跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/07 06:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃聖文
研究生(外文):Sheng-Wun Huang
論文名稱:研發新型可溶於尤加利油之熱塑性聚胺酯材料用於牙科根管封填
論文名稱(外文):Development of Novel Eucalyptol-dissolved Thermoplastic Polyurethane Materials for Dental Root Canal Obturation
指導教授:林俊彬林俊彬引用關係
指導教授(外文):Chun-Pin Lin
口試委員:鄭如忠王姻麟
口試委員(外文):Ru-Jong JengYin-Lin Wang
口試日期:2021-07-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床牙醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:88
中文關鍵詞:牙科根管封填熱塑性聚胺酯尤加利油根管封填錐體
外文關鍵詞:Root canal obturationThermoplastic polyurethaneEucalyptus OilCone
DOI:10.6342/NTU202101885
相關次數:
  • 被引用被引用:0
  • 點閱點閱:973
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
理想的根管封填錐體必須具備容易放置、體積穩定不會收縮、良好的生物相容性以及能夠容易被移除等條件。馬來膠(gutta-percha, GP)大體上合乎理想材料的要件,然而,研究顯示馬來膠其機械強度不足,且在加熱冷卻後易發生體積收縮,無法提供良好的根管系統密封性,並與各類封填劑及牙本質(dentin)間有黏著力不足的問題。本研究團隊過去已研發出熱塑性聚胺酯(thermoplastic polyurethane)錐體(cone),有優於馬來膠的操作及機械性質,並且與胺酯壓克力樹酯封填劑及牙本質間的黏著有優於傳統封填材料的表現,但卻面臨難以將材料移除的問題。臨床上最常使用也公認相對安全的溶劑就是尤加利油(Eucalyptus oil),因此本實驗的目的為調整製程,研發出新型可溶於尤加利油之熱塑性聚胺酯材料用於根管封填。
本實驗以先前研究團隊合成出的熱塑性聚胺酯原料為基礎,並嘗試使用與尤加利油結構相似的異山梨醇(D-Isosorbide)作為鏈延長劑(chain extender),合成出不同硬鏈段的熱塑性聚胺酯,測試是否有溶解於尤加利油中的能力,並測試其熱性質及機械性質,從中選出最適合的硬鏈段比組合後,添加不同比例之氧化鋅作為填料(filler),並探討添加氧化鋅後是否會影響熱塑性聚胺酯其溶解力、熱性質以及機械性質,也探討其細胞毒性及抗菌性質,並與馬來膠比較。
結果顯示以異山梨醇作為鏈延長劑所合成出的熱塑性聚胺酯有溶解於尤加利油的能力,也具有良好的熱穩定性,其中硬鏈段比30%的熱塑性聚胺酯擁有極佳的成膜性、最大拉力值以及延展性,熔點也與馬來膠相似;而添加氧化鋅後溶解效果並無明顯變化,卻會降低熱塑性聚胺酯的熱穩定性及機械性質;在生物測試方面也產生較高的細胞毒性,也無產生明顯抑菌圈。因此,在未來可以以異山梨醇這個原料為基礎,在製程上再做調整,期望合成出溶解度更好更接近Grossman 所提出的理想封填材料。
The ideal root canal cone materials must fulfill the requirements such as easy placement, no shrinkage, good biocompatibility, and being removed easily. Gutta-percha (GP) has been widely used and generally meets the requirements as an ideal root canal cone material. However, studies have shown that it has poor mechanical strength and is prone to volume shrinkage after heating and cooling, which cannot provide a good sealing ability to the root canal system. More importantly, GP has no adhesion to sealers and dentin. Our research team has developed thermoplastic polyurethane (TPU) cone, which has better handling and mechanical properties than GP. It also has better adhesion to urethane acrylic sealers and dentin than traditional ones. Nevertheless, we still encountered the problem of difficulty in removing the material after sealing. The most commonly used and relatively safe solvent in clinical practice is eucalyptus oil. Therefore, the purpose of this experiment was to adjust the process to develop a new type of thermoplastic polyurethane material that could be dissolved in eucalyptus oil for root canal obturation.
