跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/19 18:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱雨婷
研究生(外文):Yu-Ting Chiou
論文名稱:運用MMP-3啟動子-報導基因之基因轉殖大鼠探討矯正牙齒移動與關節炎之相互關係
論文名稱(外文):Study of Interaction of Orthodontic Tooth Movement and Arthritis using a MMP-3 Promoter-Reporter Transgenic Rat Model
指導教授:姚宗珍
指導教授(外文):Chung-Chen Jane Yao
口試委員:王詩凱宋向軒
口試委員(外文):Shih-Kai WangHsiang-Hsuan Sung
口試日期:2021-06-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床牙醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:83
中文關鍵詞:矯正牙齒移動膠原蛋白誘發關節炎基質金屬蛋白酶顯微電腦斷層影像血液檢測
外文關鍵詞:orthodontic tooth movementcollagen-induced arthritismatrix metalloproteinasemicro-CTblood examination
DOI:10.6342/NTU202101531
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
矯正牙齒移動對於牙周韌帶的壓力與張力會連帶影響周邊神經、血管,吸引發炎因子聚集及釋放,引起發炎反應,促進組織重塑,這些發炎因子也同時在免疫系統及骨系統中扮演重要角色,因此想研究矯正牙齒移動引發的局部發炎反應對全身系統性的影響,而全身性的發炎反應是否影響局部。
本實驗使用MMP-3 promoter-Luciferase-GFP之基因轉殖大鼠模型,施以矯正牙齒移動或/與膠原蛋白誘發關節炎,以非侵入式活體分子影像系統 (In vivo imaging system, IVIS) 觀察MMP-3啟動子轉錄的報導基因冷光酶訊號,採血偵測細胞激素的表現,並在犧牲後照射顯微電腦斷層影像(micro CT image)量測牙齒移動距離、分析骨體積比率。矯正牙齒移動組實驗為期14天;誘發關節炎組實驗為期21天。實驗發現口內的冷光訊號實驗組皆大於對照組,而且合併誘發關節炎及矯正牙齒移動的組別也比單純矯正牙齒移動的組別訊號高,訊號皆在放置彈簧後一天顯著上升,之後降低;牙齒移動距離、骨體積比率方面,實驗組也大於對照組。由抽血數值整體看起來,第21天的誘發關節炎組有大於合併誘發關節炎及矯正牙齒移動組的趨勢。
本研究顯示在全身性發炎環境下,並不會顯著影響局部矯正牙齒移動的距離及骨代謝,但抽血數值較無一致性,沒有看到因局部發炎,引起血流中發炎因子濃度上升的趨勢。
In response to pressure and tension force from the periodontal ligament during orthodontic tooth movement, many inflammatory molecules are produced and released from the peripheral nerve and vessels and then stimulate tissue remodeling. These inflammatory molecules play an important role in both the immune and bone system. Therefore, we planned to investigate whether any systemic inflammation gets more severe by regional orthodontic tooth movement, and whether the systemic inflammation influence the local response.
In our study, we used MMP-3 promoter-Luciferase-GFP transgenic rat model for orthodontic tooth movement (OTM) or/and collagen-induced arthritis (CIA). In vivo imaging system (IVIS) was used to detect luciferase signal from MMP-3 promoter, and cytokine levels were measured by blood samples. In the end, we utilized micro-CT image to measure the distance of tooth movement and bone volume fraction. The experiment was 14-day span in the OTM group, and 21-day span in the CIA group. Signal from the experimental side of the mouth was increased in the experimental group than the control group. Moreover, we found that it was significantly elevated one day after spring placement in all groups. Distance of tooth movement and bone volume fraction were also larger in experimental group than the control group. From the level of inflammatory factors in the blood sample in the 21th day, most of the level in the CIA group were higher than CIA combined with OTM group.
In this study, we demonstrated that the distance of tooth movement and localized bone metabolism were not significantly influenced by CIA, a systemic inflammation. Moreover, localized inflammation of OTM did not change the concentrations of measured molecules in the bloodstream in CIA.
