跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/01 01:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳雪婷
研究生(外文):Suet-Ting Chan
論文名稱:單次有氧運動對巴金森氏症患者之內隱式順序學習的效果
論文名稱(外文):Effect of a single bout of aerobic exercise on implicit sequence learning in people with Parkinson’s disease
指導教授:李亞芸
指導教授(外文):Ya-Yun Lee
口試委員:王儷穎陸哲駒戴春暉
口試委員(外文):Li-Ying WangJhe-Jyu LuhChun Hui Tai
口試日期:2020-11-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理治療學研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:109
語文別:中文
論文頁數:48
中文關鍵詞:巴金森氏症患者序列反應測試穿顱磁刺激術單次有氧運動
外文關鍵詞:Parkinson's diseaseserial reaction time tasktranscranial magnetic stimulationaerobic exercise
DOI:10.6342/NTU202004382
相關次數:
  • 被引用被引用:0
  • 點閱點閱:53
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
背景:巴金森氏症是一個因基底核退化而造成的神經系統退化性疾病,它不僅會造成 動作上的徵狀如姿勢不穩跟動作緩慢,亦會影響認知功能。巴金森氏症患者受到影響 的認知功能包含工作記憶能力、視覺空間處理能力及動作學習能力。與健康人相比, 巴金森氏症患者的動作學習能力較差,尤其是內隱式順序學習。迄今為止,還沒有有效的治療方法(包括使用多巴胺藥物)可以改善巴金森氏症患者的內隱式順序學習之能力。 由健康年輕人的研究發現,單次有氧運動可以有效促進動作學習。 然而,目前還不清楚單次有氧運動是否也可以改善並促進巴金森氏症患者的內隱式順序學習。 另外,有氧運動對於動作學習的益處之相關的神經生理機制尚未被建立。
研究目的:本篇研究的主要目的為探討單次有氧運動對巴金森氏症患者之內隱式順序學習的效果。另外,本研究亦探討有氧運動與動作學習間的神經生理變化。
研究方法:本研究流程納入了30 位巴金森氏症患者並隨機分成運動組及非運動組。 另納入 15 位健康人作為控制組。所有人在實驗的第一天接受基本評估包括認知及動作行為評估。在基本評估後,進行穿顱磁刺激術評估來測試大腦皮質的興奮性,然後進行序列反應時間按鍵測試的動作學習。在練習完後,運動組進行 20 分鐘的中強度的腳踏車運動,而巴金森非運動組及健康人控制組安靜的坐著閱讀 20 分鐘。所有人在運動或閱讀後,接著馬上進行穿顱磁刺激術評估及序列反應時間按鍵測試留存測試。受試者在練習後的第二天跟第七天,再次進行留存測試及接受穿顱磁刺激術評估。組間之序列反應時間按鍵測試及穿顱磁刺激術之數據則採用重複測量變異數分析。
結果:在第一天的練習中,三組的表現都有進步(F = 80.935,p <0.005,ηp2= 0.658)。 序列反應時間按鍵測試顯示三組受試者在整個練習過程中都學習順序,而巴金森患者的進步程度似乎小於控制組(F = 1.979,p = 0.036, ηp2= 0.070)。運動組之巴金森氏症患者在第2天表現較差,在第7天表現出更大的進步。 閱讀組之巴金森氏症患者組在第2天和第7天表現較差。 控制組在所三天的評估都持續進步。 序列反應時間按鍵測試結果表明,單次中等強度的有氧運動可以促進巴金森氏症患者內隱式順序學習的記憶鞏固過程。 這結果跟穿顱磁刺激術數據僅顯示控制組中第一天前測和第二天之間(p = 0.005),以及第一天前測和第二天之間(p = 0.019)之休息動作誘發電位的興奮性顯著降低。
結論:此篇研究顯示單次有氧運動有助於巴金森氏症患者之內隱式順序學習,並於第七天的表現較佳;未來可以於病患學習順序性動作後,安排有氧運動來促進動作學習。
Background: Parkinson's disease (PD) is a degenerative neurological disease caused by the degradation of the basal ganglia. It not only affects motor symptoms, such as postural instability or bradykinesia, but also influences cognitive functions. Cognitive impairments in PD include deteriorated working memory, visuospatial processing ability, and motor learning. Impaired motor learning ability, especially implicit sequence learning, has been widely demonstrated in people with PD. To date, no effective treatment approach (including the use of dopaminergic medication) has been established to restore implicit sequence learning ability in PD. Evidence conducted on healthy young adults proposed that a single bout of aerobic exercise can enhance motor learning. However, it was yet unclear whether a single bout of aerobic exercise could also facilitate implicit sequence learning in people with PD. Additionally, the neurophysiological mechanisms associated with the benefits of aerobic exercise on motor learning have not been determined.