This experiment was based on the thermoplastic polyurethane raw materials synthesized by our research team and tried to use D-Isosorbide, which has a similar structure to eucalyptus oil, as a chain extender to synthesize a TPU with different proportion of hard and soft segments. We also tested the ability of the materials to dissolve in eucalyptus oil and their thermal and mechanical properties. After selecting the most suitable ratio of hard and soft segments, we added different proportions of zinc oxide as a filler and examined whether zinc oxide would affect the solubility, thermal properties, and mechanical properties of the TPU. The cytotoxicity and antibacterial properties of the TPU were also discussed and compared with the GP.
The results showed that the TPU materials synthesized with D-Isosorbide as a chain extender could dissolve in eucalyptus oil and had good thermal stability. Among them, the hard and soft segments ratio of 30% TPU had the best mechanical properties and excellent film formation. The melting point was also similar to GP. The dissolution effect did not change significantly after adding zinc oxide, but it would reduce the thermal stability and mechanical properties of the TPU. In the biological test, adding zinc oxide to TPU showed higher cell cytotoxicity and no obvious inhibition zone. Therefore, in the future, we can use D-isosorbide as raw material and adjust the synthetical process, hoping to produce a better solubility and closer to the ideal filling material proposed by Grossman.
致謝 i
中文摘要 iii
英文摘要 v
目錄 vii
圖目錄 xi
表目錄 xiii
第一章 前言 1
第二章 文獻回顧 5
2.1 理想的根管封填材料 5
2.2 傳統根管封填材料的發展 6
2.2.1 根管封填錐體材料( cone materials ) 6
2.2.2 根管封填劑材料( sealer materials ) 7
2.3 高分子根管封填系統 8
2.3.1 Resilon / Epiphany 根管封填系統 9
2.3.2 EndoREZ 根管封填系統 12
2.4 非手術性根管再治療( Nonsurgical Root Canal Retreatment ) 12
2.5 尤加利油( Eucalyptol, Eucalyptus Oil) 13
2.6 聚胺酯材料作為高分子根管封填系統的潛力 16
2.6.1 聚胺酯簡介 16
2.6.2 聚胺酯原料及特性 17
2.6.3 熱塑性聚胺酯 19
2.6.5 本研究團隊初步試驗結果 20
2.7 根管封填材料生物相容性之測試 21
2.7.1 Cell Counting Kit-8( CCK-8 ) test 22
2.7.2 LDH assay 23
2.8 根管封填材料之抗菌測試 24
2.8.1 瓊脂凝膠擴散法 24
2.8.2 直接接觸法 25
第三章 動機與目的 26
第四章 材料與方法 28
4.1 實驗架構與流程圖 28
4.2 實驗材料 28
4.3 實驗儀器 29
4.4 材料製備 33
4.4.1 不同硬鏈段比(HS%)熱塑性聚胺酯根管封填錐體製備 33
4.4.2 氧化鋅改質 HS30% 熱塑性聚胺酯材料製備 35
4.5 材料性質測試 37
4.5.1 傅立葉轉換紅外線光譜儀(FTIR)分析測試 37
4.5.2 溶解度測試 38
4.5.3 熱重分析儀(TGA)分析測試 39
4.5.4 微差掃描卡計儀(DSC) 分析測試 40
4.5.5 機械性質測試 40
4.6 氧化鋅改質熱塑性聚胺酯之體外毒性測試 40
4.6.1 MG63細胞培養 40
4.6.2 磷酸鹽緩衝溶液配製 41
4.6.3 MG63細胞培養基配製 41