中文摘要 i
Abstract ii
目 錄 iv
圖目錄 vi
第一章 引言 1
1.1 矯正牙齒移動的生理機制 1
1.1.1 矯正牙齒移動與發炎反應 1
1.1.2 影響骨質重塑的細胞激素 2
1.1.3 MMP-3與矯正牙齒移動 3
1.2 關節炎的生理機制 4
1.2.1 自體免疫對於骨吸收之影響 5
1.2.1.1 骨質重塑的機轉及細胞激素 5
1.3 骨骼細胞對於免疫系統之影響 6
第二章 實驗目的 7
第三章 研究方法 8
3.1 動物實驗 8
3.1.1 基因轉殖大鼠與麻醉方式 8
3.1.2 矯正牙齒移動(orthodontic tooth movement, OTM)模型 8
3.1.3 膠原蛋白誘發關節炎(collagen induced arthritis, CIA)模型 9
3.1.3.1 乳狀液(emulsion)配製 9
3.1.3.2 實驗組與對照組 9
3.1.3.3 誘發關節炎之判定與測量 10
3.1.4 合併矯正牙齒移動與膠原蛋白誘發關節炎模型(CIA+OTM組) 10
3.1.5 MMP-3 量化 11
3.1.5.1 偵測與量化方式 11
3.1.5.2 偵測MMP-3時間點 11
3.1.6 抽血檢驗 12
3.1.6.1 採血方式 12
3.1.6.2 採血時間點 12
3.1.7 基因轉殖大鼠犧牲方式 12
3.2 顯微電腦斷層影像 (micro CT image) 12
3.2.1 拍攝參數 12
3.2.2 定位 13
3.2.3 矯正牙齒移動之距離測量 13
3.2.4 骨體積比率分析 14
3.3 Multiplex-細胞激素分析 14
3.4 統計方法 15
第四章 實驗結果 16
4.1 誘發關節炎之結果 16
4.1.1 測量後肢排水重量及後肢腳掌厚度 16
4.1.2 大鼠步態及arthritis score 16
4.2 IVIS結果 16
4.2.1 矯正牙齒移動對MMP-3表現之影響 17
4.2.2 膠原蛋白誘發關節炎對MMP-3表現之影響 17
4.2.3 膠原蛋白誘發關節炎對矯正牙齒移動MMP-3表現之影響 18
4.2.4 眼睛MMP-3之表現 18
4.3 顯微電腦斷層影像 (micro CT image) 結果 18
4.3.2 第一大臼齒移動距離 18
4.3.3 第一大臼齒下齒槽骨體積比率 19
4.4 抽血數值分析 20
4.4.1 膠原蛋白誘發關節炎組(CIA組)與其控制組(NS組)之比較 20
4.4.2 合併矯正牙齒移動與膠原蛋白誘發關節炎(CIA+OTM組)與單純膠原蛋白誘發關節炎組(CIA組)之比較 20
4.4.3 矯正牙齒移動(OTM組)與其控制組(nonOTM組)之比較 20
第五章 討論 22
5.1 實驗動物的選擇、設計 22
5.2 誘發關節炎之選擇 23
5.3 彈簧施力對MMP-3分子表現的影響 23
5.4 MMP-3與關節炎的關係 25
5.5 冷光訊號與眼睛的關係 26
5.6 顯微電腦斷層影像於牙齒移動距離、骨體積比率及牙根分岔處與齒槽骨間距離之結果探討 28
5.7 抽血數值之探討 29
5.7.1 膠原蛋白誘發關節炎組(CIA組)與其控制組(NS組)之比較 29
5.7.2 合併矯正牙齒移動與膠原蛋白誘發關節炎(CIA+OTM組)與單純膠原蛋白誘發關節炎組(CIA組)之比較 31
5.7.3 矯正牙齒移動(OTM組)與其控制組(nonOTM組)之比較 33
第六章 結論 36
第七章 未來研究方向 37
參考文獻 38
附錄 47
圖 目 錄
圖一:大鼠口內裝置 47
圖二:後肢腳掌厚度之量測 47
圖三:IVIS 圈選ROI 47
圖四:不同組別拍攝IVIS及抽血的時間點,以圓點標示。 48
圖五:大鼠尾部截面圖 49
