跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 13:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高子揚
研究生(外文):Tzu-Yang Kao
論文名稱:新型幾丁聚醣水膠應用於乳齒根管封填之研發
論文名稱(外文):Development of a novel chitosan based thermosensitive hydrogel as a root filling material for primary teeth
指導教授:林俊彬林俊彬引用關係王姻麟王姻麟引用關係
指導教授(外文):Chun-Pin LinYin-Lin Wang
口試委員:劉緒宗章浩宏廖淑娟
口試委員(外文):Shiuh-Tzung LiuHao-Hueng ChangShu-chuan Liao
口試日期:2021-10-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床牙醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:55
中文關鍵詞:乳齒根管封填材料幾丁聚醣溫敏性水膠根管治療抗菌材料
外文關鍵詞:root canal filling materialprimary toothchitosanthermosensitive hydrogelroot canal therapypulpectomyantimicrobial material
DOI:10.6342/NTU202104384
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
乳齒根管的治療有間接覆髓(indirect pulp treatment)、直接覆髓(direct pulp cap)、斷髓(pulpotomy)、拔髓(pulpectomy)。臨床上若因齲齒或是外傷侵犯到牙髓牙本質複合體(pulp-dentin complex),進一步就會造成不可逆牙髓炎或是牙髓壞死,此時就必需進行拔髓治療,以達成保存乳齒,使其留存至自然生理性脫落。因此要達到成功的乳齒拔髓治療,根管封填材料就扮演了不可或缺的重要角色。
臨床上理想的乳齒根管封填材料希望可以滿足:與牙根生理性吸收之速率相近、可抑制細菌、臨床操作易於填充、不會造成牙齒變色等等條件。現有臨床常用於乳齒根管填充之碘仿氫氧化鈣預拌糊雖然臨床操作性質良好,但過往研究顯示卻顯示其具有抑制細菌能力不佳、生理性吸收過於快速、造成牙齒變色之缺點。本研究的目的於利用幾丁聚醣的良好抗菌表現以及生物相容性,為了增強幾丁聚醣的抗菌效果與其功能性,本研究使用快速研磨機進行研磨,使其成為微米化,可增加表面積使其暴露出較多之官能基(NH3+, OH-),可增加與高分子反應的交聯程度,也可提升生物吸收的特性,並挑選最適化,採用離子交聯法將幾丁聚醣/β甘油磷酸鈉製備成溫敏性水膠。期望能以此為基礎發展,分析做為新型乳齒根管封填材料,改良現有臨床常用乳齒根管填充材的缺點。
本研究分為三部分,第一部分利用快速球磨機進行幾丁聚醣研磨後,由掃描式電子顯微鏡觀察粉末表面型態,並以動態雷射光散射分析粒徑大小與分佈。根據實驗結果顯示以研磨時間120分鐘可獲得最適化之幾丁聚醣粉末,且其粒徑分布最均勻,並以傅立葉轉換紅外線光譜分析粉末表面官能基,其結果顯示以快速球磨機研磨幾丁聚醣,是一個簡易且不會造成樣品化學性質破壞,使幾丁聚醣成為次微米化的方法。第二部分以動態機械分析幾丁聚醣/β甘油磷酸鈉溫敏性水膠之成膠溫度與成膠時間,結果顯示,利用溫敏性水膠最佳參數為幾丁聚醣濃度3%與β甘油磷酸鈉350 mg/mL調配成之溫敏性水膠,可以在室溫時保持液相,並在接近而略低於人體生理溫度時凝膠化。第三部分則以直接接觸法進行抑菌圈測試,並以Alamar Blue cell viability assay 測試生物相容性,根據實驗結果得知,幾丁聚醣/β甘油磷酸鈉溫敏性水膠展現出良好的抗菌性以及生物相容性,具有良好潛力作為乳齒根管填充材料之候選材料。
Pulp therapy for primary teeth includes: indirect pulp treatment, direct pulp cap, pulpotomy and pulpectomy. If caries lesion invades into pulp-dentin complex and induces irreversible pulpitis or pulp necrosis, pulpectomy is indicated to preserve primary teeth for them to keep normal function and normally shed. In practice, root filing materials play important roles for clinicians to perform pulpectomy successfully.