4.6.4 Trypsin 配製 42
4.6.5 解凍細胞 42
4.6.6 細胞計數 42
4.6.7 細胞繼代培養 43
4.6.8 材料樣本與萃取液製備 44
4.6.9 細胞存活率分析 45
4.6.10 細胞毒性測試分析 45
4.7 氧化鋅改質熱塑性聚胺酯之抗菌測試 47
4.7.1 培養基製備 47
4.7.2 菌種培養 48
4.7.3 測試樣本處理 48
4.7.4 瓊脂凝膠擴散法 49
4.8 統計分析 49
第五章 結果 50
5.1 傅立葉轉換紅外線光譜分析(FT-IR) 50
5.1.1 不同硬鏈段比熱塑性聚胺酯之傅立葉轉換紅外線光譜分析 50
5.2 根管封填錐體之溶解度分析 53
5.2.1 提高溫度後不同硬鏈段比熱塑性聚胺酯之溶解度結果 54
5.2.2 提高溫度後氧化鋅改質HS30%熱塑性聚胺酯之溶解度結果 54
5.3 熱重分析儀( TGA )分析 55
5.3.1 不同硬鏈段比熱塑性聚胺酯之TGA結果 55
5.3.2 氧化鋅改質HS30%熱塑性聚胺酯之熱重分析儀分析結果 56
5.4 微差掃描卡計儀(DSC)分析結果 58
5.5 機械性質測試分析 60
5.5.1 不同硬鏈段比熱塑性聚胺脂之機械性質分析 60
5.5.2 氧化鋅改質HS30%熱塑性聚胺酯與GP之機械性質分析 61
5.6 根管封填錐體之細胞存活率以及毒性分析 62
5.6.1 CCK-8 assay 62
5.6.2 LDH assay 63
5.7 氧化鋅改質硬鏈段比30%熱塑性聚胺酯之抗菌測試 64
5.7.1 瓊脂凝膠擴散法測試結果 64
第六章 討論 68
6.1 溶解度測試結果探討 68
6.2 熱分析測試結果探討 69
6.2.1 熱重分析儀( TGA )分析 69
6.2.2 微差掃描卡計儀分析結果探討 70
6.3 機械性質拉力測試結果探討 71
6.4 根管封填錐體之細胞存活率以及毒性分析討論 73
6.5 氧化鋅改質硬鏈段比30%熱塑性聚胺酯之抗菌測試討論 74
第七章 結論 76
第八章 未來研究目標 78
參考文獻 79
1.Schilder, H., Filling root canals in three dimensions. Journal of Endodontics, 2006. 32(4): p. 281-290.
2.Gulabivala, K. and S. Leung, Review of a new root canal obturation technique. Dental update, 1994. 21(2): p. 73-8, 80.
3.Combe, E., B. Cohen, and K. Cummings, Alpha‐and beta‐forms of gutta‐percha in products for root canal filling. International Endodontic Journal, 2001. 34(6): p. 447-451.
4.Mc Cullagh, J., et al., A comparison of thermocouple and infrared thermographic analysis of temperature rise on the root surface during the continuous wave of condensation technique. International Endodontic Journal, 2000. 33(4): p. 326-332.
5.Glickman, G.N. and J. Gutmann, Contemporary perspectives on canal obturation. Dental Clinics of North America, 1992. 36(2): p. 327-341.
6.Schäfer, E. and T. Zandbiglari, Solubility of root‐canal sealers in water and artificial saliva. International endodontic journal, 2003. 36(10): p. 660-669.
7.Wennber, A. and D.Ø. NIOM, Adhesion of root canal sealers to bovine dentine and gutta‐percha. International Endodontic Journal, 1990. 23(1): p. 13-19.
8.Jia, W. and B. Alpert, An endodontic filling material comprising a biodegrable
thermoplastic polymer and a bioactive substance. 2007.
9.Teixeira, F.B., et al., Dentinal bonding reaches the root canal system. Journal of Esthetic and Restorative Dentistry, 2004. 16(6): p. 348-354.
10.Shipper, G., et al., An evaluation of microbial leakage in roots filled with a thermoplastic synthetic polymer-based root canal filling material (Resilon). Journal of endodontics, 2004. 30(5): p. 342-347.
