|
1.Petersen, P.E., World Health Organization global policy for improvement of oral health-World Health Assembly 2007. International dental journal, 2008. 58(3): p. 115-121. 2.Kassebaum, N.J., et al., Global Burden of Untreated Caries:A Systematic Review and Metaregression. Journal of Dental Research, 2015. 94(5): p. 650-658. 3.Martins-Junior, P., et al., Untreated dental caries: impact on quality of life of children of low socioeconomic status. Pediatric dentistry, 2012. 34(3): p. 49E-52E. 4.Sheiham, A., Dental caries affects body weight, growth and quality of life in pre-school children. British Dental Journal, 2006. 201(10): p. 625-626. 5.Coll, J.A., et al., A Systematic Review and Meta-Analysis of Nonvital Pulp Therapy for Primary Teeth. Pediatr Dent, 2020. 42(4): p. 256-461. 6.Coll, J.A., et al., Use of Non-Vital Pulp Therapies in Primary Teeth. Pediatr Dent, 2020. 42(5): p. 337-349. 7.Pulp Therapy for Primary and Immature Permanent Teeth. Pediatr Dent, 2018. 40(6): p. 343-351. 8.Kakehashi, S., H.R. Stanley, and R.J. Fitzgerald, The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral Surgery, Oral Medicine, Oral Pathology, 1965. 20(3): p. 340-349. 9.Ahmed, H.M.A., et al., Application of a new system for classifying tooth, root and canal morphology in the primary dentition. Int Endod J, 2020. 53(1): p. 27-35. 10.Wang, Y.-L., et al., A study on the root canal morphology of primary molars by high-resolution computed tomography. Journal of Dental Sciences, 2013. 8(3): p. 321-327. 11.Ahmed, H., Anatomical challenges, electronic working length determination and current developments in root canal preparation of primary molar teeth. International endodontic journal, 2013. 46(11): p. 1011-1022. 12.Fuks, A.B., M. Guelmann, and A. Kupietzky, Current developments in pulp therapy for primary teeth. Endodontic Topics, 2010. 23(1): p. 50-72. 13.Coll, J., et al., An evaluation of pulpal therapy in primary incisors. Pediatr Dent, 1988. 10(3): p. 178-84. 14.Nadkarni, U. and S. Damle, Comparative evaluation of calcium hydroxide and zinc oxide eugenol as root canal filling materials for primary molars: a clinical and radiographic study. Journal of the Indian Society of Pedodontics and Preventive Dentistry, 2000. 18(1): p. 1-10. 15.Tchaou, W.S., et al., Inhibition of pure cultures of oral bacteria by root canal filling materials. Pediatric Dentistry, 1996. 18: p. 444-449. 16.Takushige, T., et al., Endodontic treatment of primary teeth using a combination of antibacterial drugs. International endodontic journal, 2004. 37(2): p. 132-138. 17.Sijini, O.T., et al., Clinical and radiographic evaluation of triple antibiotic paste pulp therapy compared to Vitapex pulpectomy in non-vital primary molars. Clinical and Experimental Dental Research, 2021. 7(5): p. 819-828. 18.NAKORNCHAI, S., P. BANDITSING, and N. VISETRATANA, Clinical evaluation of 3Mix and Vitapex® as treatment options for pulpally involved primary molars. International Journal of Paediatric Dentistry, 2010. 20(3): p. 214-221. 19.Zacharczuk, G.A., et al., Evaluation of 3Mix-MP and pulpectomies in non-vital primary molars. Acta Odontol Latinoam, 2019. 32(1): p. 22-28. 20.Torabinejad, M., T.F. Watson, and T.R. Pitt Ford, Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod, 1993. 19(12): p. 591-5. 21.Pilownic, K., et al., Physicochemical and Biological Evaluation of Endodontic Filling Materials for Primary Teeth. Brazilian Dental Journal, 2017. 28: p. 578-586. 22.Tavares, C.O., et al., Tissue reactions to a new mineral trioxide aggregate-containing endodontic sealer. J Endod, 2013. 39(5): p. 653-7. 23.Assmann, E., et al., Evaluation of bone tissue response to a sealer containing mineral trioxide aggregate. J Endod, 2015. 41(1): p. 62-6. 24.Jafari, F., et al., Antibacterial Activity of MTA Fillapex and AH 26 Root Canal Sealers at Different Time Intervals. Iran Endod J, 2016. 