跳到主要內容

臺灣博碩士論文加值系統

(100.26.176.111) 您好!臺灣時間:2024/07/13 05:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王筱珮
研究生(外文):Shiao-Pei Wang
論文名稱:活動介入方案對重症病人之成效
論文名稱(外文):Effectiveness of Activity Intervention Program in Patients of Intensive Care Unit
指導教授:羅美芳羅美芳引用關係
指導教授(外文):Meei-Fang Lou
口試委員:黃建華張念慈陳思遠張晉豪
口試委員(外文):Chien-Hua HuangNien-Tzu ChangSsu-Yuan ChenChin-Hao Chang
口試日期:2021-01-15
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:護理學研究所
學門:醫藥衛生學門
學類:護理學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:212
中文關鍵詞:重症後虛弱症加護病房發生率醫學研究委員會肌力測量表握力身體組成
外文關鍵詞:Intensive care unit acquired weakness (ICU-AW)intensive care unit (ICU)incidence rateMedical Research Council (MR C) scale for muscle strengthhandgrip strengthbody composition
DOI:10.6342/NTU202100588
相關次數:
  • 被引用被引用:0
  • 點閱點閱:381
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
背景:重症後虛弱症(intensive care unit - acquired weakness, ICU-AW)是重症病人常見的症狀,是指發生在重症之後,除了重症疾病的因素之外,找不到其他會造成無力的原因,約有33~55%的重症病人會發生重症後虛弱症的情形,會影響病人呼吸器的脫離,延長住院天數,對於病人的身體活動功能狀態及生活品質都有影響。重症後虛弱症的預防除了積極治療敗血症、維持正常血糖之外,許多研究顯示減少臥床不動及盡早開始運動是有效的,不僅可減少重症後虛弱症的發生,也可改善病人的活動功能狀,進而減少呼吸器使用天數、降低住院天數,但是目前對於重症病人活動的強度、時間及頻率仍缺乏實證基礎。
目的:本研究的目的在於探討重症後虛弱症的發生率,並透過活動介入方案的實施,了解其對重症病人的成效。
研究方法:採隨機控制之研究設計,研究對象為某醫學中心之綜合加護病房所有入住之病人,年齡20歲以上,非預期即將死亡,且生命徵象穩定者,以隨機決定收治對照組或實驗組個案。研究之介入措施為活動介入方案,對照組接受常規照護,實驗組除常規照護外,還接受活動介入方案,活動之內容依其困難度分為六個等級,每日評估病人可執行的活動等級,每次活動約30分鐘,每週五天,活動前、中、後觀察病人生命徵象及任何不適狀況,並紀錄不良事件的發生,活動介入由入住第一天至病人轉出加護病房,或至多三週為止。成效指標包括肌力、握力、關節活動角度、身體組成及呼吸參數的測量。統計方式採用廣義估計方程式(generalized estimating equation, GEE)進行資料分析。
研究結果:研究共收案72位,實驗組35位,對照組37位,以男性、老年患者居多,兩組個案基本資料無統計上之差異,研究結果顯示重症後虛弱症的發生率為22.86%,兩組個案在肌肉力量、雙手握力及呼吸參數均無顯著差異,關節活動角度方面,雙手腕關節伸展、雙腳膝關節屈曲、雙腳踝關節蹠屈及右腳踝關節背屈之關節角度,實驗組的改善情形較對照組多,但未達統計顯著差異,身體組成參數方面,對照組在BMI(body mass index, Wald χ2 = 7.833, p = 0.005)、RMR(resting metabolic rate, Wald χ2 = 5.413, p = 0.020)、FFM(fat free mass, Wald χ2 = 5.722, p = 0.017)、TBW(total body water, Wald χ2 = 6.951, p = 0.008)、ECW(extracellular water, Wald χ2 = 5.569, p = 0.018)、ICW(intracellular water, Wald χ2 = 7.098, p = 0.008)、glycogen(Wald χ2 = 5.753, p = 0.016)、Dry Weight(Wald χ2 = 5.232, p = 0.022)、ECF(extracellular fluid, Wald χ2 = 5.627, p = 0.018)、plasma fluid(Wald χ2 = 5.617, p = 0.018)和body volume(Wald χ2 = 4.280, p = 0.039)等參數的下降情形顯著高於實驗組。若依介入時間30分鐘為切點共分為三組進行劑量-反應分析,結果顯示右手肘關節屈曲肌力及左手腕關節屈曲角度有顯著差異,其餘肌力、握力、關節活動角度、身體組成及呼吸參數各項指標均無顯著差異。
討論與結論:研究結果顯示多數結果指標無統計上的顯著差異,經分析可能原因為:(1)個案數過少,統計檢力不足;(2)活動介入強度多為被動運動,缺少主動之抗阻力運動,對肌力的恢復較無幫助;(3)欠缺介入措施執行完整性的檢討與改善機制;(4)其他如自然病程進展、其他有違研究目的之照護活動、環境因素之霍桑效應等情形有關。本研究之限制在於(1)研究樣本數過少,難以推論至其他族群;(2)隨機控制研究設計於研究場所易產生霍桑效應;(3)研究工具指標可能受到病人因素等影響測量結果。建議未來可以增加收案之樣本數、採其他研究設計方式以減少兩組個案的霍桑效應、並且持續監督及檢討研究執行狀況。
Background: Intensive care unit-acquired weakness (ICU-AW) is a common symptom among critically ill patients. It refers to a clinical diagnosis of weakness experienced by approximately 33% to 55% of critically ill patients for which there is no alternative etiology other than critical illness. Implications of ICU-AW include delayed weaning of the ventilator, prolongation of hospitalization, physical activity impairment, and compromised quality of life of the patient. In addition to the active treatment of sepsis and the maintenance of a normal blood sugar level, multiple studies have indicated that reducing bed rest and starting exercise immediately are effective in preventing ICU-AW. These measures mitigate ICU-AW incidence and improve the patient's functional status, thereby shortening the length of both respirator use and hospitalization. However, currently, there is, insufficient empirical evidence on the intensity, time, and frequency of critically ill patients' appropriate activities.
Purpose: This study aims to explore the incidence rate of ICU-AW, and through the implementation of activity intervention program to investigate its effectiveness on critically ill patients.
Methods: This study included all patients admitted to an intensive care unit (ICU) of a medical center, who were over 20 years of age, were not expected to die, and demonstrated stable vital signs using a randomized control design. These patients were subsequently divided into a control group and an experimental group randomly. During the study, the control group received routine care only. Alternatively, in addition to routine care, the experimental group also participated in a physical activity intervention. The intervention was categorized into six levels according to difficulty. Further, patients in the experimental group were assigned an appropriate activity level according to the daily assessment. The frequency of the intervention was five days a week, each with a length of 30 minutes. Patients' vital signs, discomfort, and any adverse incidences were recorded before, during, and after the intervention. The intervention started as soon as the patient was admitted and was concluded either when the patient left the ICU or completed a maximum of three weeks. Outcome indicators included muscle strength, grip strength, range of motion (ROM), and body composition and respiratory parameters. Statistical analysis was conducted using the generalized estimating equation (GEE).