11.Gesi, A., et al., Interfacial strength of Resilon and gutta-percha to intraradicular dentin. Journal of endodontics, 2005. 31(11): p. 809-813.
12.Ungor, M., E. Onay, and H. Orucoglu, Push‐out bond strengths: the Epiphany–Resilon endodontic obturation system compared with different pairings of Epiphany, Resilon, AH Plus and gutta‐percha. International endodontic journal, 2006. 39(8): p. 643-647.
13.Miner, M.R., D.W. Berzins, and J.K. Bahcall, A comparison of thermal properties between gutta-percha and a synthetic polymer based root canal filling material (Resilon). Journal of Endodontics, 2006. 32(7): p. 683-686.
14.Grossman, L.I., Endodontic Practice, 7th ed., Philadelphia, Lea & Febiger Co., (1970), pp. 329–33.
15.Sundqvist, G., et al., Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 1998. 85(1): p. 86-93.
16.Torabinejad, M., et al., Outcomes of nonsurgical retreatment and endodontic surgery: a systematic review. Journal of endodontics, 2009. 35(7): p. 930-937.
17.Ng, Y.L., et al., Outcome of primary root canal treatment: systematic review of the literature–Part 2. Influence of clinical factors. International endodontic journal, 2008. 41(1): p. 6-31.
18.Torabinejad, M., et al., Outcomes of root canal treatment and restoration, implant-supported single crowns, fixed partial dentures, and extraction without replacement: a systematic review. The Journal of prosthetic dentistry, 2007. 98(4): p. 285-311.
19.Chutich, M., et al., Risk assessment of the toxicity of solvents of Gutta-Percha used in endodontic retreatment. Journal of endodontics, 1998. 24: p. 213-6.
20.Kossowsky, R., Report on the 19th Annual Meeting of the Society for Biomaterials in Conjunction with the 25th International Biomaterials Symposium. Materials Technology, 1993. 8(7-8): p. 154-156.
21.Bruil, A., et al., Poly (ethyleneimine) modified filters for the removal of leukocytes from blood. Journal of biomedical materials research, 1993. 27(10): p. 1253-1268.
22.Bordenave, L., et al., Endothelial cell compatibility testing of three different Pellethanes. Journal of biomedical materials research, 1993. 27(11): p. 1367-1381.
23.Gutmann, J.L. and J.W. Harrison, Surgical endodontics. 1991: Blackwell scientific publications Boston.
24.Möller, B. and D. Ørstavik, Chemical and energy-dispersive X-ray analyses of Gutta-percha points. Journal of endodontics, 1984. 10(9): p. 413-416.
25.Marciano, J., P. Michailesco, and M. Abadie, Stereochemical structure characterization of dental gutta-percha. Journal of endodontics, 1993. 19(1): p. 31-34.
26.Swain, E.D., Gutta percha. Dent. Review 1890. 4:373-79.
27.Friedman, C.M., et al., Composition and mechanical properties of gutta-percha endodontic points. Journal of Dental Research, 1975. 54(5): p. 921-925.
28.Barkhordar, R.A., et al., Evaluation of temperature rise on the outer surface of teeth during root canal obturation techniques. Quintessence International, 1990. 21(7).
29.Williams, C., et al., A comparison of cohesive strength and stiffness of Resilon and gutta-percha. Journal of endodontics, 2006. 32(6): p. 553-555.
30.Johansson, B.I., A methodological study of the mechanical properties of endodontic gutta-percha points. Journal of endodontics, 1980. 6(10): p. 781-783.
31.Blum, J.-Y., E. Parahy, and P. Machtou, Warm vertical compaction sequences in relation to gutta-percha temperature. Journal of Endodontics, 1997. 23(5): p. 307-311.
32.鄭雅安, 馬來膠之熱能與晶相轉換研究. 國立台灣大學醫學院牙醫科學研究碩士論文, 2002.
33.Marciano, J. and P.M. Michailesco, Dental gutta-percha: chemical composition, X-ray identification, enthalpic studies, and clinical implications. Journal of endodontics, 1989. 15(4): p. 149-153.
