷的診斷作為標準,對個別疾病估計陽性預測值和敏感度。
結果
思覺失調譜系疾患的ICC值為0.72(95 % CI 0.63-0.79);具有精神病特徵的躁狂/混合發作為 0.70 (0.60-0.77);具有精神病特徵的抑鬱發作為 0.47 (0.33-0.59);重度抑鬱症為 0.60 (0.48-0.69);雙相情感障礙為 0.74 (0.66-0.80)。此外,效度結果表明思覺失調譜系疾患之PPV為0.90(0.86-0.94),敏感度為0.77(0.77-0.83);具有精神病特徵的躁狂/混合發作的PPV為0.652(0.55-0.75),敏感性為0.667(0.57-0.77);具有精神病特徵的抑鬱發作的PPV為0.607(0.51-0.71),敏感性為0.750(0.65-0.85);重度抑鬱症的PPV為0.819(0.76-0.87),敏感性為0.749(0.69-0.81);雙相情感障礙的 PPV 為 0.796 (0.74-0.85),敏感性為 0.841 (0.79-0.89)。總體表明了評分者間信度和效度良好;然而,評估具有精神病特徵和情感障礙的類別時的值相對較低。經過分層後,以醫療中心估計的PPV略高於分院,以ICD-10診斷碼估計的PPV略高於ICD-9診斷碼。
結論
本研究發現,精神病症在健保資料庫中具有足夠好的效度,因此可以作為有價值的研究來源。然而,其效度會根據精神疾病的類型不同而有所差異,對於有情感症狀的精神病的診斷效度可能較低。此外,精神科醫生的評分者間信度足夠好。經過分層後,在醫療中心的效度可能更高,而以ICD-10診斷碼記錄的效度也可能更好。
Background: Psychotic disorders are severe mental disorders that include schizophrenia and related disorders with psychosis. In addition, National Health Insurance Research Database (NHIRD) has been widely used in research on epidemiology and health service utilization of various diseases, though the validity of the diagnostic codes in these claims data has seldom been evaluated, particularly for psychiatric disorders. Furthermore, inter-rater reliability was an aspect of test validity; therefore, raters in urban or rural hospitals might also have diagnostic inconsistencies. To fill this gap in the literature, this study is aimed to evaluate: (1) the validity of the diagnoses for psychotic disorders in the NHIRD using medical records obtained from a medical center and its branches as the standard and calculate both positive predictive value (PPV) and sensitivity as a validity indicator. (2) the inter-rater reliability between psychiatrists, using the intraclass correlation coefficient as an indicator; and (3) the diagnose differences in stratification according to hospital branches and diagnostic criteria.
Method: Study subjects were selected psychiatric inpatients with a discharge diagnosis of psychotic disorders or nonpsychotic affective disorders from a medical center and its branches, including Taipei Main Hospital, Hsin-Chu, Chu-Tung, Yun-Lin branches. In total, 800 inpatients with age 18-65 years were selected from 8 categories of psychotic disorders or nonpsychotic affective disorders, with 400 in 2015 (ICD-9 coding) and 400 in 2017 (ICD-10 coding). Of the 800 patients, 50 records were randomly selected to be used for inter-rater reliability assessments among psychiatrists expressed as intra-class correlation coefficient (ICC), with 2 patients not meeting the diagnostic criteria being excluded. Additionally, each discharge note was rated by 4 psychiatrists in inter-rater reliability. Each of the remaining 750 cases was subjected to be rated by one of 16 experienced psychiatrists according to DSM-5 criteria, with 23 patients not meeting the diagnostic criteria being excluded. Using the diagnosis derived from medical records as the standard, both the positive predictive value and sensitivity were estimated for individual disorders.
Results: The ICC value of schizophrenia-spectrum disorder was 0.72 (95 % CI 0.63-0.79); manic/mixed episode with psychotic features was 0.70 (0.60-0.77); depressive episode with psychotic features was 0.47 (0.33-0.59); major depressive disorder was 0.60 (0.48-0.69); bipolar disorder was 0.74 (0.66-0.80). In addition, the results of validity indicated that the PPV of schizophrenia-spectrum disorder was 0.90 (0.86-0.94) and the sensitivity was 0.77 (0.77-0.83); manic/mixed episode with psychotic features had the PPV of 0.652 (0.55-0.75) and the sensitivity of 0.667 (0.57-0.77); depressive episode with psychotic features had the PPV of 0.607 (0.51-0.71) and the sensitivity of 0.750 (0.65-0.85); major depressive disorder had the PPV of 0.819 (0.76-0.87) and the sensitivity of 0.749 (0.69-0.81); bipolar disorder had the PPV of 0.796 (0.74-0.85) and the sensitivity of 0.841 (0.79-0.89). The overall values indicated good inter-rater reliability and validity; however, the values were relatively lower in evaluating the categories with both psychotic features and affective disorders. After stratification, the medical center had a slightly higher PPV than the branches and the PPV of ICD-10 was slightly higher compared to ICD-9.