Results: The study recruited 72 patients—35 in the experimental group and 37 in the control group. Most participants were male and elderly patients, with no statistical differences between the two groups' basic data. Results revealed that the incidence rate of ICU-AW was 22.86%, and suggested that while there were no significant differences between the muscle strength, grip strength, and respiratory parameters of the two groups, the experimental group displayed improved ROM. Including degrees in both wrists' extension/flexion, both knees' flexion, both feet's plantar flexion, and the dorsiflexion of the right ankle, although the difference was not statistically significant. In addition, in terms of body composition parameters, the control group showed a considerably larger drop in body mass index (BMI) (Wald χ2 = 7.833, p = 0.005), resting metabolic rate (RMR) (Wald χ2 = 5.413, p = 0.020), fat free mass (FFM) (Wald χ2 = 5.722, p = 0.017), total body water (TBW) (Wald χ2 = 6.951, p = 0.008), extracellular water (ECW) (Wald χ2 = 5.569, p = 0.018), intracellular water (ICW) (Wald χ2 = 7.098, p = 0.008), glycogen (Wald χ2 = 5.753, p = 0.016), Dry Weight (Wald χ2 = 5.232, p = 0.022), extracellular fluid (ECF) (Wald χ2 = 5.627, p = 0.018), plasma fluid (Wald χ2 = 5.617, p = 0.018), and body volume (Wald χ2 = 4.280, p = 0.039), compared with the experimental group. Subsequently, the control group and the experimental group were further divided into three subgroups according to the intervention's length with a cut-off of 30 minutes for dose-response analysis. Results indicated the right hand elbow MRC score and degree of left wrists’ extension were significant differences; and no significant differences in other muscle strength, grip strength, ROM, body composition, and respiraotry parameters among these three groups.
Discussion and conclusion: Our results suggested that most outcome indicators were not significantly different between the control and experimental groups. Possible reasons include: (1) the sample size was small, which could lead to an inadequate statistical power; (2) the implemented physical activity intervention primarily comprised passive ROM rather than active resistance exercises, which could not be helpful for the recovery of muscle strength; (3) lack of process evaluation for intervention integrity; and (4) other factors, such as the natural progression of the disease, care activities that violated purposes of the research, and environmental factors, such as the Hawthorne effect, could have contributed to this insignificance. Limitations of this study include: (1) the sample size was small, limits the generalizability of the findings; (2) the adopted randomized control design was prone to the Hawthorne effect; and (3) the outcome indicators could be affected by the patient and other factors. It is recommended that for future studies, the number of samples should be increased, different research methods should be utilized to minimize the Hawthorne effect between the control and the experimental groups, and the intervention's implementation should be continuously monitored and reviewed.
口試委員會審定書……………..……………………………………………………i
致謝……………………………………………………………………………….iii
中文摘要………………………………………………………………..…...………v
英文摘要…………………………………………………………………..…….…vii
目錄…………………………………………………………………………………xi
表目錄………………………………………………………………...…………xiv
圖目錄………………………………………………………………………….….xvi
第一章 緒論……………………………………………………………………….1
第一節 研究背景與重要性…………………………………………………1
第二節 研究目的……………………………………………………………4
第三節 研究概念架構………………………………………………………..5
第四節 名詞定義……………………………………………………………..7
第二章 文獻查證………………………………………………………………….9
第一節 重症後虛弱症簡介…………………………………………………..9
第二節 重症後虛弱症之生理病理機轉……………………………………12
第三節 重症後虛弱症之危險因子、預防與治療…………………………..15
第四節 重症後虛弱症之短期與長期影響…………………………………18
第五節 重症病患活動介入方案相關之實證結果…………………………20
第三章 研究方法………………………………………………………………...35
第一節 研究設計與盲化……………………………………………………35
第二節 研究對象與場所……………………………………………………36
第三節 研究工具與變項……………………………………………………38
第四節 研究資料收集過程…………………………………………………50
第五節 研究介入方案………………………………………………………53
第六節 資料處理及統計分析方法…………………………………………62
第七節 倫理考量…………………………………………………………....64
第四章 研究結果……………………………………………………..………….65
第一節 研究個案基本資料及前測結果……………………………………67
第二節 活動介入措施前、後於肌力結果之變化與成效…………………..87
第三節 活動介入措施前、後於握力結果之變化與成效…………………..94
第四節 活動介入措施前、後於關節活動角度結果之變化與成效………97
第五節 活動介入措施前、後於身體組成結果之變化與成效……………109
第六節 活動介入措施前、後於呼吸參數結果之變化與成效……………130
第七節 活動介入措施執行情形…………………………………………..137
第八節 活動介入措施之劑量-反應分析…………………………………140
第五章 討論…………………………………………………………………….153
第一節 介入措施對研究結果改變之探討………………………………..154
第二節 介入措施強度對研究結果影響之探討…………………………..156
第三節 介入措施完整性對研究結果影響之探討………………………..163
第四節 其他對研究結果影響之探討……………………………………..166
第六章 結論與建議…………………………………………………………….169
第一節 結論………………………………………………………………..169
第二節 研究貢獻…………………………………………………………..170
第三節 研究限制及建議…………………………………………………..173

參考文獻………………………………………………………………………….175
中文部分……………………………………………………………………175
英文部分……………………………………………………………………175

附錄………………………………………………………………….……………191
附件一 肌力、握力、身體組成、關節活動角度及呼吸相關指標
紀錄表……………………………………………………………..191
附件二 基本資料及臨床相關指標紀錄表………………………………..192
附件三 活動介入紀錄表…………………………………………………..194
附件四 研究倫理委員會審查通過文件…………………………………..198
附件五 依介入時間分組後後測與前測差異結果比較…………………201

表2.1.1 重症後虛弱症診斷條件………………………………………………10
表2.5.1 關鍵字搜尋及布林邏輯使用…………………………………………20
表2.5.2 重症病人活動介入措施相關研究整理………………………………29
表3.1.1 研究設計………………………………………………………………35
表3.3.1 鴉片類止痛藥劑量換算………………………………………………39
表3.3.2 類固醇效價劑量換算…………………………………………………39
表3.3.3 MRC肌力評分系統計分方式………………………………………40
表3.3.4 呼吸相關指標定義……………………………………………………45
表3.3.5 研究變項與屬性………………………………………………………48
表3.4.1 研究收案內容…………………………………………………………51