Purpose: The purpose of this study was to investigate the effect of a single bout of aerobic exercise on implicit sequence learning in people with PD. We also aimed to determine the neurophysiological changes associated with motor learning and aerobic exercise.
Methods: Thirty individuals with PD and 15 non-disable adults were included in this study. People with PD were randomly assigned into 2 groups: exercise group (PD+AEX) and non-exercise group (PD–AEX). Non-disabled adults served as the control group (CON). All participants performed baseline assessments on the first day, including cognitive and motor functions. Following baseline evaluations, corticomotor excitability was assessed with transcranial magnetic stimulation (TMS). The participants were then instructed to perform the serial reaction time task (SRTT). After completion of the SRTT, the participants in the PD+AEX group were required to ride on a stationary bicycle with moderately high intensity for 20 minutes, while the participants in the PD–AEX and CON were required to sit and read for 20 minutes. Immediately after the aerobic exercise or reading break, the participants were then required to complete a retention test of the SRTT and received TMS assessment again. The participants returned to the lab on the 2nd day and the 7th day to perform the delayed retention tests of the SRTT. Corticomotor excitability was also assessed with TMS on each visit. Repeated measures analysis of variance was used to compare the group differences in SRTT performance as well as TMS outcomes.
Result: All three groups showed improved performance throughout the 1st day practice (F = 80.935, p < 0.005, ηp2 = 0.658). The SRTT performance showed that all 3 groups had learnt the sequence throughout practice while PD patients appeared to show lesser degree of improvement than the control subject (F = 1.979, p = 0.036, ηp2 = 0.074). PD+AEX group performed worse on 2nd day and showed greater improvement on 7th day. PD-AEX group performed worse 2nd day and the 7th day. CON group kept improving in all the assessment time points. TMS data only revealed significant decreased excitability on resting motor evoked potential in the CON group between 1st day pre and 2nd day tests (p = 0.005), and also between 1st day pre and 7th day tests (p = 0.019).
Conclusion: This study demonstrated that a single bout of moderate intensity aerobic exercise could facilitate implicit sequence learning in people with PD. The findings provide important clinical implication that clinicians could arrange a single bout of aerobic exercise after motor sequence skill learning.
誌謝...................................................................................................................................i
中文摘要...........................................................................................................................ii
Abstract.............................................................................................................................iv
Contents............................................................................................................................vi
List of abbreviations.......................................................................................................viii
List of tables.....................................................................................................................ix
List of figures....................................................................................................................x
Chapter 1 Introduction.......................................................................................................1
1.1 Background......................................................................................................1
1.2 Study purpose..................................................................................................3
1.3 Specific aims and hypothesis.......................................................................................4
Chapter 2 Literature Review..............................................................................................5
2.1 Introduction of Parkinson’s disease.................................................................5
2.2 Motor learning ability in people with Parkinson’s disease..............................6
2.3 Methods to enhance motor learning.................................................................8
2.4 Mechanisms of aerobic exercise on motor learning.......................................11
2.5 Exercise protocol determination....................................................................13
2.6 Summary of review.......................................................................................15
Chapter 3 Methods..........................................................................................................16
3.1 Participants....................................................................................................16
3.2 Study procedure.............................................................................................16
3.3 Evaluation of implicit sequence learning……………………………...…...17
3.4 Exercise protocol...........................................................................................18
3.5 Outcome measures.........................................................................................19
3.6 Sample size estimation...................................................................................21
3.7 Data analysis……………………………………...……………...…...…….22
Chapter 4 Results.............................................................................................................24
4.1. Demographic and baseline characteristics of participants............................24
4.2 Performance of implicit sequence learning ...................................................24
4.3 Corticomotor excitability.............................................................................. 27
Chapter 5 Discussion.......................................................................................................30
Chapter 6 Conclusions.....................................................................................................38
Reference.........................................................................................................................39
Appendix 1. .....................................................................................................................48
1.Hayes HA, Hunsaker N, Dibble LE. Implicit motor sequence learning in individuals with Parkinson disease: a meta-analysis. NPJ Parkinsons Dis. 2015;5(3):549-560.