Conclusion: This study found that psychotic disorders had sufficient validity in the NHIRD; hence it could be used as a valuable research source. However, the validity varies according to different types of psychosis, and the validity was lower in the diagnosis of psychosis with affective symptoms. In addition, the inter-rater reliability by the psychiatrists was good enough. After stratification, the validity of the medical center might be higher, and the validity in ICD-10 coding might also be better.
口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract v
Contents viii
List of tables x
List of figures xi
List of appendices xii
Chapter 1 Introduction 1
Chapter 2 Materials and Methods 6
2.1 Study participants 6
2.2 Measurements 7
2.2.1 Validating diagnoses of psychotic disorders 8
2.2.2 Inter-rater reliability 9
2.3 Statistical analyses 11
Chapter 3 Results 13
3.1 Inter-rater reliability 13
3.2 Validity 15
3.3 Validity study in narrow-broad match 17
3.4 Validity stratify by hospital type and admission year 18
Chapter 4 Discussion 20
4.1 Inter-rater reliability 21
4.2 Validity study in broadly and narrowly defined categories 23
4.3 Validity stratified by the hospital branches and year of admission 24
4.4 Strengths and limitations 26
4.5 Conclusions 27
Reference 29
Appendices 39
Berendsen, S., van der Paardt, J. W., Van, H. L., van Bruggen, M., Nusselder, H., Jalink, M., . . . de Haan, L. (2020). Staging and profiling for schizophrenia spectrum disorders: Inter-rater reliability after a short training course. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 99, 109856.
Byrne, N., Regan, C., & Howard, L. (2005). Administrative registers in psychiatric research: a systematic review of validity studies. Acta Psychiatr Scand, 112(6), 409-414.
Cheng, C. L., Chien, H. C., Lee, C. H., Lin, S. J., & Yang, Y. H. (2015). Validity of in-hospital mortality data among patients with acute myocardial infarction or stroke in National Health Insurance Research Database in Taiwan. Int J Cardiol, 201, 96-101.
Cheng, C. L., Kao, Y. H., Lin, S. J., Lee, C. H., & Lai, M. L. (2011). Validation of the National Health Insurance Research Database with ischemic stroke cases in Taiwan. Pharmacoepidemiol Drug Saf, 20(3), 236-242.
Cheng, C. L., Lee, C. H., Chen, P. S., Li, Y. H., Lin, S. J., & Yang, Y. H. (2014). Validation of acute myocardial infarction cases in the national health insurance research database in taiwan. J Epidemiol, 24(6), 500-507.
Cheniaux, E., Landeira-Fernandez, J., & Versiani, M. (2009). The Diagnoses of Schizophrenia, Schizoaffective Disorder, Bipolar Disorder and Unipolar Depression: Interrater Reliability and Congruence between DSM-IV and ICD-10. Psychopathology, 42(5), 293-298.
Chiang, C. L., Chen, P. C., Huang, L. Y., Kuo, P. H., Tung, Y. C., Liu, C. C., & Chen, W. J. (2016). Impact of universal health coverage on urban-rural inequity in psychiatric service utilisation for patients with first admission for psychosis: a 10-year nationwide population-based study in Taiwan. BMJ Open, 6(3), e010802.
Chiang, C. L., Chen, P. C., Huang, L. Y., Kuo, P. H., Tung, Y. C., Liu, C. C., & Chen, W. J. (2017). Time trends in first admission rates for schizophrenia and other psychotic disorders in Taiwan, 1998-2007: a 10-year population-based cohort study. Soc Psychiatry Psychiatr Epidemiol, 52(2), 163-173.
Chong, H. Y., Teoh, S. L., Wu, D. B., Kotirum, S., Chiou, C. F., & Chaiyakunapruk, N. (2016). Global economic burden of schizophrenia: a systematic review. Neuropsychiatr Dis Treat, 12, 357-373.
Cicchetti, D. (1994). Guidelines, Criteria, and Rules of Thumb for Evaluating Normed and Standardized Assessment Instruments in Psychology. Psychological Assessment, 6, 284-290.
Davis, K. A., Sudlow, C. L., & Hotopf, M. (2016). Can mental health diagnoses in administrative data be used for research? A systematic review of the accuracy of routinely collected diagnoses. BMC Psychiatry, 16, 263.
Davis, K. A. S., Bashford, O., Jewell, A., Shetty, H., Stewart, R. J., Sudlow, C. L. M., & Hotopf, M. H. (2018). Using data linkage to electronic patient records to assess the validity of selected mental health diagnoses in English Hospital Episode Statistics (HES). PLoS One, 13(3), e0195002.
Gavrielov-Yusim, N., & Friger, M. (2014). Use of administrative medical databases in population-based research. J Epidemiol Community Health, 68(3), 283-287.
Harris, P. A., Taylor, R., Minor, B. L., Elliott, V., Fernandez, M., O'Neal, L., . . . Duda, S. N. (2019). The REDCap consortium: Building an international community of software platform partners. Journal of Biomedical Informatics, 95, 103208.