表3.5.1 活動介入方案內容……………………………………………………57
表4.1.1 個案基本資料表………………………………………………………69
表4.1.2 兩組各項測量指標前、後測結果及比較……………………………73
表4.1.3 兩組個案前測與後測時間間隔資料表………………………………83
表4.1.4 兩組個案重症後虛弱症發生情形比較………………………………84
表4.1.5 兩組個案於控制變項統計分析結果…………………………………85
表4.2.1 活動介入對兩組肌力之影響…………………………………………89
表4.2.2 活動介入對兩組肌力之成效分析……………………………………91
表4.2.3 兩組肌力前、後測結果比較…………………………………………..93
表4.3.1 活動介入對兩組握力之影響…………………………………………95
表4.3.2 活動介入對兩組握力之成效分析……………………………………96
表4.3.3 兩組握力前、後測結果比較…………………………………………..96
表4.4.1 活動介入對兩組關節活動角度之影響………………..……………..99
表4.4.2 活動介入對兩組關節活動角度之成效分析………………………..103
表4.4.3 兩組關節活動角度前、後測結果比較………………………………107
表4.5.1 活動介入對兩組身體組成參數之影響…………….………………..111
表4.5.2 活動介入對兩組身體組成參數之成效分析………………………..118
表4.5.3 兩組身體組成參數前、後測結果比較………………………………126
表4.6.1 活動介入對兩組呼吸參數之影響…………………………………..132
表4.6.2 活動介入對兩組呼吸參數之成效分析……………………………..134
表4.6.3 兩組呼吸參數前、後測結果比較……………………………………136
表4.7 實驗組個案活動介入措施統計分析結果…………………………..138
表4.8.1 依介入時間分組後之個案基本資料表……………………………..143
表4.8.2 依介入時間分組後各項測量指標前測結果及比較………………145
表4.8.3 依介入時間分組後於控制變項統計分析結果……………………150

圖1.3.1 研究概念架構……………………………………………………………5
圖3.3.1 Jamar® Plus+握力測量計……………………………………………...42
圖3.3.2 BioScan 920-II身體組成分析儀……………………………………….43
圖3.3.3 Baseline角度儀…………………………………………………………44
圖3.3.4 吸氣力量量表(左)及肺量計(右)……………………………………..46
圖3.4.1 研究資料收集流程……………………………………………………..50
圖3.5.1 持續被動活動儀器……………………………………………………..54
圖3.5.2 床上腳踏車儀器………………………………………………………..56
圖4.0.1 研究收案流程圖………………………………………………………..66
圖4.2.1 兩組肌力變化之比較…………………………………………………..90
圖4.3.1 兩組握力變化之比較…………………………………………………..95
圖4.4.1 兩組關節活動角度之比較……………………………………………101
圖4.5.1 兩組身體組成參數之比較……………………………………………116
圖4.6.1 兩組呼吸參數之比較…………………………………………………133
一、中文部分
山內豊明(2013).身體檢查與理學評估-面對患者的第一本書(蔡岳熹譯).臺北市:合記圖書出版社。(原著出版於2011)
中華民國重症醫學會、中華民國急救加護醫學會(2018).2018台灣成人重症PADIS治療中文共識.引自http://www.tsccm.org.tw/File/index/2018PADIS.pdf
王筱珮、羅美芳(2019).重症後虛弱症.台灣醫學,23(4),513-521。https://doi.org/ 10.6320/FJM.201907_23(4).0013
汪子瑄、吳英黛(2006).重症多神經病變和肌肉病變.物理治療,31(1),6-54。
童惠芳、白玉珠、林柏瑤、陳美娟、蔡雅琪(2012).分析手臂運動訓練對病人脫離呼吸器之成效.護理暨健康照護研究,8(2),38-148。https://doi.org/ 10.6225/JNHR.08.2.138
廖敏季、邱靜娥、簡榮彥、蔡志欣(2013).復健運用於長期呼吸器依賴病人之成效.台灣醫學,17(5),468-475。
鄭鴻志、陳奇祥、陳欽明、周偉倪、黃惠美(2016)•台灣成人加護病房疼痛、躁動和譫妄診療指引(Taiwan PAD)-第四部份:臨床推行策略與品質管理•Resuscitation & Intensive Care Medicine,1,90-99。

二、英文部分
Abdelmalik, P. A., & Rakocevic, G. (2017). Propofol as a risk factor for ICU-acquired weakness in septic patients with acute respiratory failure. The Canadian Journal of Neurological Sciences, 44(3), 295-303. https://doi.org/10.1017/cjn.2016.424
Arias-Fernández, P., Romero-Martin, M., Gómez-Salgado, J., & Fernández-García, D. (2018). Rehabilitation and early mobilization in the critical patient: Systematic review. The Journal of Physical Therapy Science, 30, 1193-1201. https://doi.org/10.1589/jpts.30.1193
Baldwin, C. E., Paratz, J. D., & Bersten, A. D. (2012). Body composition analysis in critically ill survivors: A comparison of bioelectrical impedance spectroscopy devices. Journal of Parenteral and Enteral Nutrition, 36(3), 306-315. https://doi.org/10.1177/0148607111433055
Barreiro, E. (2018). Models of disuse muscle atrophy: Therapeutic implications in critically ill patients. Annals of Translational Medicine, 6(2), 29. http://dx.doi.org/10.21037/atm.2017.12.12
Bassett, R. D., Vollman, K. M., Brandwene, L., & Murray, T. (2012). Integrating a multidisciplinary mobility programme into intensive care practice (IMMPTP): A multicentre collaborative. Intensive and Critical Care Nursing, 28, 88-97. https://doi.org/10.1016/j.iccn.2011.12.001
Batchelor, T. T., Taylor, L. P., Thaler, H. T., Posner, J. B., & DeAngelis, L. M. (1997). Steroid myopathy in cancer patients. Neurology, 48(5), 1234-1238. https://doi.org/10.1212/WNL.48.5.1234
Bednarik, J., Lukas, Z., & Vondracek, P. (2003). Critical illness polyneuromyopathy: The electrophysiological components of a complex entity. Intensive Care Medicine, 29, 1505-1514. https://doi.org/10.1007/s00134-003-1858-0
Berney, S. C., Harrold, M., Webb, S. A., Seppelt, I., Patman, S., Thomas, P. J., & Denehy, L. (2013). Intensive care unit mobility practices in Australia and New Zealand: A point prevalence study. Critical Care and Resuscitation, 15(4), 260-265.
Berney, S. C., Rose, J. W., Bernhardt, J., & Dennehy, L. (2015). Prospective observation of physical activity in critically ill patients who were intubated for more than 48 hours. Journal of Critical Care, 30, 658-663. https://doi.org/10.1016/j.jcrc.2015.03.006
Bissett, B., Leditschke, I. A., & Green, M. (2012). Specific inspiratory muscle training is safe in selected patients who are ventilator-dependent: A case series. Intensive and Critical Care Nursing, 28, 98-104. https://doi.org/10.1016/j.iccn.2012.01.003
Bittner, E. A., Martyn, J. A., George, E., Frontera, W. R., & Eikermann, M. (2009). Measurement of muscle strength in the intensive care unit. Critical Care Medicine, 37(supplement 10), S321-S330. https://doi.org/10.1097/CCM.0b013e3181b6f727
Bolton, C. F. (2005). Neuromuscular manifestations of critical illness. Muscle & Nerve, 32, 140-163. https://doi.org/10.1002/mus.20304
Bolton, C. F., Gilbert, J. J., Hahn, A. F., & Sibbald, W. J. (1984). Polyneuropathy in critically ill patients. Journal of Neurology, Neurosurgery, and Psychiatry, 47, 1223-1231. http://dx.doi.org/10.1136/jnnp.47.11.1223
Bourdin, G., Barbier, J., Burle, J. F., Durante, G., Passant, S., Vincent, B., Badet, M., Bayle, F., Richard, J. C., & Guérin, C. (2010). The feasibility of early physical activity in intensive care unit patients: A prospective observational one-center study. Respiratory Care, 55(4), 400-407.