11(3): p. 192-7. 25.Muzzarelli, R.A.A., et al., Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydrate Polymers, 2012. 87(2): p. 995-1012. 26.Liu, N., et al., Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydrate Polymers, 2006. 64(1): p. 60-65. 27.Costa, E.M., et al., Evaluation and insights into chitosan antimicrobial activity against anaerobic oral pathogens. Anaerobe, 2012. 18(3): p. 305-309. 28.BARCELOS, R., et al., The influence of smear layer removal on primary tooth pulpectomy outcome: a 24-month, double-blind, randomized, and controlled clinical trial evaluation. International Journal of Paediatric Dentistry, 2012. 22(5): p. 369-381. 29.Ratih, D.N., R.A. Enggardipta, and A.T. Kartikaningtyas, The effect of chitosan nanoparticle as a final irrigation solution on the smear layer removal, micro-hardness and surface roughness of root canal dentin. The Open Dentistry Journal, 2020. 14(1). 30.Slaughter, B.V., et al., Hydrogels in regenerative medicine. Adv Mater, 2009. 21(32-33): p. 3307-29. 31.Hoffman, A.S., Hydrogels for biomedical applications. Adv Drug Deliv Rev, 2002. 54(1): p. 3-12. 32.Wichterle, O. and D. LÍM, Hydrophilic Gels for Biological Use. Nature, 1960. 185(4706): p. 117-118. 33.Qiu, Y. and K. Park, Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev, 2001. 53(3): p. 321-39. 34.Hao, T., et al., The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels. Osteoarthritis and Cartilage, 2010. 18(2): p. 257-265. 35.Mantha, S., et al., Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials (Basel), 2019. 12(20). 36.Ayala-Ham, A., et al., Hydrogel-Based Scaffolds in Oral Tissue Engineering. Frontiers in Materials, 2021. 8(294). 37.Moreira, M.S., et al., Physical and Biological Properties of a Chitosan Hydrogel Scaffold Associated to Photobiomodulation Therapy for Dental Pulp Regeneration: An In Vitro and In Vivo Study. BioMed Research International, 2021. 2021: p. 6684667. 38.Almeida, L.D., et al., Hyaluronic acid hydrogels incorporating platelet lysate enhance human pulp cell proliferation and differentiation. Journal of Materials Science: Materials in Medicine, 2018. 29(6): p. 1-11. 39.He, X.T., et al., Building capacity for macrophage modulation and stem cell recruitment in high-stiffness hydrogels for complex periodontal regeneration: Experimental studies in vitro and in rats. Acta Biomater, 2019. 88: p. 162-180. 40.Xu, X., et al., An injectable and thermosensitive hydrogel: Promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomater, 2019. 86: p. 235-246. 41.Skwarczynska, A., et al., The structural (FTIR, XRD, and XPS) and biological studies of thermosensitive chitosan chloride gels with β-glycerophosphate disodium. Journal of Applied Polymer Science, 2018. 135(27): p. 46459. 42.Qi, L., et al., Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate research, 2004. 339(16): p. 2693-2700. 43.Mao, S., et al., The depolymerization of chitosan: effects on physicochemical and biological properties. International journal of pharmaceutics, 2004. 281(1-2): p. 45-54. 44.Zhang, W., et al., The hypolipidemic activity of chitosan nanopowder prepared by ultrafine milling. Carbohydrate Polymers, 2013. 95(1): p. 487-491. 45.Zhang, W., J. Zhang, and W. Xia, The preparation of chitosan nanoparticles by wet media milling. International Journal of Food Science & Technology, 2012. 47. 46.Yousefpour, P., et al., Preparation and comparison of chitosan nanoparticles with different degrees of glutathione thiolation. Daru, 2011. 19(5): p. 367-75. 47.Grenha, A., Chitosan nanoparticles: a survey of preparation methods. J Drug Target, 2012. 20(4): p. 291-300. 48.Sari, K., K. Abraha, and E. Suharyadi. Effect of milling time on microstructures of nano-sized chitosan. in Journal of Physics: Conference Series. 2019. IOP Publishing.
|