Harris, P. A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. G. (2009). Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. Journal of Biomedical Informatics, 42(2), 377-381.
Ho, T. W., Ruan, S. Y., Huang, C. T., Tsai, Y. J., Lai, F., & Yu, C. J. (2018). Validity of ICD9-CM codes to diagnose chronic obstructive pulmonary disease from National Health Insurance claim data in Taiwan. Int J Chron Obstruct Pulmon Dis, 13, 3055-3063.
Hsieh, C. Y., Chen, C. H., Li, C. Y., & Lai, M. L. (2015). Validating the diagnosis of acute ischemic stroke in a National Health Insurance claims database. J Formos Med Assoc, 114(3), 254-259.
Hsieh, C. Y., Su, C. C., Shao, S. C., Sung, S. F., Lin, S. J., Kao Yang, Y. H., & Lai, E. C. (2019). Taiwan's National Health Insurance Research Database: past and future. Clin Epidemiol, 11, 349-358.
Hsu, M. C., Wang, C. C., Huang, L. Y., Lin, C. Y., Lin, F. J., & Toh, S. (2021). Effect of ICD-9-CM to ICD-10-CM coding system transition on identification of common conditions: An interrupted time series analysis. Pharmacoepidemiol Drug Saf.
James, S. L., Abate, D., Abate, K. H., Abay, S. M., Abbafati, C., Abbasi, N., . . . Murray, C. J. L. (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet, 392(10159), 1789-1858.
Kao, W. H., Hong, J. H., See, L. C., Yu, H. P., Hsu, J. T., Chou, I. J., . . . Kuo, C. F. (2018). Validity of cancer diagnosis in the National Health Insurance database compared with the linked National Cancer Registry in Taiwan. Pharmacoepidemiol Drug Saf, 27(10), 1060-1066.
Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of chiropractic medicine, 15(2), 155-163.
Kurdyak, P., Lin, E., Green, D., & Vigod, S. (2015). Validation of a Population-Based Algorithm to Detect Chronic Psychotic Illness. Can J Psychiatry, 60(8), 362-368.
Lee, M.-S., Yeh, Y.-C., Chang, Y.-T., & Lai, M.-S. (2017). All-Cause and Cause-Specific Mortality in Patients with Psoriasis in Taiwan: A Nationwide Population-Based Study. Journal of Investigative Dermatology, 137(7), 1468-1473.
Lieberman, J. A., & First, M. B. (2018). Psychotic Disorders. New England Journal of Medicine, 379(3), 270-280.
Lin, L. Y., Warren-Gash, C., Smeeth, L., & Chen, P. C. (2018). Data resource profile: the National Health Insurance Research Database (NHIRD). Epidemiol Health, 40, e2018062.
Moreno-Küstner, B., Martín, C., & Pastor, L. (2018). Prevalence of psychotic disorders and its association with methodological issues. A systematic review and meta-analyses. PLoS One, 13(4), e0195687.
Perälä, J., Suvisaari, J., Saarni, S. I., Kuoppasalmi, K., Isometsä, E., Pirkola, S., . . . Lönnqvist, J. (2007). Lifetime prevalence of psychotic and bipolar I disorders in a general population. Arch Gen Psychiatry, 64(1), 19-28.
Riley, G. F. (2009). Administrative and claims records as sources of health care cost data. Med Care, 47(7 Suppl 1), S51-55.
Stewart, C. C., Lu, C. Y., Yoon, T. K., Coleman, K. J., Crawford, P. M., Lakoma, M. D., & Simon, G. E. (2019). Impact of ICD-10-CM Transition on Mental Health Diagnoses Recording. EGEMS (Washington, DC), 7(1), 14-14.
Svensson, E., Voldsgaard, I., Haller, L. G., & Baandrup, L. (2019). Validation study of the population included in the Danish Schizophrenia Registry. Dan Med J, 66(10).
Townsend, L., Walkup, J. T., Crystal, S., & Olfson, M. (2012). A systematic review of validated methods for identifying depression using administrative data. Pharmacoepidemiol Drug Saf, 21 Suppl 1, 163-173.
Vernal, D. L., Stenstrøm, A. D., Staal, N., Christensen, A. M. R., Ebbesen, C., Pagsberg, A. K., . . . Lauritsen, M. B. (2018). Validation study of the early onset schizophrenia diagnosis in the Danish Psychiatric Central Research Register. Eur Child Adolesc Psychiatry, 27(8), 965-975.
Wang, L., Homayra, F., Pearce, L. A., Panagiotoglou, D., McKendry, R., Barrios, R., . . . Nosyk, B. (2019). Identifying mental health and substance use disorders using emergency department and hospital records: a population-based retrospective cohort study of diagnostic concordance and disease attribution. BMJ Open, 9(7), e030530.
Wu, S., Crespi, C. M., & Wong, W. K. (2012). Comparison of methods for estimating the intraclass correlation coefficient for binary responses in cancer prevention cluster randomized trials. Contemporary clinical trials, 33(5), 869-880.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top