圖六:顯微斷層掃描之影像定位。 49
圖七:量測第一大臼齒之移動距離 50
圖七-1:單純計算兩顆牙齒間最短距離 50
圖七-2:在定位的矢狀切面上計算兩顆牙齒間最短距離 50
圖八:骨體積百分比分析 50
圖九:後肢足重 51
圖十:後肢腳掌厚度 51
圖十一:後肢腫脹照片 53
圖十二:矯正牙齒移動對MMP-3啟動子報導冷光酶基因表現之影響 54
十二-1 比較活化彈簧組與未活化彈簧組,左側大臼齒區光子數之差異 54
十二-2 比較活化彈簧組中,大鼠左、右兩側光子數之差異 55
圖十三: 膠原蛋白誘發關節炎在腳後肢及尾巴MMP-3啟動子報導冷光酶基因表現之影響 57
十三-1:比較膠原蛋白誘發關節炎組與生理食鹽水組腳後肢光子數之差異 57
十三-2:比較膠原蛋白誘發關節炎組與生理食鹽水組尾巴光子數之差異 58
圖十四:膠原蛋白誘發關節炎對矯正牙齒移動MMP-3啟動子報導冷光酶基因表現之影響 62
圖十五:眼睛MMP-3之表現 63
十五-1 膠原蛋白誘發關節炎組與生理食鹽水組大鼠雙眼光子數之差異 63
十五-2 活化彈簧組與未活化彈簧組大鼠雙眼光子數之差異 65
十五-3 矯正牙齒移動組、合併矯正牙齒移動與膠原蛋白誘發關節炎之組別和膠原蛋白誘發關節炎組大鼠雙眼光子數之差異 66
圖十六:第一大臼齒移動距離 68
十六-1 使用watershed方式圈選牙齒再計算最短距離 68
十六-2 在定位的矢狀面上量測的最短距離 68
圖十七:第一大臼齒下齒槽骨體積比率 69
十七-1 左側(放置彈簧側)之整體骨體積比率比較 69
十七-2 左、右兩側之整體骨體積比率比較 70
十七-3 左側(放置彈簧側)根岔處之下360 μm比較 70
十七-4 左、右兩側之根岔處之下360 μm比較 71
十七-5 根岔處向下360 μm、270 μm、198 μm、90 μm之骨體積比率比較 72
圖十八:抽血數值分析 73
十八-1 (1) MIP-3α在膠原蛋白誘發關節炎組(CIA組)與其控制組(NS組)之比較,數值為減去第0天的數值 76
十八-1 (2) 膠原蛋白誘發關節炎組(CIA組)與其控制組(NS組)及合併矯正牙齒移動與膠原蛋白誘發關節炎之組別(CIA+OTM組)之比較,數值為減去第0天的數值 76
十八-2 矯正牙齒移動(OTM組)與其控制組(nonOTM組)之比較 77
十八-3 矯正牙齒移動(OTM組)與其控制組(nonOTM組)、及生理食鹽水組(NS組)之比較 80
十八-4 矯正牙齒移動(OTM組)與其控制組(nonOTM組)、及合併矯正牙齒移動與膠原蛋白誘發關節炎之組別(CIA+OTM組)之比較 83
圖十九:體重變化 83
1.Krishnan V, Davidovitch Ze. Cellular, molecular, and tissue-level reactions to orthodontic force. American Journal of Orthodontics and Dentofacial Orthopedics. 2006;129(4):469.e1-.e32.
2.Krishnan V, Davidovitch Z. On a Path to Unfolding the Biological Mechanisms of Orthodontic Tooth Movement. Journal of Dental Research. 2009;88(7):597-608.
3.Ren Y, Vissink A. Cytokines in crevicular fluid and orthodontic tooth movement. European Journal of Oral Sciences. 2008;116(2):89-97.