34.Rotstein, I. and J.H. Simon, Endodontic and periodontal interrelationship. Endodontics-E-Book: Principles and Practice, 2008: p. 94.
35.Weine, F.S., Canal filling with semisolid materials. Endodontic therapy, 1996: p. 423-477.
36.Augsburger, R.A. and D.D. Peters, Radiographic evaluation of extruded obturation materials. Journal of endodontics, 1990. 16(10): p. 492-497.
37.Kazemi, R.B., K.E. Safavi, and L.S. Spångberg, Dimensional changes of endodontic sealers. Oral surgery, oral medicine, oral pathology, 1993. 76(6): p. 766-771.
38.Peters, D.D., Two-year in vitro solubility evaluation of four gutta-percha sealer obturation techniques. Journal of Endodontics, 1986. 12(4): p. 139-145.
39.Tagger, M., E. Tagger, and A. Kfir, Release of calcium and hydroxyl ions from set endodontic sealers containing calcium hydroxide. Journal of Endodontics, 1988. 14(12): p. 588-591.
40.Gatewood, R.S., Endodontic materials. Dental Clinics of North America, 2007. 51(3): p. 695-712.
41.Lee, K.-W., et al., Adhesion of endodontic sealers to dentin and gutta-percha. Journal of endodontics, 2002. 28(10): p. 684-688.
42.Apicella, M., et al., A comparison of root fracture resistance using two root canal sealers. International Endodontic Journal, 1999. 32(5): p. 376-380.
43.Moshonov, J., M. Trope, and S. Friedman, Retreatment efficacy 3 months after obturation using glass ionomer cement, zinc oxide-eugenol, and epoxy resin sealers. Journal of endodontics, 1994. 20(2): p. 90-92.
44.ØRstavik, D., Materials used for root canal obturation: technical, biological and clinical testing. Endodontic topics, 2005. 12(1): p. 25-38.
45.Berman, L.H. and K.M. Hargreaves, Cohen's pathways of the pulp expert consult. 2015: Elsevier Health Sciences.
46.Pascon, E.A. and L.S. Spngberg, In vitro cytotoxicity of root canal filling materials: 1. Gutta-percha. Journal of endodontics, 1990. 16(9): p. 429-433.
47.Jia WT, A.B., Root canal filling material. 2003, US Patent 20030113686. June 19.
48.Teixeira, F. and M. Trope, Advances in endodontic obturation. US Dentistry, 2006: p. 45-48.
49.Pitout, E., et al., Coronal leakage of teeth root-filled with gutta-percha or Resilon root canal filling material. Journal of Endodontics, 2006. 32(9): p. 879-881.
50.Teixeira, F.B., et al., Fracture resistance of roots endodontically treated with a new resin filling material. The Journal of the American Dental Association, 2004. 135(5): p. 646-652.
51.Tay, F.R., et al., Ultrastructural evaluation of the apical seal in roots filled with a polycaprolactone-based root canal filling material. Journal of endodontics, 2005. 31(7): p. 514-519.
52.Jensen, S.D. and D.E. Fischer, Method for filling and sealing a root canal. 2008, Google Patents.
53.Tay, F.R., et al., Effectiveness of resin-coated gutta-percha cones and a dual-cured, hydrophilic methacrylate resin-based sealer in obturating root canals. Journal of endodontics, 2005. 31(9): p. 659-664.
54.Sevimay, S. and A. Kalayci, Evaluation of apical sealing ability and adaptation to dentine of two resin‐based sealers. Journal of oral rehabilitation, 2005. 32(2): p. 105-110.
55.Eldeniz, A.U., A. Erdemir, and S. Belli, Shear bond strength of three resin based sealers to dentin with and without the smear layer. Journal of endodontics, 2005. 31(4): p. 293-296.
56.AAE (American Association of Endodontists), G.o., Guide to Clinical Endodontics 5th edition.
