|
Crimmins, E., Vasunilashorn, S., Kim, J. K., & Alley, D. (2008). Biomarkers related to aging in human populations. Advances in clinical chemistry, 46, 161-216. Crimmins, E. M., Thyagarajan, B., Levine, M. E., Weir, D. R., & Faul, J. (2021). Associations of Age, Sex, Race/Ethnicity, and Education With 13 Epigenetic Clocks in a Nationally Representative US Sample: The Health and Retirement Study. The Journals of Gerontology: Series A. Cronjé, H. T., Nienaber-Rousseau, C., Min, J. L., Green, F. R., Elliott, H. R., & Pieters, M. (2021). Comparison of DNA methylation clocks in black South African men. Epigenomics, 13(06), 437-449. Di Lena, P., Sala, C., Prodi, A., & Nardini, C. (2019). Missing value estimation methods for DNA methylation data. Bioinformatics, 35(19), 3786-3793. Di Lena, P., Sala, C., Prodi, A., & Nardini, C. (2020). Methylation data imputation performances under different representations and missingness patterns. BMC bioinformatics, 21(1), 1-22. Dolcini, J., Wu, H., Nwanaji-Enwerem, J. C., Kiomourtozlogu, M.-A., Cayir, A., Sanchez-Guerra, M., . . . Baccarelli, A. A. (2020). Mitochondria and aging in older individuals: an analysis of DNA methylation age metrics, leukocyte telomere length, and mitochondrial DNA copy number in the VA normative aging study. Aging (Albany NY), 12(3), 2070. Fortin, J.-P., Triche Jr, T. J., & Hansen, K. D. (2017). Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics, 33(4), 558-560. Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., . . . Gao, Y. (2013). Genome-wide methylation profiles reveal quantitative views of human aging rates. Molecular cell, 49(2), 359-367. Hill, N. R., Fatoba, S. T., Oke, J. L., Hirst, J. A., O’Callaghan, C. A., Lasserson, D. S., & Hobbs, F. R. (2016). Global prevalence of chronic kidney disease–a systematic review and meta-analysis. PloS one, 11(7), e0158765. Hillary, R. F., Stevenson, A. J., Cox, S. R., McCartney, D. L., Harris, S. E., Seeboth, A., . . . Redmond, P. (2019). An epigenetic predictor of death captures multi-modal measures of brain health. Molecular psychiatry, 1-11. Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome biology, 14(10), 1-20. Houseman, E. A., Accomando, W. P., Koestler, D. C., Christensen, B. C., Marsit, C. J., Nelson, H. H., . . . Kelsey, K. T. (2012). DNA methylation arrays as surrogate measures of cell mixture distribution. BMC bioinformatics, 13(1), 1-16. Jones, M. J., Goodman, S. J., & Kobor, M. S. (2015). DNA methylation and healthy human aging. Aging cell, 14(6), 924-932. Lau, L. H., Lew, J., Borschmann, K., Thijs, V., & Ekinci, E. I. (2019). Prevalence of diabetes and its effects on stroke outcomes: A meta‐analysis and literature review. Journal of diabetes investigation, 10(3), 780-792. Levine, M. E., & Crimmins, E. M. (2018). Is 60 the new 50? Examining changes in biological age over the past two decades. Demography, 55(2), 387-402. Levine, M. E., Lu, A. T., Quach, A., Chen, B. H., Assimes, T. L., Bandinelli, S., . . . Li, Y. (2018). An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY), 10(4), 573. Lu, A. T., Quach, A., Wilson, J. G., Reiner, A. P., Aviv, A., Raj, K., . . . Stewart, J. D. (2019). DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY), 11(2), 303. McCrory, C., Fiorito, G., Hernandez, B., Polidoro, S., O’Halloran, A. M., Hever, A., . . . Vineis, P. (2021). GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. The Journals of Gerontology: Series A, 76(5), 741-749. Philibert, R., Beach, S. R., Lei, M.-K., Gibbons, F. X., Gerrard, M., Simons, R. L., & Dogan, M. V. (2020). Array-based epigenetic aging indices may be racially biased. Genes, 11(6), 685. Sebastiani, P., Thyagarajan, B., Sun, F., Schupf, N., Newman, A. B., Montano, M., & Perls, T. T. (2017). Biomarker signatures of aging. Aging cell, 16(2), 329-338. Tajuddin, S. M., Hernandez, D. G., Chen, B. H., Hooten, N. N., Mode, N. A., Nalls, M. A., . . . Zonderman, A. B. (2019). Novel age-associated DNA methylation changes and epigenetic age acceleration in middle-aged African Americans and whites. Clinical epigenetics, 11(1), 1-16. Triche Jr, T. J., Weisenberger, D. J., Van Den Berg, D., Laird, P. W., & Siegmund, K. D. (2013). Low-level processing of Illumina Infinium DNA methylation beadarrays. Nucleic acids research, 41(7), e90-e90. Wang, C., Koutrakis, P., Gao, X., Baccarelli, A., & Schwartz, J. (2020). Associations of annual ambient PM2. 5 components with DNAm PhenoAge acceleration in elderly men: the Normative Aging Study. Environmental Pollution, 258, 113690. Zhao, W., Ammous, F., Ratliff, S., Liu, J., Yu, M., Mosley, T. H., . . . Smith, J. A. (2019). Education and lifestyle factors are associated with DNA methylation clocks in older African Americans. International journal of environmental research and public health, 16(17), 3141. Zou, J., Lippert, C., Heckerman, D., Aryee, M., & Listgarten, J. (2014). Epigenome-wide association studies without the need for cell-type composition. Nature methods, 11(3), 309-311.
|