4.Baloul SS. Osteoclastogenesis and Osteogenesis during Tooth Movement2016.
5.Nicolay OF, Davidovitch Z, Shanfeld JL, Alley K. Substance P immunoreactivity in periodontal tissues during orthodontic tooth movement. Bone and Mineral. 1990;11(1):19-29.
6.Hong HS, Lee J, Lee E, Kwon YS, Lee E, Ahn W, et al. A new role of substance P as an injury-inducible messenger for mobilization of CD29+ stromal-like cells. Nature Medicine. 2009;15(4):425-35.
7.An S, Zhang Y, Chen Q, Xiong B, Hao J, Zheng Y, et al. Effect of systemic delivery of Substance P on experimental tooth movement in rats. Am J Orthod Dentofacial Orthop. 2019;155(5):642-9.
8.Kanzaki H, Chiba M, Shimizu Y, Mitani H. Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res. 2002;17(2):210-20.
9.Asano M, Yamaguchi M, Nakajima R, Fujita S, Utsunomiya T, Yamamoto H, et al. IL-8 and MCP-1 induced by excessive orthodontic force mediates odontoclastogenesis in periodontal tissues. Oral Dis. 2011;17(5):489-98.
10.Garlet TP, Coelho U, Silva JS, Garlet GP. Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. Eur J Oral Sci. 2007;115(5):355-62.
11.Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15(12):786-801.
12.Delaissé JM, Engsig MT, Everts V, del Carmen Ovejero M, Ferreras M, Lund L, et al. Proteinases in bone resorption: obvious and less obvious roles. Clin Chim Acta. 2000;291(2):223-34.
13.Woessner JF, Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. Faseb j. 1991;5(8):2145-54.
14.Holliday LS, Welgus HG, Fliszar CJ, Veith GM, Jeffrey JJ, Gluck SL. Initiation of osteoclast bone resorption by interstitial collagenase. J Biol Chem. 1997;272(35):22053-8.
15.Holliday LS, Vakani A, Archer L, Dolce C. Effects of matrix metalloproteinase inhibitors on bone resorption and orthodontic tooth movement. J Dent Res. 2003;82(9):687-91.
16.Domon S, Shimokawa H, Matsumoto Y, Yamaguchi S, Soma K. In situ hybridization for matrix metalloproteinase-1 and cathepsin K in rat root-resorbing tissue induced by tooth movement. Arch Oral Biol. 1999;44(11):907-15.
17.Redlich M, Reichenberg E, Harari D, Zaks B, Shoshan S, Palmon A. The Effect of Mechanical Force on mRNA Levels of Collagenase, Collagen Type I, and Tissue Inhibitors of Metalloproteinases in Gingivae of Dogs. Journal of Dental Research. 2001;80(12):2080-4.
18.Takahashi I, Nishimura M, Onodera K, Bae J-W, Mitani H, Okazaki M, et al. Expression of MMP-8 and MMP-13 Genes in the Periodontal Ligament during Tooth Movement in Rats. Journal of Dental Research. 2003;82(8):646-51.
19.Apajalahti S, Sorsa T, Railavo S, Ingman T. The in vivo levels of matrix metalloproteinase-1 and -8 in gingival crevicular fluid during initial orthodontic tooth movement. J Dent Res. 2003;82(12):1018-22.
20.Canavarro C, Teles RP, Capelli Júnior J. Matrix metalloproteinases -1, -2, -3, -7, -8, -12, and -13 in gingival crevicular fluid during orthodontic tooth movement: a longitudinal randomized split-mouth study. European Journal of Orthodontics. 2012;35(5):652-8.
21.Bord S, Horner A, Hembry RM, Compston JE. Stromelysin-1 (MMP-3) and stromelysin-2 (MMP-10) expression in developing human bone: potential roles in skeletal development. Bone. 1998;23(1):7-12.