57.AAE (American Association of Endodontists), G.o. and t.e. Endodontic Terms, 2012.
58.Boariu, M., et al., Efficiency of eucalyptol as organic solvent in removal of gutta-percha from root canal fillings. Rev. Chim.(Bucharest), 2015. 66: p. 907.
59.Poggio, C., Gutta-percha solvents alternative to chloroform: An in vitro comparative evaluation. EC Dent Sci, 2017. 15: p. 51-56.
60.Health, U.D.o. and H. Services, Public Health Service fourth annual report on carcinogens. PB85134663, 1985.
61.Elaissi, A., et al., Chemical composition of 8 eucalyptus species' essential oils and the evaluation of their antibacterial, antifungal and antiviral activities. BMC complementary and alternative medicine, 2012. 12(1): p. 1-15.
62.Soares, M., et al., Eucalyptol, an essential oil, reduces contractile activity in rat cardiac muscle. Brazilian Journal of Medical and Biological Research, 2005. 38(3): p. 453-461.
63.Juergens, U., et al., Antiinflammatory effects of euclyptol (1.8-cineole) in bronchial asthma: inhibition of arachidonic acid metabolism in human blood monocytes ex vivo. European journal of medical research, 1998. 3: p. 407-412.
64.Takarada, K., et al., A comparison of the antibacterial efficacies of essential oils against oral pathogens. Oral microbiology and immunology, 2004. 19(1): p. 61-64.
65.Faria-Júnior, N.B.d., et al., Effectiveness of three solvents and two associations of solvents on gutta-percha and resilon. Brazilian dental journal, 2011. 22(1): p. 41-44.
66.Oyama, K.O.N., E.L. Siqueira, and M.d. Santos, In vitro study of effect of solvent on root canal retreatment. Brazilian dental journal, 2002. 13(3): p. 208-211.
67.Uemura, M., et al., Effectiveness of eucalyptol and d-limonene as gutta-percha solvents. Journal of Endodontics, 1997. 23(12): p. 739-741.
68.Tanomaru-Filho, M., et al., Solvent capacity of different substances on gutta-percha and Resilon. Brazilian dental journal, 2010. 21(1): p. 46-49.
69.Wourms, D.J., et al., Alternative solvents to chloroform for gutta-percha removal. Journal of endodontics, 1990. 16(5): p. 224-226.
70.Magalhães, B.S., et al., Dissolving efficacy of some organic solvents on gutta-percha. Brazilian oral research, 2007. 21(4): p. 303-307.
71.Schäfer, E. and T. Zandbiglari, A comparison of the effectiveness of chloroform and eucalyptus oil in dissolving root canal sealers. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2002. 93(5): p. 611-616.
72.Hansen, M.G., Relative efficiency of solvents used in endodontics. Journal of endodontics, 1998. 24(1): p. 38-40.
73.Hunter, K.R., W. Doblecki, and G.B. Pelleu Jr, Halothane and eucalyptol as alternatives to chloroform for softening gutta-percha. Journal of endodontics, 1991. 17(7): p. 310-312.
74.Porter, M., Rubber processing and production organization. By PK Freakley, Plenum Press, New York, 1985. pp. xv+ 455, price£ 60.34. ISBN 0‐306‐41745‐6. British Polymer Journal, 1986. 18(6): p. 403-403.
75.Szycher, M., Szycher's handbook of polyurethanes. 1999: CRC press.
76.Hsieh, K., C. Tsai, and D. Chang, Vapor and gas permeability of polyurethane membranes. Part II. Effect of functional group. Journal of membrane science, 1991. 56(3): p. 279-287.
77.Hsieh, K., C. Tsai, and S. Tseng, Vapor and gas permeability of polyurethane membranes. Part I. Structure-property relationship. Journal of membrane science, 1990. 49(3): p. 341-350.
78.Xiu, Y., et al., Morphology‐property relationship of segmented polyurethaneurea: Influences of soft‐segment structure and molecular weight. Journal of applied polymer science, 1993. 48(5): p. 867-869.