Ideally, a root filling material for primary teeth should be resorbed at the same pace as the physiologic resorption of the roots, antiseptic, easy to insert into root canals, and will not induce teeth to discoloration. A mixed paste of calcium hydroxide and iodoform (Vitapex) is widely used among dentists and has become mainstream nowadays for it is easy to handle clinically. However, past studies showed the disadvantages of this product: poor antiseptic ability, being physiologic resorbed too rapidly, and discoloration to the teeth. Previously, a modified chitosan-based material from our research team not only was improved for its ability to carry fluoride, but also showed the significant antibacterial property. Thus, the purpose of this research is to take advantage of the outstanding antibacterial ability and excellent biocompatibility of chitosan to synthesize a chitosan-based thermosensitive hydrogel for a potential candidate for primary root filling material.
This research comes into three parts. The results from the first part showed that a ball grinder could be used to grind after-market chitosan powers into a sub-micron scale without pulverizing it. The results from the second part revealed the proper recipe for synthesizing chitosan/ βGP thermosensitive hydrogel for gelation point around human body temperature. The results from the third part showed that the chitosan/ βGP thermosensitive hydrogel synthesized in this experiment had both excellent antimicrobial ability and great biocompatibility. Thus, the chitosan/ βGP thermosensitive hydrogel had great potential to be a promising candidate for root canal filling material for primary tooth.
目錄
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
目錄 vi
圖目錄 x
表目錄 xii
第一章 前言 1
第二章 文獻回顧 3
2.1 乳齒根管治療 3
2.1.1 乳齒根管治療之適應症及治療目標 3
2.1.2 乳齒根管系統構造及型態 3
2.1.3 乳齒根管填充材料 4
2.1.4 其他乳齒根管填充材料 5
2.2 幾丁聚醣 (chitosan) 6
2.2.1 幾丁聚醣及其結構介紹 6
2.2.2 幾丁聚醣於牙科臨床上之應用 7
2.3 水膠的定義與種類 7
2.3.1 水膠的定義 7
2.3.2 溫敏性水膠 (thermosensitive hydrogels) 8
2.3.3 水膠於牙科臨床上之應用 9
第三章 動機與目的 11
第四章 材料與方法 14
4.1 材料製備與特性分析 14
4.1.1 幾丁聚醣之次微米化 14
4.1.2 幾丁聚醣粉末粒徑分析 14
4.1.3 掃描式電子顯微鏡觀察幾丁聚醣粉末型態 14
4.1.4 幾丁聚醣表面特性分析 15
4.1.5 幾丁聚醣/ β甘油磷酸溫敏性水膠之製備 15
4.2 溫敏性水膠之流變性質測試 16
4.2.1 成膠溫度初始測試 16
4.2.2 動態機械分析 (Dynamic mechanical analysis) 17
4.2.3 成膠時間測試 (Time sweep) 17
4.3 掃描式電子顯微鏡 (Scanning electron microscope) 觀察溫敏性水膠表面 …………………………………………………………………………..18
4.3.1 測試樣本製備 18
4.3.2 測試方法 18