22.Chin JR, Murphy G, Werb Z. Stromelysin, a connective tissue-degrading metalloendopeptidase secreted by stimulated rabbit synovial fibroblasts in parallel with collagenase. Biosynthesis, isolation, characterization, and substrates. Journal of Biological Chemistry. 1985;260(22):12367-76.
23.Mitsui N, Suzuki N, Koyama Y, Yanagisawa M, Otsuka K, Shimizu N, et al. Effect of compressive force on the expression of MMPs, PAs, and their inhibitors in osteoblastic Saos-2 cells. Life Sci. 2006;79(6):575-83.
24.Yurube T, Nishida K, Suzuki T, Kaneyama S, Zhang Z, Kakutani K, et al. Matrix metalloproteinase (MMP)-3 gene up-regulation in a rat tail compression loading-induced disc degeneration model. J Orthop Res. 2010;28(8):1026-32.
25.Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature. 1999;402(6759):304-9.
26.Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506(7488):376-81.
27.Danks L, Komatsu N, Guerrini MM, Sawa S, Armaka M, Kollias G, et al. RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Ann Rheum Dis. 2016;75(6):1187-95.
28.Hirota K, Hashimoto M, Ito Y, Matsuura M, Ito H, Tanaka M, et al. Autoimmune Th17 Cells Induced Synovial Stromal and Innate Lymphoid Cell Secretion of the Cytokine GM-CSF to Initiate and Augment Autoimmune Arthritis. Immunity. 2018;48(6):1220-32.e5.
29.Rauber S, Luber M, Weber S, Maul L, Soare A, Wohlfahrt T, et al. Resolution of inflammation by interleukin-9-producing type 2 innate lymphoid cells. Nat Med. 2017;23(8):938-44.
30.Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, et al. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med. 2006;203(12):2673-82.
31.Hirota K, Yoshitomi H, Hashimoto M, Maeda S, Teradaira S, Sugimoto N, et al. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med. 2007;204(12):2803-12.
32.Nistala K, Moncrieffe H, Newton KR, Varsani H, Hunter P, Wedderburn LR. Interleukin-17-producing T cells are enriched in the joints of children with arthritis, but have a reciprocal relationship to regulatory T cell numbers. Arthritis Rheum. 2008;58(3):875-87.
33.Tsukasaki M, Takayanagi H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol. 2019;19(10):626-42.
34.Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, et al. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiol Rev. 2017;97(4):1295-349.
35.Charles JF, Hsu LY, Niemi EC, Weiss A, Aliprantis AO, Nakamura MC. Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function. J Clin Invest. 2012;122(12):4592-605.
36.Matsumoto T, Abe M. TGF-β-related mechanisms of bone destruction in multiple myeloma. Bone. 2011;48(1):129-34.
37.Horton JE, Raisz LG, Simmons HA, Oppenheim JJ, Mergenhagen SE. Bone Resorbing Activity in Supernatant Fluid from Cultured Human Peripheral Blood Leukocytes. Science. 1972;177(4051):793-5.
38.Arron JR, Choi Y. Bone versus immune system. Nature. 2000;408(6812):535-6.
39.Brand DD, Latham KA, Rosloniec EF. Collagen-induced arthritis. Nature Protocols. 2007;2(5):1269-75.
40.陳泱錚. 低能量雷射治療對大鼠矯正牙齒移動模式之影響 2017.
41.Marques SM, Esteves da Silva JC. Firefly bioluminescence: a mechanistic approach of luciferase catalyzed reactions. IUBMB Life. 2009;61(1):6-17.
42.蔡孟桓. 以大鼠動物測試低能量雷射治療矯正牙齒移動及固持之效用 2013.
43.Reitan K, Kvam E. Comparative behavior of human and animal tissue during experimental tooth movement. Angle Orthod. 1971;41(1):1-14.
44.Li P, Schwarz EM. The TNF-alpha transgenic mouse model of inflammatory arthritis. Springer Semin Immunopathol. 2003;25(1):19-33.
45.Cromartie WJ, Craddock JG, Schwab JH, Anderle SK, Yang CH. Arthritis in rats after systemic injection of streptococcal cells or cell walls. J Exp Med. 1977;146(6):1585-602.