Bragança, R. D., Ravetti, C. G., Barreto, L., Ataíde, T. B. L. S., Carneiro, R. M., Teixeira, A. L., & Nobre, V. (2019). Use of handgrip dynamometry for diagnosis and prognosis assessment of intensive care unit acquired weakness: A prospective study. Heart & Lung, 48, 532-537. https://doi.org/10.1016/j.hrtlng.2019.07.001
Brandt, P. A., Kirsch, S. D., Lewis, F. M., & Casey, S. M. (2004). Assessing the strength and integrity of an intervention. Oncology Nursing Forum, 31(4), 833-837. https://doi.org/10.1188/04.ONF.833-837
Bock, C., Marzano, V., Green, M., Wang, J., Neeman, T., Mitchell, I., & Bissett, B. (2018). Defining new barriers to mobilization in a highly active intensive care unit- Have we found the ceiling? An observational study. Heart & Lung, 47, 380-385. https://doi.org/10.1016/j.hrtlng.2018.04.004
Brower, R. G. (2009). Consequences of bed rest. Critical Care Medicine, 37(supplement 10), S422-S438. https://doi.org/10.1097/CCM.0b013e3181b6e30a
Burtin, C., Clerckx, B., Robbeets, C., Ferdinande, P., Langer, D., Troosters, T., Hermans, G., Decramer, M., & Gosselink, R. (2009). Early exercise in critically ill patients enhances short-term functional recovery. Critical Care Medicine, 37, 2499-2505. https://doi.org/10.1097/CCM.0b013e3181a38937
Buttrick, P. (2019). Research integrity. Journal of Cardiac Failure, 25(5), 401-403. https://doi.org/10.1016/j.cardfail.2019.04.005
Carroll, V. S. (2013). Sustaining the gains: Moving evidence-based practice forward. Journal of Neuroscience Nursing, 45(4), 179. https://doi.org/10.1097/JNN.0b013e31829baf73
Chambers, M. A., Moylan, J. S., & Reid, M. B. (2009). Physical inactivity and muscle weakness in the critically ill. Critical Care Medicine, 37(supplement 10), S337-S346. https://doi.org/10.1097/CCM.Ob013e3181b6e974
Ciesla, N., Dinglas, V., Fan, E., Kho, M., Kuramoto, J., & Needham, D. (2011). Manual muscle testing: A method of measuring extremity muscle strength applied to critically ill patients. Journal of Visualized Experiments, 50, e2632. https://doi.org/10.3791/2632
Clavet, H., Hébert, P. C., Fergusson, D., Doucette, S., & Trudel, G. (2008). Joint contracture following prolonged stay in the intensive care unit. Canadian Medical Association Journal, 178(6), 691-697. https://doi.org/10.1503/cmaj.071056
Cohen, J. (1992). Statistical power analysis. Current Directions in Psychological Science, 1(3), 98-101.
Courey, A. J., & Hyzy, R. C. (2016, May 25). Overview of mechanical ventilation. Retrieved from http://www.uptodate.com/contents/overview-of-mechanical-ventilation?source=search_result&search=TIDAL+VOLUME&selectedTitle=1%7E150#H17
de Jonghe, B., Lacherade, J. C., Sharshar, T., & Outin, H. (2009). Intensive care unit acquired weakness: Risk factors and prevention. Critical Care Medicine, 37(supplement 10), S309-S315. https://doi.org/10.1097/CCM.0b013e3181b6e64c
de Letter, M. A. C. J., Schmitz, P. I. M., Visser, L. H., Verheul, F. A. M., Schellens, R. L. L. A., Op de Coul, D. A. W., & van der Meché, F. G. M. (2001). Risk factors for the development of polyneuropathy and myopathy in critically ill patients. Critical Care Medicine, 29(12), 2281-2286.
Dean, E. (2008). Mobilizing patients in the ICU: Evidence and principles of practice. Acute Care Perspectives, 17(1), 1-9, 23.
Dean, E., & Ross, J. (1992). Discordance between cardiopulmonary physiology and physical therapy. Chest, 101(6), 1694-1698. https://doi.org/10.1378/chest.101.6.1694
Demling, R. H. (2009). Nutrition, anabolism, and the wound healing process: An overview. Journal of Plastic Surgery, 9, 65-94.
Denehy, L., Skinner, E. H., Edbrooke, L., Haines, K., Warrillow, S., Hawthorne, G., Gough, K., Hoorn, S. V., Morris, M. E., & Berney, S. (2013). Exercise rehabilitation for patients with critical illness: A randomized controlled trial with 12 months of follow-up. Critical Care, 17(4), R156. https://doi.org/doi:10.1186/cc12835
Diaz Ballve, L. P., Dargains, N., Urrutia Inchaustegui, J. G., Bratos, A., Milagros Percaz, M., Bueno Ardariz, C., Cagide, S., Balestrieri, C., Gamarra, C., Paz, D., Rotela, E., Muller, S., Bustos, F., Aranda Castro, R., & Settembrino, E. (2017). Weakness acquired in the intensive care unit. Incidence, risk factors and their association with inspiratory weakness. Observational cohort study. Revista Brasileira de Terapia Intensiva, 29(4), 466-475. https://doi.org/10.5935/0103-507X.20170063.