4.4 溫敏性水膠表面性質分析 (Fourier-transform infrared spectroscopy, FTIR) …………………………………………………………………………..18
4.4.1 測試樣本製備 18
4.4.2 測試方法 19
4.5 溫敏性水膠澎潤率分析 (swelling ratio) 19
4.5.1 測試樣本製備 19
4.5.2 測試方法 19
4.6 溫敏性水膠水解度測試 (solubility) 20
4.6.1 測試樣本製備 20
4.6.2 測試方法 20
4.7 材料生物相容性測試 20
4.7.1 預備老鼠纖維母細胞 (NIH-3T3 fibroblast) 20
4.7.2 Alamar Blue cell viability assay 21
4.8 材料抗菌能力測試 22
4.8.1 預備實驗細菌 22
4.8.2 抑菌圈測試 22
第五章 結果 24
5.1 微米化幾丁聚醣粉末分析 24
5.1.1 掃描式電子顯微鏡觀察 (Scanning electron microscope, SEM) 24
5.1.2 動態雷射光散射粒徑分析 (dynamic light scattering, DLS) 26
5.1.3 傅立葉轉換紅外線光譜分析 (Fourier-transform infrared spectroscopy, FTIR) 27
5.2 溫敏性水膠性質分析 28
5.2.1 成膠溫度初始測試 28
5.2.2 凝膠化溫度(gelation temperature) 測試 29
5.2.3 凝膠時間(gelation time) 測試 31
5.2.4 溫敏性水膠掃描式電子顯微鏡觀察 (scanning electron microscope, SEM) 32
5.2.5 溫敏性水膠表面特性分析 (Fourier-transform infrared spectroscopy, FTIR) 34
5.2.6 膨潤率分析 (swelling ratio) 35
5.2.7 水解度測試 (solubility) 37
5.2.8 生物相容性測試 (Alamar Blue cell viability assay) 39
5.2.9 抑菌能力測試 (zone of inhibition) 40
第六章 討論 43
6.1 幾丁聚醣粉末研磨 43
6.2 幾丁聚醣溫敏性水膠之流變性質 44
6.3 幾丁聚醣溫敏性水膠之物化生理性質 45
第七章 結論 47
第八章 未來研究方向 48
參考文獻 49
附圖 53
圖目錄
圖 4.1 幾丁聚醣/β甘油磷酸溫敏性水膠之製備示意圖 16
圖 4.2 抑菌圈測試:紙錠放置位置 23
圖 5.1 1 幾丁聚醣粉末於掃描式電子顯微鏡放大之影像:500倍 25
圖 5.1 2 幾丁聚醣粉末於掃描式電子顯微鏡放大之影像:1000倍 25
圖 5.1 3 幾丁聚醣粉末於掃描式電子顯微鏡放大之影像:2000倍 26
圖 5.1 4 經不同研磨時間幾丁聚醣粉末之粒徑分析變化 27
圖 5.1 5 經不同研磨時間幾丁聚醣粉末之傅立葉轉換紅外線光譜儀分析圖 28
圖 5.2 1 幾丁聚醣/β甘油磷酸溫敏性水膠之成膠溫度初始測試結果 (A)CH/GP175、(B)CH/GP250、(C)CH/GP300、(D)CH/GP350、(E)CH/GP400 29
圖 5.2 2 幾丁聚醣/β甘油磷酸溫敏性水膠流變性質與溫度之關係…………….. .31
圖 5.2 3 幾丁聚醣/β甘油磷酸溫敏性水膠流變性質與溫度之關係(37℃)……….32
圖 5.2 4 幾丁聚醣/β甘油磷酸水膠於電子顯微鏡放大之影像:500倍 (A)CH/GP175、(B)CH/GP250、(C)CH/GP300、(D)CH/GP350、(E)CH/GP400 33
圖 5.2 5 幾丁聚醣/β甘油磷酸水膠於電子顯微鏡放大之影像:1000倍 (A)CH/GP175、(B)CH/GP250、(C)CH/GP300、(D)CH/GP350、(E)CH/GP400 33
圖 5.2 6 幾丁聚醣/β甘油磷酸水膠於電子顯微鏡放大之影像:2000倍 (A)CH/GP175、(B)CH/GP250、(C)CH/GP300、(D)CH/GP350、(E)CH/GP400 34
圖 5.2 7 幾丁聚醣/β甘油磷酸溫敏性水膠之傅立葉轉換紅外線光譜儀分析圖形 35
圖 5.2 8 幾丁聚醣/β甘油磷酸溫敏性水膠膨潤率變化 (PBS, 37℃) 36
圖 5.2 9 幾丁聚醣/β甘油磷酸溫敏性水膠膨潤率變化 (SBF, 37℃) 36
圖 5.2 10幾丁聚醣/β甘油磷酸溫敏性水膠水解測試 (pH=6.0) 38
圖 5.2 11 幾丁聚醣/β甘油磷酸溫敏性水膠水解測試 (pH=7.4) 38
圖 5.2 12 材料Alamar Blue assay吸光值(570nm) 結果 39
圖 5.2 13 材料生物相容性測試結果 40
圖 5.2 14 幾丁聚醣/β甘油磷酸溫敏性水膠之抑菌圈測試結果 41
表目錄
表 5.2 1幾丁聚醣/β甘油磷酸溫敏性水膠之成膠溫度 30
表 5.2 2 幾丁聚醣/β甘油磷酸溫敏性水膠之抑菌圈測試結果 41
表 5.2 3 幾丁聚醣/β甘油磷酸溫敏性水膠之抑菌等級判讀標準 42
1.Petersen, P.E., World Health Organization global policy for improvement of oral health-World Health Assembly 2007. International dental journal, 2008. 58(3): p. 115-121.