46.Glant TT, Finnegan A, Mikecz K. Proteoglycan-induced arthritis: immune regulation, cellular mechanisms, and genetics. Crit Rev Immunol. 2003;23(3):199-250.
47.Bendele A, McAbee T, Sennello G, Frazier J, Chlipala E, McCabe D. Efficacy of sustained blood levels of interleukin-1 receptor antagonist in animal models of arthritis: comparison of efficacy in animal models with human clinical data. Arthritis Rheum. 1999;42(3):498-506.
48.Waksman BH. Immune regulation in adjuvant disease and other arthritis models: relevance to pathogenesis of chronic arthritis. Scand J Immunol. 2002;56(1):12-34.
49.Williams RO. Collagen-induced arthritis as a model for rheumatoid arthritis. Methods Mol Med. 2004;98:207-16.
50.Trentham DE. Collagen arthritis as a relevant model for rheumatoid arthritis. Arthritis Rheum. 1982;25(8):911-6.
51.Williams RO, Malfait AM, Butler DM, Walmsley MJ, Feldmann M, Maini RN. Combination therapy with DMARDs and biological agents in collagen-induced arthritis. Clin Exp Rheumatol. 1999;17(6 Suppl 18):S115-20.
52.Probert AW, Jr., Schrier DJ, Gilbertsen RB. Effects of antiarthritic compounds on type II collagen-induced arthritis in rats. Arch Int Pharmacodyn Ther. 1984;269(1):167-76.
53.Chang HH, Wu CB, Chen YJ, Weng CY, Wong WP, Chen YJ, et al. MMP-3 response to compressive forces in vitro and in vivo. J Dent Res. 2008;87(7):692-6.
54.Akamine Y, Kakudo K, Kondo M, Ota K, Muroi Y, Yoshikawa H, et al. Prolonged matrix metalloproteinase-3 high expression after cyclic compressive load on human synovial cells in three-dimensional cultured tissue. Int J Oral Maxillofac Surg. 2012;41(7):874-81.
55.游元亨. 藉由MMP-3-GFP基因轉殖小鼠及大鼠探討MMP-3 在矯正性牙齒移動的表現 2019.
56.郭良柔. 以 MMP-3 啟動 -Luc-GFP 報導基因於轉殖大鼠及其初代細胞研究受刺激後表達的時間特性 2020.
57.Lin PM, Chen CT, Torzilli PA. Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage. Osteoarthritis Cartilage. 2004;12(6):485-96.
58.Cunnane G, Fitzgerald O, Beeton C, Cawston TE, Bresnihan B. Early joint erosions and serum levels of matrix metalloproteinase 1, matrix metalloproteinase 3, and tissue inhibitor of metalloproteinases 1 in rheumatoid arthritis. Arthritis Rheum. 2001;44(10):2263-74.
59.Ribbens C, Andre B, Jaspar JM, Kaye O, Kaiser MJ, De Groote D, et al. Matrix metalloproteinase-3 serum levels are correlated with disease activity and predict clinical response in rheumatoid arthritis. J Rheumatol. 2000;27(4):888-93.
60.Mahmoud RK, El-Ansary AK, El-Eishi HH, Kamal HM, El-Saeed NH. Matrix metalloproteinases MMP-3 and MMP-1 levels in sera and synovial fluids in patients with rheumatoid arthritis and osteoarthritis. Ital J Biochem. 2005;54(3-4):248-57.
61.Kobayashi A, Naito S, Enomoto H, Shiomoi T, Kimura T, Obata K, et al. Serum levels of matrix metalloproteinase 3 (stromelysin 1) for monitoring synovitis in rheumatoid arthritis. Arch Pathol Lab Med. 2007;131(4):563-70.
62.廖珮雯. 基質金屬蛋白酶-3 基因啟動子-基因轉殖小鼠及基因轉殖大鼠對矯正機械性刺激之表現 2015.