2.O'Sullivan SB, Schmitz TJ, Fulk G. Physical Rehabilitation. F. A. Davis Company; 2013.
3.Aarsland D, Brønnick K, Fladby T. Mild cognitive impairment in Parkinson’s
disease. Curr Neurol Neurosci Rep 2011;11(4):371-378.
4.Abbruzzese G, Trompetto C, Marinelli L. The rationale for motor learning in Parkinson's disease. Eur J Phys Rehabil Med. 2009;45(2):209-214.
5.Wilkinson L, Khan Z, Jahanshahi M. The role of the basal ganglia and its cortical connections in sequence learning: evidence from implicit and explicit sequence learning in Parkinson's disease. Neuropsychologia. 2009;47(12):2564-2573.
6.Rhee J, Chen J, Riechman SM, Handa A, Bhatia S, Wright DL. An acute bout of aerobic exercise can protect immediate offline motor sequence gains. Psychol Res. 2016;80(4):518-531.
7.Steib S, Wanner P, Adler W, Winkler J, Klucken J, Pfeifer K. A single bout of aerobic exercise improves motor skill consolidation in Parkinson's disease. Front Aging Neurosci. 2018;10:328.
8.Liu WM, Wu RM, Lin JW, Liu YC, Chang CH, Lin CH. Time trends in the prevalence and incidence of Parkinson's disease in Taiwan: A nationwide, population-based study. J Formos Med Assoc. 2016;115(7):531-538.
9.Pringsheim T, Jette N, Frolkis A, Steeves TD. The prevalence of Parkinson's disease: a systematic review and meta-analysis. Mov Disord. 2014;29(13):1583-1590.
10.Hely MA, Morris JG, Reid WG, Trafficante R. Sydney Multicenter Study of Parkinson's disease: non-L-dopa-responsive problems dominate at 15 years. Mov Disord. 2005;20(2):190-199.
11.Schmidt RA, Lee TD, Winstein CJ, Wulf G, Zelaznik HN. Motor Control and Learning, 6E. Human Kinetics, Inc.; 2018.
12.Squire LR, Genzel L, Wixted JT, Morris RG. Memory consolidation. Cold Spring Harb Perspect Biol. 2015;7(8):a021766.
13.Doyon J. Motor sequence learning and movement disorders. Curr Opin Neurol. 2008;21(4):478-483.
14.Meier B, Weiermann B, Gutbrod K, et al. Implicit task sequence learning in patients with Parkinson's disease, frontal lesions and amnesia: the critical role of fronto-striatal loops. Neuropsychologia. 2013;51(14):3014-3024.
15.Ghilardi MF, Eidelberg D, Silvestri G, Ghez C. The differential effect of PD and normal aging on early explicit sequence learning. Neurology. 2003;60(8):1313-1319.
16.Gamble KR, Cummings TJ, Jr., Lo SE, Ghosh PT, Howard JH, Jr., Howard DV. Implicit sequence learning in people with Parkinson's disease. Front Hum Neurosci. 2014;8:563.
17.Walker MP, Brakefield T, Seidman J, Morgan A, Hobson JA, Stickgold R. Sleep and the time course of motor skill learning. Learn Mem. 2003;10(4):275-284.
18.Terpening Z, Naismith S, Melehan K, Gittins C, Bolitho S, Lewis SJG. The contribution of nocturnal sleep to the consolidation of motor skill learning in healthy ageing and Parkinson's disease. J Sleep Res. 2013;22(4):398-405.
19.Kim YH, Park JW, Ko MH, Jang SH, Lee PK. Facilitative effect of high frequency subthreshold repetitive transcranial magnetic stimulation on complex sequential motor learning in humans. Neurosci Lett. 2004;367(2):181-185.
20.Roig M, Skriver K, Lundbye-Jensen J, Kiens B, Nielsen JB. A single bout of exercise improves motor memory. PloS one. 2012;7(9):e44594.
21.Skriver K, Roig M, Lundbye-Jensen J, et al. Acute exercise improves motor memory: exploring potential biomarkers. Neurobiol Learn Mem. 2014;116:46-58.