Ding, N., Zhang, Z., Zhang, C., Yao, L., Yang, L., Jiang, B., Wu, Y., Jiang, L., & Tian, J. (2019). What is the optimum time for initiation of early mobilization in mechanically ventilated patients? A network meta-analysis. PLoS ONE, 14(10), e0223151. https://doi.org/10.1371/ journal.pone.0223151
Dres, M., Jung, B., Molinari, N., Manna, F., Dubé, B. P., Chanques, G., Similowski, T., Jaber, S., & Demoule, A. (2019). Respective contribution of intensive care unit-acquired limb muscle and severe diaphragm weakness on weaning outcome and mortality: A post hoc analysis of two cohorts. Critical Care, 23, 370. https://doi.org/10.1186/s13054-019-2650-z
Durlak, J. A. (2009). How to select, calculate, and interpret effect sizes. Journal of Pediatric Psychology, 34(9), 917-928. https://doi.org/10.1093/jpepsy/jsp004
Dyck, P. J., Boes, C. J., Mulder, D., Millikan, C., Windebank, A. J., Dyck, P. J. B., & Espinosa, R. (2005). History of standard scoring, notation, and summation of neuromuscular signs. A current survey and recommendation. Journal of the Peripheral Nervous System, 10, 158-173. https://doi.org/10.1111/j.1085-9489.2005.0010206.x
Eakin, M. N., Ugbah, L., Arnautovic, T., Parker, A. M., & Needham, D. M. (2015). Implementing and sustaining an early rehabilitation program in a medical intensive care unit: A qualitative analysis. Journal of Critical Care, 30, 698-704. https://doi.org/10.1016/j.jcrc.2015.03.019
Earthman, C. P. (2015). Body composition tools for assessment of adult malnutrition at the bedside: A tutorial on research considerations and clinical applications. American Society for Parental and Enteral Nutrition, 39(7), 787-822. https://doi.org/10.1177/0148607115595227
Eggmann, S., Luder, G., Verra, M. L., Irincheeva, I., Bastiaenen, C. H. G., & Jakob, S. M. (2020). Functional ability and quality of life in critical illness survivors with intensive care unit acquired weakness: A secondary analysis of a randomised controlled trial. PLoS ONE, 15(3), e0229725. https://doi.org/10.1371/journal.pone.0229725
Eggmann, S., Verra, M. L., Luder, G., Takala, J., & Jakob, S. M. (2018). Effects of early, combined endurance and resistance training in mechanically ventilated, critically ill patients: A randomised controlled trial. PLoS ONE, 13(11), e0207428. https://doi.org/10.1371/journal.pone.0207428
Elkins, M., & Dentice, R. (2015). Inspiratory muscle training facilitates weaning from mechanical ventilation among patients in the intensive care unit: A systematic review. Journal of Physiotherapy, 61, 125-134. https://doi.org/10.1016/j.jphys.2015.05.016
Engel, H. J., Needham, D. M., Morris, P. E., & Gropper, M. A. (2013). ICU early mobilization: From recommendation to implementation at three medical centers. Critical Care Medicine, 41(supplement 9), S69-S80. https://doi.org/10.1097/CCM.0b013e3182a240d5
Fan, E., Dowdy, D. W., Colantuoni, E., Mendez-Tellez, P. A., Sevransky, J. E., Shanholtz, C., Dennison Himmelfarb, C. R., Desai, S. V., Ciesla, N., Herridge, M. S., Pronovost, P., & Needham, D. M. (2014). Physical complications in acute lung injury survivors: A 2-year longitudinal prospective study. Critical Care Medicine, 42(4), 849-859. https://doi.org/10.1097/CCM.0000000000000040
Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41(4), 1149-1160. https://doi.org/10.3758/BRM.41.4.1149
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191. https://doi.org/10.3758/BF03193146
Ferrando, A. A., Paddon-Jones, D., & Wolfe, R. R. (2006). Bed rest and myopathies. Current Opinion in Clinical Nutrition and Metabolic Care, 9, 410-415. https://doi.org/10.1097/01.mco.0000232901.59168.e9
Fetterplace, K., Beach, L. J., Maclsaac, C., Presneill, J., Edbrooke, L., Parry, S. M., Rechnitzer, T., Curtis, R., Berney, S., Deane, A. M., & Denehy, L. (2019). Associations between nutritional energy delivery, bioimpedance spectroscopy and functional outcomes in survivors of critical illness. Journal of Human Nutrition and Dietetics, 32, 702-712. https://doi.org/10.1111/jhn.12659
Files, D. C., Sanchez, M. A., & Morris, P. E. (2015). A conceptual framework: The early and late phases of skeletal muscle dysfunction in the acute respiratory distress syndrome. Critical Care, 19, 266. https://doi.org/10.1186/s13054-015-0979-5
Fuke, R., Hifumi, T., Kondo, Y., Hatakeyama, J., Takei, T., Yamakawa, K., Inoue, S., & Nishida, O. (2018). Early rehabilitation to prevent postintensive care syndrome in patients with critical illness: A systematic review and meta-analysis. BMJ Open, 8, e019998. https://doi.org/10.1136/ bmjopen-2017-019998
Gearing, R. E., El-Bassel, N., Ghesquiere, A., Baldwin, S., Gillies, J., & Ngeow, E. (2011). Major ingredients of fidelity: A review and scientific guide to improving quality of intervention research implementation. Clinical Psychology Review, 31, 79-88. https://doi.org/10.1016/j.cpr.2010.09.007
Goense, P. B., Boendermaker, L., & van Yperen, T. (2016). Support systems for treatment integrity. Research on Social Work Practice, 26(1), 69-73. https://doi.org/10.1177/1049731515579205
Griffiths, R. D., & Hall, J. B. (2010). Intensive care unit-acquired weakness. Critical Care Medicine, 38(3), 779-787. https://doi.org/10.1097/CCM.0b013e3181cc4b53
Hermans, G., & Van den Berghe, G. (2015). Clinical review: Intensive care unit acquired weakness. Critical Care, 19, 274. https://doi.org/10.1186/s13054-015-0993-7
Hermans, G., De Jonghe, B., Bruyninckx, F., & Van den Berghe, G. (2014a). Interventions for preventing critical illness poluneuropathy and critical illness myopathy. Cochrane Database Systematic Review, 1, CD006832. https://doi.org/10.1002/14651858.CD006832.pub3
Hermans, G., Van Mechelen, H., Clerckx, B., Vanhullebusch, T., Mesotten, D., Wilmer, A., Casaer, M. P., Meersseman, P., Debaveye, Y., Van Cromphaut, S., Wouters, P. J., Gosselink, R., & Van den Berghe, G. (2014b). Acute outcomes and 1-year mortality of intensive care unit-acquired weakness. American Journal of Respiratory and Critical Care Medicine, 190(4), 410-420. https://doi.org/10.1164/rccm.201312-2257OC
Herridge, M. S., Cheung, A. M., Tansey, C. M., Matte-Martyn, A., Diaz-Granados, N., Al-Saidi, F., Cooper, A. B., Guest, C. B., Mazer, D., Mehta, S., Stewart, T. E., Barr, A., Cook, D., & Slutsky, A. S. (2003). One-year outcomes in survivors of the acute respiratory distress syndrome. The New England Journal of Medicine, 348(8), 683-693. https://doi.org/10.1056/NEJMoa022450
Herridge, M. S., Tansey, C. M., Matté, A., Tomlinson, G., Diaz-Granados, N., Cooper, A., Guest, C. B., Mazer, D., Mehta, S., Stewart, T. E., Kudlow, P., Cook, D., Slutsky, A. S., & Cheung, A. M. (2011). Functional disability 5 years after acute respiratory distress syndrome. The New England Journal of Medicine, 364(14), 1293-1304. https://doi.org/10.1056/NEJMoa1011802
Hildebrand, M. W., Host, H. H., Binder, E. F., Carpenter, B., Freedland, K. E., Morrow-Howell, N., Baum, C. M., Doré, P., & Lenze, E. J. (2012). Measuring treatment fidelity in a rehabilitation intervention study. American Journal of Physical Medicine & Rehabilitation, 91(8), 715-724. https://doi.org/10.1097/PHM.0B013E31824AD462
Hodgson, C. L., Stiller, K., Needham, D. M., Tipping, C. J., Harrold, M., Baldwin, C. E., Bradley, S., Berney, S., Caruana, L. R., Elliott, D., Green, M., Haines, K., Higgins, A. M., Kaukonen, K. M., Leditschke, I. A., Nickels, M. R., Paratz, J., Patman, S., Skinner, E. H.,… Webb, S. A. (2014). Expert concensus and recommendations on safety criteria for active mobilization of mechanically ventilated critically ill adults. Critical Care, 18, 658. https://doi.org/10.1186/s13054-014-0658-y
Jung, B., Moury, P. H., Mahul, M., de Jong, A., Galia, F., Prades, A., Albaladejo, P., Chanques, G., Molinari, N., & Jaber, S. (2016). Diaphragmatic dysfunction in patients with ICU-acquired weakness and its impact on extubation failure. Intensive Care Medicine, 42(5), 853-861. https://doi.org/ 10.1007/s00134-015-4125-2.