63.Shih CS, Laurie N, Holzmacher J, Spence Y, Nathwani AC, Davidoff AM, et al. AAV-mediated local delivery of interferon-beta for the treatment of retinoblastoma in preclinical models. Neuromolecular Med. 2009;11(1):43-52.
64.Van Hove I, Lefevere E, De Groef L, Sergeys J, Salinas-Navarro M, Libert C, et al. MMP-3 Deficiency Alleviates Endotoxin-Induced Acute Inflammation in the Posterior Eye Segment. Int J Mol Sci. 2016;17(11).
65.Vinores SA. Breakdown of the Blood–Retinal Barrier. Encyclopedia of the Eye. 2010:216-22.
66.Chen J, Smith LE. Retinopathy of prematurity. Angiogenesis. 2007;10(2):133-40.
67.Giebel SJ, Menicucci G, McGuire PG, Das A. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Lab Invest. 2005;85(5):597-607.
68.Ayzenberg I, Schlevogt S, Metzdorf J, Stahlke S, Pedreitturia X, Hunfeld A, et al. Analysis of neurogenesis during experimental autoimmune encephalomyelitis reveals pitfalls of bioluminescence imaging. PLoS One. 2015;10(3):e0118550.
69.Luna JD, Chan CC, Derevjanik NL, Mahlow J, Chiu C, Peng B, et al. Blood-retinal barrier (BRB) breakdown in experimental autoimmune uveoretinitis: comparison with vascular endothelial growth factor, tumor necrosis factor alpha, and interleukin-1beta-mediated breakdown. J Neurosci Res. 1997;49(3):268-80.
70.Liversidge J, Forrester JV. Experimental autoimmune uveitis (EAU): immunophenotypic analysis of inflammatory cells in chorio retinal lesions. Curr Eye Res. 1988;7(12):1231-41.
71.An J, Li Y, Liu Z, Wang R, Zhang B. A micro-CT study of microstructure change of alveolar bone during orthodontic tooth movement under different force magnitudes in rats. Exp Ther Med. 2017;13(5):1793-8.
72.Ru N, Liu SS-Y, Zhuang L, Li S, Bai Y. In vivo microcomputed tomography evaluation of rat alveolar bone and root resorption during orthodontic tooth movement. The Angle Orthodontist. 2012;83(3):402-9.
73.Verna C, Zaffe D, Siciliani G. Histomorphometric study of bone reactions during orthodontic tooth movement in rats. Bone. 1999;24(4):371-9.
74.Zhuang L, Bai Y, Meng X. Three-dimensional morphology of root and alveolar trabecular bone during tooth movement using micro-computed tomography. The Angle Orthodontist. 2011;81(3):420-5.
75.Katsikis PD, Chu CQ, Brennan FM, Maini RN, Feldmann M. Immunoregulatory role of interleukin 10 in rheumatoid arthritis. J Exp Med. 1994;179(5):1517-27.
76.Wu VY, Walz DA, McCoy LE. Purification and characterization of human and bovine platelet factor 4. Prep Biochem. 1977;7(6):479-93.
77.Rollins BJ. Chemokines. Blood. 1997;90(3):909-28.
78.Szekanecz Z, Koch AE, Kunkel SL, Strieter RM. Cytokines in rheumatoid arthritis. Potential targets for pharmacological intervention. Drugs Aging. 1998;12(5):377-90.
79.Ruth JH, Shahrara S, Park CC, Morel JC, Kumar P, Qin S, et al. Role of macrophage inflammatory protein-3alpha and its ligand CCR6 in rheumatoid arthritis. Lab Invest. 2003;83(4):579-88.
80.Bacon KB, Premack BA, Gardner P, Schall TJ. Activation of dual T cell signaling pathways by the chemokine RANTES. Science. 1995;269(5231):1727-30.
81.Taub DD, Turcovski-Corrales SM, Key ML, Longo DL, Murphy WJ. Chemokines and T lymphocyte activation: I. Beta chemokines costimulate human T lymphocyte activation in vitro. J Immunol. 1996;156(6):2095-103.