79.Boretos, J.W. and W.S. Pierce, Segmented polyurethane: a new elastomer for biomedical applications. Science, 1967. 158(3807): p. 1481-1482.
80.Yen, M.S. and S.C. Kuo, Effects of mixing procedure on the structure and physical properties of ester–ether‐type soft segment waterborne polyurethane. Journal of applied polymer science, 1996. 61(10): p. 1639-1647.
81.King, M.W., et al., Quantitative analysis of the surface morphology and textile structure of the Polyurethane Vascugraft® arterial prosthesis using image and statistical analyses. Biomaterials, 1994. 15(8): p. 621-627.
82.Huang, B., et al., Cellular reaction to the Vascugraft® polyesterurethane vascular prosthesis: in vivo studies in rats. Biomaterials, 1992. 13(4): p. 209-216.
83.Wabers, H.D., et al., Biostability and blood-contacting properties of sulfonate grafted polyurethane and Biomer. Journal of Biomaterials Science, Polymer Edition, 1993. 4(2): p. 107-133.
84.Okkema, A., S. Visser, and S. Cooper, Physical and blood‐contacting properties of polyurethanes based on a sulfonic acid‐containing diol chain extender. Journal of biomedical materials research, 1991. 25(11): p. 1371-1395.
85.Okkema, A., et al., Bulk, surface and blood-contacting properties of polyether polyurethanes modified with polydimetnylsiloxane macroglycols. Biomaterials, 1989. 10(1): p. 23-32.
86.曾怡庭, 新型抗菌奈米矽片生醫複材之根管封填應用. 碩士論文,國立臺灣大學高分子科學與工程學研究所, 2018.
87.Chang, H.-H., et al., Evaluation of carbon dioxide-based urethane acrylate composites for sealers of root canal obturation. Polymers, 2020. 12(2): p. 482.
88.Wallin, R.F. and E. Arscott, A practical guide to ISO 10993-5: Cytotoxicity. Medical Device and Diagnostic Industry, 1998. 20: p. 96-98.
89.Jiao, G., et al., Limitations of MTT and CCK-8 assay for evaluation of graphene cytotoxicity. Rsc Advances, 2015. 5(66): p. 53240-53244.
90.Wang, J., et al., Physicochemical and biological properties of a novel injectable polyurethane system for root canal filling. International journal of nanomedicine, 2015. 10: p. 697.
91.Anumula, L., et al., An assessment of antibacterial activity of four endodontic sealers on Enterococcus faecalis by a direct contact test: an in vitro study. International Scholarly Research Notices, 2012. 2012.
92.Weiss, E., M. Shalhav, and Z. Fuss, Assessment of antibacterial activity of endodontic sealers by a direct contact test. Dental Traumatology, 1996. 12(4): p. 179-184.
93.ASTM D412-98a ‘Standard Test Methods for Vulcanized Rubber and Thermoplastic Rubbers and Thermoplastic Elastomers-Tension’ ASTM International, West Conshohocken, PA, 1998. .
94.Martos, J., et al., Dissolving efficacy of organic solvents on root canal sealers. Clinical oral investigations, 2006. 10(1): p. 50-54.
95.Whitworth, J. and E. Boursin, Dissolution of root canal sealer cements in volatile solvents. International endodontic journal, 2000. 33(1): p. 19-24.
96.Taşdemir, T., T. Yildirim, and D. Çelik, Comparative study of removal of current endodontic fillings. Journal of endodontics, 2008. 34(3): p. 326-329.
97.Cumbo, E., R. Russo, and G. Gallina, System B, Endo-Twinn and E-Fill. True temperatures inside the canal. Journal of conservative dentistry: JCD, 2012. 15(4): p. 342.
98.Diegritz, C., et al., Temperature changes on the root surface during application of warm vertical compaction using three different obturation units. Odontology, 2019: p. 1-8.
99.Buchanan, L., Continuous wave of condensation technique. Endodontic practice, 1998. 1(4): p. 7.