2.Kassebaum, N.J., et al., Global Burden of Untreated Caries:A Systematic Review and Metaregression. Journal of Dental Research, 2015. 94(5): p. 650-658.
3.Martins-Junior, P., et al., Untreated dental caries: impact on quality of life of children of low socioeconomic status. Pediatric dentistry, 2012. 34(3): p. 49E-52E.
4.Sheiham, A., Dental caries affects body weight, growth and quality of life in pre-school children. British Dental Journal, 2006. 201(10): p. 625-626.
5.Coll, J.A., et al., A Systematic Review and Meta-Analysis of Nonvital Pulp Therapy for Primary Teeth. Pediatr Dent, 2020. 42(4): p. 256-461.
6.Coll, J.A., et al., Use of Non-Vital Pulp Therapies in Primary Teeth. Pediatr Dent, 2020. 42(5): p. 337-349.
7.Pulp Therapy for Primary and Immature Permanent Teeth. Pediatr Dent, 2018. 40(6): p. 343-351.
8.Kakehashi, S., H.R. Stanley, and R.J. Fitzgerald, The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral Surgery, Oral Medicine, Oral Pathology, 1965. 20(3): p. 340-349.
9.Ahmed, H.M.A., et al., Application of a new system for classifying tooth, root and canal morphology in the primary dentition. Int Endod J, 2020. 53(1): p. 27-35.
10.Wang, Y.-L., et al., A study on the root canal morphology of primary molars by high-resolution computed tomography. Journal of Dental Sciences, 2013. 8(3): p. 321-327.
11.Ahmed, H., Anatomical challenges, electronic working length determination and current developments in root canal preparation of primary molar teeth. International endodontic journal, 2013. 46(11): p. 1011-1022.
12.Fuks, A.B., M. Guelmann, and A. Kupietzky, Current developments in pulp therapy for primary teeth. Endodontic Topics, 2010. 23(1): p. 50-72.
13.Coll, J., et al., An evaluation of pulpal therapy in primary incisors. Pediatr Dent, 1988. 10(3): p. 178-84.
14.Nadkarni, U. and S. Damle, Comparative evaluation of calcium hydroxide and zinc oxide eugenol as root canal filling materials for primary molars: a clinical and radiographic study. Journal of the Indian Society of Pedodontics and Preventive Dentistry, 2000. 18(1): p. 1-10.
15.Tchaou, W.S., et al., Inhibition of pure cultures of oral bacteria by root canal filling materials. Pediatric Dentistry, 1996. 18: p. 444-449.
16.Takushige, T., et al., Endodontic treatment of primary teeth using a combination of antibacterial drugs. International endodontic journal, 2004. 37(2): p. 132-138.
17.Sijini, O.T., et al., Clinical and radiographic evaluation of triple antibiotic paste pulp therapy compared to Vitapex pulpectomy in non-vital primary molars. Clinical and Experimental Dental Research, 2021. 7(5): p. 819-828.
18.NAKORNCHAI, S., P. BANDITSING, and N. VISETRATANA, Clinical evaluation of 3Mix and Vitapex® as treatment options for pulpally involved primary molars. International Journal of Paediatric Dentistry, 2010. 20(3): p. 214-221.
19.Zacharczuk, G.A., et al., Evaluation of 3Mix-MP and pulpectomies in non-vital primary molars. Acta Odontol Latinoam, 2019. 32(1): p. 22-28.
20.Torabinejad, M., T.F. Watson, and T.R. Pitt Ford, Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod, 1993. 19(12): p. 591-5.
21.Pilownic, K., et al., Physicochemical and Biological Evaluation of Endodontic Filling Materials for Primary Teeth. Brazilian Dental Journal, 2017. 28: p. 578-586.
22.Tavares, C.O., et al., Tissue reactions to a new mineral trioxide aggregate-containing endodontic sealer. J Endod, 2013. 39(5): p. 653-7.
23.Assmann, E., et al., Evaluation of bone tissue response to a sealer containing mineral trioxide aggregate. J Endod, 2015. 41(1): p. 62-6.