Kho, M. E., Molloy, A. J., Clarke, F. J., Reid, J. C., Herridge, M. S., Karachi, T., Rochwerg, B., Fox-Robichaud, A. E., Seely, A. J. E., Mathur, S., Lo, V., Burns, K. E. A., Ball, I. M., Pellizzari, J. R., Tarride, J. E., Rudkowski, J. C., Koo, K., Heels-Ansdell, D., Cook, D. J., & Canadian Critical Care Trials Group. (2019). Multicenter pilot randomized clinical trial of early in-bed cycle ergometry with ventilated patients. BMJ Open Respiratory Research, 6(1), e000383. https://doi.org/10.1136/bmjresp-2018-000383
Klein, K., Mulkey, M., Bena, J. F., & Albert, N. M. (2015). Clinical and psychological effects of early mobilization in patients treated in a neurologic ICU: A comparative study. Critical Care Medicine, 43(4), 865-873. https://doi.org/10.1097/CCM.0000000000000787
Kortebein, P., Ferrando, A., Lombeida, J., Wolfe, R., & Evans, W. J. (2007). Effect of 10 days of bed rest on skeletal muscle in healthy older adults. The Journal of The American Medical Association, 297(16), 1772-1774. https://doi.org/10.1001/jama.297.16.1772-b
Kosmahl, E. M. (n.d.). Goniometry. Retrieved from https://www.scranton.edu/faculty/kosmahl/courses/gonio/index.shtml
Kress, J. P., & Hall, J. B. (2014). ICU-acquired weakness and recovery from critical illness. The New England Journal of Medicine, 370(17), 1626-1635. https://doi.org/10.1056/NEJMra1209390
Lacomis, D., Zochodne, D. W., & Bird, S. J. (2000). Critical illness myopathy. Muscle & Nerve, 23, 1785-1788. https://doi.org/10.1002/1097-4598(200012)23:12<1785::AID-MUS1>3.0.CO;2-J
Latronico, N., & Bolton, C. F. (2011). Critical illness polyneuropathy and myopathy: A major cause of muscle weakness and paralysis. Lancet Neurology, 10, 931-941. https://doi.org/10.1016/S1474-4422(11)70178-8
Lee, H., Ko, Y. J., Suh, G. Y., Yang, J. H., Park, C. M., Jeon, K., Park, Y. H., & Chung, C. R. (2015). Safety profile and feasibility of early therapy and mobility for critically ill patients in the medical intensive care unit: Beginning experiences in Korea. Journal of Critical Care, 30, 673-677. https://doi.org/10.1016/j.jcrc.2015.04.012
MacFarlane, I. A., & Rosenthal, F. D. (1977). Severe myopathy after status asthmaticus. Lancet, 17, 615.
Malti, T., Beelmann, A., Noam, G. G., & Sommer, S. (2018). Innovation and integrity in intervention research: Conceptual issues, methodology, and knowledge translation. Prevention Science, 19, 271-273. https://doi.org/10.1007/s11121-018-0868-7
Mathiowetz, V., Weber, K., Volland, G., & Kashman, N. (1984). Reliability and validity of grip and pinch strength evaluation. The Journal of Hand Surgery, 9A, 222-226. https://doi.org/10.1016/S0363-5023(84)80146-X
McCormack, M. C. (2016, May 11). Overview of pulmonary function testing in adults. Retrieved from http://www.uptodate.com/contents/overview-of-pulmonary-function-testing-in-adults?source=see_link#H1
Mehrholz, J., Mückel, S., Oehmichen, F., & Pohl, M. (2014). The general weakness syndrome therapy (GymNAST) study: Protocol for a cohort study on recovery on walking function. BMJ Open, 4, e006168. https://doi.org/10.1136/bmjopen-2014-006168
Moss, M., Nordon-Craft, A., Malone, D., van Pelf, D., Frankel, S. K., Warner, M. L., Kriekels, W., McNulty, M., Fairclough, D. L., & Schenkman, M. (2016). A randomized trial of an intensive physical therapy program for patients with acute respiratory failure. American Journal of Respiratory and Critical Care Medicine, 193(10), 1101-1110. https://doi.org/10.1164/rccm.201505-1039OC
Needham, D. M., Truong, A. D., & Fan, E. (2009). Technology to enhance physical rehabilitation of critically ill patients. Critical Care Medicine, 37(supplement 10), S436-S441). https://doi.org/10.1097/CCM.0b013e3181b6fa29
Nordon-Craft, A., Moss, M., Quan, D., & Schenkman, M. (2012). Intensive care unit-acquired weakness: Implications for physical therapist management. Physical Therapy, 92(12), 1494-1506. https://doi.org/10.2522/ptj.20110117
Nordon-Craft, A., Schenkman, M., Edbrooke, L., Malone, D. J., Moss, M., & Denehy, L. (2014). The physical function intensive care test: Implementation in survivors of critical illness. Physical Therapy, 94(10), 1499-1507. https://doi.org/10.2522/ptj.20130451
Nordon-Craft, A., Schenkman, M., Ridgeway, K., Benson, A., & Moss, M. (2011). Physical therapy management and patient outcomes following ICU-acquired weakness: A case series. Journal Neurologic Physical Therapy, 35, 133-140. https://doi.org/10.1097/NPT.0b013e3182275905
Novak, P., Vidmar, G., Kuret, Z., & Bizovičar, N. (2011). Rehabilitation of critical illness polyneuropathy and myopathy patients: An observational study. International Journal of Rehabilitation Research, 34, 336-242. https://doi.org/10.1097/MRR.0b013e32834d32c7
Nydahl, P., Ruhl, A. P., Bartoszek, G., Dubb, R., Filipovic, S., Flohr, H. J., Kaltwasser, A., Mende, H., Rothaug, O., Schuchhardt, D., Schwabbauer, N., & Needham, D. M. (2014). Early mobilization of mechanically ventilated patients: A 1-day point prevalence study in Germany. Critical Care Medicine, 42(5), 1178-1186 https://doi.org/10.1097/CCM.0000000000000149
Owczarek, J., Jasinska, M., & Orszulak-Michalak, D. (2005). Drug-induced myopathies. An overview of the possible mechanisms. Pharmacological Reports, 57, 23-34.