100.Buchanan, L., The continuous wave of condensation technique: a convergence of conceptual and procedural advances in obturation. Dentistry today, 1994. 13(10): p. 80, 82, 84-5.
101.Pavličević, J., et al., The influence of ZnO nanoparticles on thermal and mechanical behavior of polycarbonate-based polyurethane composites. Composites Part B: Engineering, 2014. 60: p. 673-679.
102.Hepburn, C., Polyurethane elastomers. 2012: Springer Science & Business Media.
103.Eceiza, A., et al., Effect of hard/soft segment ratio on the structure and properties of thermoplastic polyurethane elastomers based on polycarbonate diol. Materials+ Technologies Group, Escuela Universitaria Politécnica, 2004: p. 10-12.
104.McLean, R.S. and B.B. Sauer, Tapping-mode AFM studies using phase detection for resolution of nanophases in segmented polyurethanes and other block copolymers. Macromolecules, 1997. 30(26): p. 8314-8317.
105.Kim, Y.-S., et al., Surface properties of fluorinated oxetane polyol modified polyurethane block copolymers. Polymer, 2002. 43(25): p. 7161-7170.
106.Karbach, A. and D. Drechsler, Atomic force microscopy—a powerful tool for industrial applications. Surface and interface analysis, 1999. 27(5‐6): p. 401-409.
107.Zheng, J., R. Ozisik, and R.W. Siegel, Disruption of self-assembly and altered mechanical behavior in polyurethane/zinc oxide nanocomposites. Polymer, 2005. 46(24): p. 10873-10882.
108.Zheng, J., R. Ozisik, and R.W. Siegel, Phase separation and mechanical responses of polyurethane nanocomposites. Polymer, 2006. 47(22): p. 7786-7794.
109.Szep, S., et al., In vitro cytotoxicity of medicated and nonmedicated gutta-percha points in cultures of gingival fibroblasts. Journal of endodontics, 2003. 29(1): p. 36-40.
110.Scotti, R., et al., Biocompatibility of various root canal filling materials ex vivo. International endodontic journal, 2008. 41(8): p. 651-657.
111.周芳如, 研發低水解聚胺酯根管封填材料:機械性質、細胞毒性及水解. 國立台灣大學醫學院牙醫科學研究碩士論文, 2009.
112.陳妍蓉, 新型胺酯壓克力樹酯封填劑:細胞毒性及抗菌性質. 國立台灣大學醫學院牙醫科學研究碩士論文, 2011.
113.李鐘怡, 研發聚胺酯根管封填材料:熱、機械性質和鍵結強度. 國立台灣大學醫學院牙醫科學研究碩士論文, 2007.
114.蔣東榮, 研發新型抗菌改質熱塑性聚胺酯及胺酯壓克力樹脂
材料於牙科根管充填. 國立台灣大學醫學院牙醫科學研究碩士論文, 2015.
115.Zonouzi, A., et al., 2-Amino-4-(nitroalkyl)-4H-chromene-3-carbonitriles as New Cytotoxic Agents. Iranian journal of pharmaceutical research: IJPR, 2013. 12(4): p. 679.
116.Farrokhi, Z., et al., Recent advance in antibacterial activity of nanoparticles contained polyurethane. Journal of Applied Polymer Science, 2019. 136(4): p. 46997.
117.Siyanbola, T., et al., Development of functional polyurethane–ZnO hybrid nanocomposite coatings from Thevetia peruviana seed oil. Journal of the American Oil Chemists' Society, 2015. 92(2): p. 267-275.
118.Rahman, M.M., Polyurethane/Zinc Oxide (PU/ZnO) Composite—Synthesis, Protective Propertyand Application. Polymers, 2020. 12(7): p. 1535.
119.Zvekić, D., et al., Antimicrobial properties of ZnO nanoparticles incorporated in polyurethane varnish. Processing and Application of Ceramics, 2011. 5(1): p. 41-45.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top