24.Jafari, F., et al., Antibacterial Activity of MTA Fillapex and AH 26 Root Canal Sealers at Different Time Intervals. Iran Endod J, 2016. 11(3): p. 192-7.
25.Muzzarelli, R.A.A., et al., Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydrate Polymers, 2012. 87(2): p. 995-1012.
26.Liu, N., et al., Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydrate Polymers, 2006. 64(1): p. 60-65.
27.Costa, E.M., et al., Evaluation and insights into chitosan antimicrobial activity against anaerobic oral pathogens. Anaerobe, 2012. 18(3): p. 305-309.
28.BARCELOS, R., et al., The influence of smear layer removal on primary tooth pulpectomy outcome: a 24-month, double-blind, randomized, and controlled clinical trial evaluation. International Journal of Paediatric Dentistry, 2012. 22(5): p. 369-381.
29.Ratih, D.N., R.A. Enggardipta, and A.T. Kartikaningtyas, The effect of chitosan nanoparticle as a final irrigation solution on the smear layer removal, micro-hardness and surface roughness of root canal dentin. The Open Dentistry Journal, 2020. 14(1).
30.Slaughter, B.V., et al., Hydrogels in regenerative medicine. Adv Mater, 2009. 21(32-33): p. 3307-29.
31.Hoffman, A.S., Hydrogels for biomedical applications. Adv Drug Deliv Rev, 2002. 54(1): p. 3-12.
32.Wichterle, O. and D. LÍM, Hydrophilic Gels for Biological Use. Nature, 1960. 185(4706): p. 117-118.
33.Qiu, Y. and K. Park, Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev, 2001. 53(3): p. 321-39.
34.Hao, T., et al., The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels. Osteoarthritis and Cartilage, 2010. 18(2): p. 257-265.
35.Mantha, S., et al., Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials (Basel), 2019. 12(20).
36.Ayala-Ham, A., et al., Hydrogel-Based Scaffolds in Oral Tissue Engineering. Frontiers in Materials, 2021. 8(294).
37.Moreira, M.S., et al., Physical and Biological Properties of a Chitosan Hydrogel Scaffold Associated to Photobiomodulation Therapy for Dental Pulp Regeneration: An In Vitro and In Vivo Study. BioMed Research International, 2021. 2021: p. 6684667.
38.Almeida, L.D., et al., Hyaluronic acid hydrogels incorporating platelet lysate enhance human pulp cell proliferation and differentiation. Journal of Materials Science: Materials in Medicine, 2018. 29(6): p. 1-11.
39.He, X.T., et al., Building capacity for macrophage modulation and stem cell recruitment in high-stiffness hydrogels for complex periodontal regeneration: Experimental studies in vitro and in rats. Acta Biomater, 2019. 88: p. 162-180.
40.Xu, X., et al., An injectable and thermosensitive hydrogel: Promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomater, 2019. 86: p. 235-246.
41.Skwarczynska, A., et al., The structural (FTIR, XRD, and XPS) and biological studies of thermosensitive chitosan chloride gels with β-glycerophosphate disodium. Journal of Applied Polymer Science, 2018. 135(27): p. 46459.
42.Qi, L., et al., Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate research, 2004. 339(16): p. 2693-2700.
43.Mao, S., et al., The depolymerization of chitosan: effects on physicochemical and biological properties. International journal of pharmaceutics, 2004. 281(1-2): p. 45-54.
44.Zhang, W., et al., The hypolipidemic activity of chitosan nanopowder prepared by ultrafine milling. Carbohydrate Polymers, 2013. 95(1): p. 487-491.
45.Zhang, W., J. Zhang, and W. Xia, The preparation of chitosan nanoparticles by wet media milling. International Journal of Food Science & Technology, 2012. 47.
46.Yousefpour, P., et al., Preparation and comparison of chitosan nanoparticles with different degrees of glutathione thiolation. Daru, 2011. 19(5): p. 367-75.
47.Grenha, A., Chitosan nanoparticles: a survey of preparation methods. J Drug Target, 2012. 20(4): p. 291-300.
48.Sari, K., K. Abraha, and E. Suharyadi. Effect of milling time on microstructures of nano-sized chitosan. in Journal of Physics: Conference Series. 2019. IOP Publishing.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