82.Schall TJ, Bacon K, Toy KJ, Goeddel DV. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature. 1990;347(6294):669-71.
83.Rathanaswami P, Hachicha M, Sadick M, Schall TJ, McColl SR. Expression of the cytokine RANTES in human rheumatoid synovial fibroblasts. Differential regulation of RANTES and interleukin-8 genes by inflammatory cytokines. J Biol Chem. 1993;268(8):5834-9.
84.Barnes DA, Tse J, Kaufhold M, Owen M, Hesselgesser J, Strieter R, et al. Polyclonal antibody directed against human RANTES ameliorates disease in the Lewis rat adjuvant-induced arthritis model. J Clin Invest. 1998;101(12):2910-9.
85.Inoue T, Yamashita M, Higaki M. The new antirheumatic drug KE-298 suppresses monocyte chemoattractant protein (MCP)-1 and RANTES production in rats with adjuvant-induced arthritis and in IL-1beta-stimulated synoviocytes of patients with rheumatoid arthritis. Rheumatol Int. 2001;20(4):149-53.
86.Taylor PC. VEGF and imaging of vessels in rheumatoid arthritis. Arthritis Res Ther. 2002;4(3):S99.
87.Berse B, Hunt JA, Diegel RJ, Morganelli P, Yeo K, Brown F, et al. Hypoxia augments cytokine (transforming growth factor-beta (TGF-beta) and IL-1)-induced vascular endothelial growth factor secretion by human synovial fibroblasts. Clin Exp Immunol. 1999;115(1):176-82.
88.Wiesener MS, Turley H, Allen WE, Willam C, Eckardt KU, Talks KL, et al. Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1alpha. Blood. 1998;92(7):2260-8.
89.Miyagawa A, Chiba M, Hayashi H, Igarashi K. Compressive force induces VEGF production in periodontal tissues. J Dent Res. 2009;88(8):752-6.
90.Motokawa M, Kaku M, Tohma Y, Kawata T, Fujita T, Kohno S, et al. Effects of cyclic tensile forces on the expression of vascular endothelial growth factor (VEGF) and macrophage-colony-stimulating factor (M-CSF) in murine osteoblastic MC3T3-E1 cells. J Dent Res. 2005;84(5):422-7.
91.Street J, Bao M, deGuzman L, Bunting S, Peale FV, Jr., Ferrara N, et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A. 2002;99(15):9656-61.
92.MacLaine JK, Rabie AB, Wong R. Does orthodontic tooth movement cause an elevation in systemic inflammatory markers? Eur J Orthod. 2010;32(4):435-40.
93.Zeng M, Kou X, Yang R, Liu D, Wang X, Song Y, et al. Orthodontic Force Induces Systemic Inflammatory Monocyte Responses. Journal of Dental Research. 2015;94(9):1295-302.
94.Harigai M, Hara M, Yoshimura T, Leonard EJ, Inoue K, Kashiwazaki S. Monocyte chemoattractant protein-1 (MCP-1) in inflammatory joint diseases and its involvement in the cytokine network of rheumatoid synovium. Clin Immunol Immunopathol. 1993;69(1):83-91.
95.Jiang C, Li Z, Quan H, Xiao L, Zhao J, Jiang C, et al. Osteoimmunology in orthodontic tooth movement. Oral Dis. 2015;21(6):694-704.
96.Kapoor P, Kharbanda OP, Monga N, Miglani R, Kapila S. Effect of orthodontic forces on cytokine and receptor levels in gingival crevicular fluid: a systematic review. Progress in orthodontics. 2014;15(1):65-.
97.Nunes L, Quintanilha L, Perinetti G, Capelli J. Effect of orthodontic force on expression levels of ten cytokines in gingival crevicular fluid. Archives of Oral Biology. 2017;76:70-5.
98.Grant M, Wilson J, Rock P, Chapple I. Induction of cytokines, MMP9, TIMPs, RANKL and OPG during orthodontic tooth movement. European Journal of Orthodontics. 2012;35(5):644-51.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