Parker, A., Sricharoenchai, T., & Needham, D. (2013). Early rehabilitation in the intensive care unit: Preventing physical and mental health impairments. Current Physical Medicine Rehabilitation Reports, 1(4), 307-314. https://doi.org/10.1007/s40141-013-0027-9
Parry, S. M., Berney, S., Granger, C. L., Dunlop, D. L., Murphy, L., El-Ansary, D., Koopman, R., & Denehy, L. (2015). A new two-tier strength assessment approach to the diagnosis of weakness in intensive care: An observational study. Critical Care, 19, 52. https://doi.org/10.1186/s13054-015-0780-5
Patel, B. K., Pohlman, A. S., Hall, J. B., & Kress, J. P. (2014). Impact of early mobilization on glycemic control and ICU-acquired weakness in critically ill patients who are mechanically ventilated. Chest, 146(3), 583-589. https://doi.org/10.1378/chest.13-2046
Pereira, R. M. R., & de Carvalho, J. F. (2011). Glucocorticoid-induced myopathy. Joint Bone Spine, 78, 41-44. https://doi.org/10.1016/j.jbspin.2010.02.025
Perme, C., & Chandrashekar, R. (2009). Early mobility and walking program for patients in intensive care units: Creating a standard of care. American Journal of Critic Care, 18(3), 212-221. https://doi.org/10.4037/ajcc2009598
Phillips, S. M., Dickerson, R. N., Moore, F. A., Paddon-Jones, D., & Weijs, P. J. M. (2017). Protein turnover and metabolism in the elderly intensive care unit patient. Nutrition in Clinical Practice, 32(supplement 1), 112S-120S. https://doi.org/10.1177/0884533616686719
Pohlman, M. C., Schweickert, W. D., Pohlman, A. S., Nigos, C., Pawlik, A. J., Esbrook, C. L., Spears, L., Miller, M., Franczyk, M., Deprizio, D., Schmidt, G. A., Bowman, A., Barr, R., McCallister, K., Hall, J. B., & Kress, J. P. (2010). Feasibility of physical and occupational therapy beginning from initiation of mechanical ventilation. Critical Care Medicine, 38(11), 2089-2094. https://doi.org/10.1097/CCM.0b013e3181f270c3
Polit, D. F., & Gillespie, B. M. (2009). The use of the intention-to-treat principle in nursing clinical trials. Nursing Research, 58(6), 391-399. https://doi.org/10.1097/NNR.0b013e3181bf1505
Ponfick, M., Wiederer, R., Bösl, K., Neumann, G., Lüdemann-Podubecka, J., Gdynia, H. J., & Nowak, D. A. (2014). The influence of weaning duration on rehabilitative outcome in early neurological rehabilitation. NeuroRehabilitation, 34, 493-498. https://doi.org/10.3233/NRE-141066
Powell, F. L., Wagner, P. D., & West, J. B. (2016). Ventilation, blood flow, and gas exchange. In V. C. Broaddus (Ed.), Murray and Nadel’s textbook of respiratory medicine (6th ed., pp. 4, 44-75.e3). Saunders.
Powers, S. K., Kavazis, A. N., & Levine, S. (2009). Prolonged mechanical ventilation alters diaphragmatic structure and function. Critical Care Medicine, 37(10 Supplement), S347-353. https://doi.org/10.1097/CCM.0b013e3181b6e760
Pruitt, R. H., & Privette, A. B. (2001). Planning strategies for the avoidance of pitfalls in intervention research. Journal of Advanced Nursing, 35(4), 514-520. https://doi.org/10.1046/j.1365-2648.2001.01868.x
Rebel, A., Marzano, V., Green, M., Johnston, K., Wang, J., Neeman, T., Mitchell, I., & Bissett, B. (2019). Mobilisation is feasible in intensive care patients receiving vasoactive therapy: An observational study. Australian Critical Care, 32, 139-146. https://doi.org/10.1016/j.aucc.2018.03.004
Rengel, K. F., Hayhurst, C. J., Pandharipande, P. P., & Hughes, C. G. (2019). Long-term cognitive and functional impairments after critical illness. Anesthesia Analgesia, 128(4), 772-780. https://doi.org/10.1213/ANE.0000000000004066
Sarfati, C., Moore, A., Pilorge, C., Amaru, P., Mendialdua, P., Rodet, E., Stéphan, F., & Rezaiguia-Delclaux, S. (2018). Efficacy of early passive tilting in minimizing ICU-acquired weakness: A randomized controlled trial. Journal of Critical Care, 46, 37-43. https://doi.org/10.1016/j.jcrc.2018.03.031
Scalabrin, M., Adams, V., Labeit, S., & Bowen, T. S. (2020). Emerging strategies targeting catabolic muscle stress relief. International Journal of Molecular Sciences, 21(13), 4681. https://doi.org/10.3390/ijms21134681
Schweickert, W. D., Pohlman, M. C., Pohlman, A. S., Nigos, C., Pawlik, A. J., Esbrook, C. L., Spears, L., Miller, M., Franczyk, M., Deprizio, D., Schmidt, G. A., Bowman, A., Barr, R., McCallister, K. E., Hall, J. B., & Kress, J. P. (2009). Early physical and occupational therapy in mechanically ventilated, critically ill patients: A randomized controlled trial. Lancet, 373, 1874-1882. https://doi.org/10.1016/S0140-6736(09)60658-9
Scott, A. G., & Sechrest, L. (1989). Strength of theory and theory of strength. Evaluation and Program Planning, 12, 329-336. https://doi.org/10.1016/0149-7189(89)90049-9
Sidiras, G., Patsaki, I., Karatzanos, E., Dakoutrou, M., Kouvarakos, A., Mitsiou, G., Routsi, C., Stranjalis, G., Nanas, S., & Gerovasili, V. (2019). Long term follow-up quality of life and functional ability in patients with ICU acquired weakness- A post hoc analysis. Journal of Critical Care, 53, 223-230. https://doi.org/10.1016/j.jcrc.2019.06.022
Spell, L. A., Richardson, J. D., Basilakos, A., Stark, B. C., Teklehaimanot, A., Hillis, A. E., & Fridriksson, J. (2020). Developing, implementing, and improving assessment and treatment fidelity in clinical aphasia research. American Journal of Speech-Language Pathology, 29, 286-298. https://doi.org/10.1044/2019_AJSLP-19-00126
Stevens, R. D., Mardhall, S. A., Cornblath, D. R., Hoke, A., Needham, D. M., de Jonghe, B., Ali, N. A., & Sharshar, T. (2009). A framework for diagnosing and classifying intensive care unit-acquired weakness. Critical Care Medicine, 37(10), S299-S308. https://doi.org/10.1097/CCM.0b013e3181b6ef67
Tezcan, B., Turan, S., & Özgök, A. (2019). Current use of neuromuscular blocking agents in intensive care units. Turkish Journal of Anaesthesiology & Reanimation, 47(4), 273-281. https://doi.org/10.5152/TJAR.2019.33269
The AVERT Trial Collaboration group. (2015). Efficacy and safety of very early mobilization within 24 h of stroke onset (AVERT): A randomized controlled trial. Lancet, 386(4), 46-55. https://doi.org/10.1016/S0140-6736(15)60690-0
The TEAM Study investigators. (2015). Early mobilization and recovery in mechanically ventilated patients in the ICU: A bi-national, multi-centre, prospective cohort study. Critical Care, 19, 81. https://doi.org/10.1186/s13054-015-0765-4
Thille, A. W., Boissier, F., Muller, M., Levrat, A., Bourdin, G., Rosselli, S., Frat, J. P., Coudroy, R., & Vivier, E. (2020). Role of ICU-acquired weakness on extubation outcome among patients at high risk of reintubation. Critical Care, 24, 86. https://doi.org/10.1186/s13054-020-2807-9
Thomas, S., & Mehrholz, J. (2018). Health-related quality of life, participation, and physical and cognitive function of patients with intensive care unit-acquired muscle weakness 1 year after rehabilitation in Germany: The GymNAST cohort study. BMJ Open, 8, e020163. https://doi.org/10.1136/ bmjopen-2017-020163
Trojaborg, W. (2006). Electrophysiologic techniques in critical illness-associated weakness. Journal of the Neurological Sciences, 242(1-2), 83–85. https://doi.org/10.1016/j.jns.2005.11.019
Tseng, C. N., Chen, C. C. H., Wu, S. C., & Lin, L. C. (2006). Effects of a range-of-motion exercise programme. Journal of Advanced Nursing, 57(2), 181-191. https://doi.org/10.1111/j.1365-2648.2006.04078.x
Tzanis, G., Vasileiadis, I., Zervakis, D., Karatzanos, E., Dimopoulos, S., Pitsolis, T., Tripodaki, E., Gerovasili, V., Routsi, C., & Nanas, S. (2011). Maximum inspiratory pressure, a surrogate parameter for the assessment of ICU-acquired weakness. BioMedical Central Anesthesiology, 11, 14. https://doi.org/10.1186/1471-2253-11-14
van Wagenberg, L., Witteveen, E., Wieske, L., & Horn, J. (2020). Causes of mortality in ICU-acquired weakness. Journal of Intensive Care Medicine, 35(3), 293-296. https://doi.org/10.1177/0885066617745818
Veldema, J., Bösl, K., Kugler, P., Ponfick, M., Gdynia, H. J., & Nowak, D. A. (2019). Cycle ergometer training vs resistance training in ICU-acquired weakness. Acta Neurologica Scandinavica, 140, 62-71. https://doi.org/10.1111/ane.13102
Walsh, C. J., Batt, J., Herridge, M. S., & Dos Santos, C. C. (2014). Muscle wasting and early mobilization in acute respiratory distress syndrome. Clinical Chest Medicine, 35, 811-826. https://doi.org/10.1016/j.ccm.2014.08.016
Wei, X. B., Wang, Z. H., Liao, X. L., Guo, W. X., Qin, T. H., & Wang, S. H. (2020). Role of neuromuscular blocking agents in acute respiratory distress syndrome: An updated meta-analysis of randomized controlled trials. Frontiers in Pharmacology, 10,1637. https://doi.org/10.3389/fphar.2019.01637
Wieske, L., Dettling-Ihnenfeldt, D. S., Verhamme, C., Nollet, F., van Schaik, I. N., Schultz, M. J., Horn, J., & van der Schaaf, M. (2015). Impact of ICU-acquired weakness on post-ICU physical functioning: A follow-up study. Critical Care. Retrieved from http://dx.doi.org/10.1186/s13054-015-0937-2
Wieske, L., Harmsen, R. E., Schultz, M. J., & Horn, J. (2011). Is critical illness neuromyopathy and duration of mechanical ventilation decreased by strict glucose control? Neurocritical Care, 14, 475-481. https://doi.org/10.1007/s12028-011-9507-x
Wieske, L., Chan Pin Yin, D. R. P. P., Verhamme, C., Schultz, M. J., van Schaik, I. N., & Horn, J. (2013). Autonomic dysfunction in ICU-acquired weakness: A prospective observational pilot study. Intensive Care Medicine, 39, 1610-1617. https://doi.org/10.1007/s00134-013-2991-z
Wischmeyer, P. E., & San-Millan, I. (2015). Winning the war against ICU-acquired weakness: New innovations in nutrition and exercise physiology. Critical Care, 19, S6. Retrieved from http://www.ccforum.com/content/19/S3/S6
Witteveen, E., Wieske, L., Sommers, J., Spijkstra, J. J., de Waard, M. C., Endeman, H., Rijkenberg, S., de Ruijter, W., Sleeswijk, M., Verhamme, C., Schultz, M. J., van Schaik, I. V., & Horn, J. (2018). Early prediction of intensive care unit-acquired weakness: A multicenter external validation study. Journal of Intensive Care Medicine, 35(6), 595-605. https://doi.org/10.1177/0885066618771001
Wolfe, K. S., Patel, B. K., MacKenzie, E. L., Giovanni, S. P., Pohlman, A. S., Churpek, M. M., Hall, J. B., & Kress, J. P. (2018). Impact of vasoactive medications on ICU-acquired weakness in mechanically ventilated patients. Chest, 154(4), 781-787. https://doi.org/10.1016/j.chest.2018.07.016
Wollersheim, T., Grunow, J. J., Carbon, N. M., Haas, K., Malleike, J., Ramme, S. F., Schneider, J., Spies, C. D., Märdian, S., Mai, K., Spuler, S., Fielitz, J., & Weber-Carstens, S. (2019). Muscle wasting and function after muscle activation and early protocol-based physiotherapy: An explorative trial. Journal of Cachexia, Sarcopenia and Muscle, 10, 734-747. https://doi.org/10.1002/jcsm.12428
Yang, T., Li, Z., Jiang, L., Wang, Y., & Xi, X. (2018a). Risk factors for intensive care unit-acquired weakness: A systematic review and meta-analysis. Acta Neurologica Scandinavica, 138, 104-114. https://doi.org/10.1111/ane.12964
Yang, T., Li, Z., Jiang, L., & Xi, X. (2018b). Corticosteroid use and intensive care unit-acquired weakness: A systematic review and meta-analysis. Critical Care, 22, 187. https://doi.org/10.1186/s13054-018-2111-0
Yosef-Brauner, O., Adi, N., Shahar, T. B., Yehezkel, E., & Carmeli, E. (2015). Effect of physical therapy on muscle strength, respiratory muscles and functional parameters in patients with intensive care unit-acquired weakness. The Clinical Respiratory Journal, 9, 1-6. https://doi.org/10.1111/crj.12091
Zang, K., Chen, B., Wang, M., Chen, D., Hui, L., Guo, S., Ji, T., & Shang, F. (2019). The effect of early mobilization in critically ill patients: A meta-analysis. Nursing in Critical Care, 1-8. https://doi.org/10.1111/ nicc.12455
Zanni, J. M., Korupolu, R., Fan, E., Praghan, P., Janjua, K., Palmer, J. B., Brower, R. G., & Needham, D. M. (2010). Rehabilitation therapy and outcomes in acute respiratory failure: An observational pilot project. Journal of Critical Care, 25, 254-262. https://doi.org/10.1016/j.jcrc.2009.10.010
Zhang, L., Hu, W., Cai, Z., Liu, J., Wu, J., Deng, Y., Yu, K., Chen, X., Ma, J., & Qin, Y. (2019). Early mobilization of critically ill patients in the intensive care unit: A systematic review and meta-analysis. PLoS ONE, 14(10), e0223185. https://doi.org/10.1371/journal. pone.0223185
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