22.McDonnell MN, Buckley JD, Opie GM, Ridding MC, Semmler JG. A single bout of aerobic exercise promotes motor cortical neuroplasticity. J Appl Physiol. 2013;114(9):1174-1182.
23.Singh AM, Neva JL, Staines WR. Acute exercise enhances the response to paired associative stimulation-induced plasticity in the primary motor cortex. Exp Brain Res. 2014;232(11):3675-3685.
24.Thomas R, Beck MM, Lind RR, et al. Acute exercise and motor memory consolidation: the role of exercise timing. Neural Plast. 2016;2016:6205452.
25.Roig M, Nordbrandt S, Geertsen SS, Nielsen JB. The effects of cardiovascular exercise on human memory: a review with meta-analysis. Neurosci Biobehav Rev. 2013;37(8):1645-1666.
26.Thomas R, Johnsen LK, Geertsen SS, et al. Acute Exercise and Motor Memory Consolidation: The Role of Exercise Intensity. PloS one. 2016;11(7):e0159589.
27.Statton MA, Encarnacion M, Celnik P, Bastian AJ. A single bout of moderate aerobic exercise improves motor skill acquisition. PLoS One. 2015;10(10):e0141393.
28.Snow NJ, Mang CS, Roig M, McDonnell MN, Campbell KL, Boyd LA. The effect of an acute bout of moderate-intensity aerobic exercise on motor learning of a continuous tracking task. PloS one. 2016;11(2):e0150039.
29.Borg GA. Psychophysical bases of perceived exertion. Med sci sports exerc. 1982;14(5):377-381.
30.Williams N. The Borg rating of perceived exertion (RPE) scale. Occup Med. 2017;67(5):404-405.
31.Chen MJ, Fan X, Moe ST. Criterion-related validity of the Borg ratings of perceived exertion scale in healthy individuals: a meta-analysis. J sports sci. 2002;20(11):873-899.
32.Pwnko AL, Barkley JE, Koop MM, Alberts JL. Borg scale is valid for ratings of perceived exertion for individuals with Parkinson’s disease. Int J Exerc Sci. 2017;10(1):76.
33.Dalrymple-Alford JC, MacAskill MR, Nakas CT, et al. The MoCA: well-suited screen for cognitive impairment in Parkinson disease. Neurology. 2010;75(19):1717-1725.
34.Goetz CG, Tilley BC, Shaftman SR, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129-2170.
35.Vandenbossche J, Deroost N, Soetens E, et al. Freezing of gait in Parkinson disease is associated with impaired conflict resolution. Neurorehabil Neural Repair. 2011;25(8):765-773.
36.Clark GM, Lum JA, Ullman MT. A meta-analysis and meta-regression of serial reaction time task performance in Parkinson’s disease. Neuropsychology. 2014;28(6):945.
37.Marinelli L, Quartarone A, Hallett M, Frazzitta G, Ghilardi MF. The many facets of motor learning and their relevance for Parkinson's disease. Clin Neurophysiol. 2017;128(7):1127-1141.
38.Smith JG, Siegert RJ, McDowall J, Abernethy D. Preserved implicit learning on both the serial reaction time task and artificial grammar in patients with Parkinson' s disease. Clin Neurophysiol.2001;35:227-247.
39.Wanner P, Winterholler M, Gaßner H, et al. Acute exercise following skill practice promotes motor memory consolidation in Parkinson’s disease. bioRxiv. 2020:2020.2005.2015.097394.
40.Dudai Y. The restless engram: consolidations never end. Annu Rev Neurosci. 2012;35:227-247.
41.Mackay CP, Kuys SS, Brauer SG. The effect of aerobic exercise on brain-derived neurotrophic factor in people with neurological disorders: a systematic review and meta-analysis. Neural Plast. 2017;2017:4716197.
42.Mang CS, McEwen LM, MacIsaac JL, et al. Exploring genetic influences underlying acute aerobic exercise effects on motor learning. Sci Rep. 2017;7(1):12123.
43.Petzinger GM, Fisher BE, McEwen S, Beeler JA, Walsh JP, Jakowec MW. Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson's disease. The Lancet Neurology. 2013;12(7):716-726.
44.Kelly NA, Wood KH, Allendorfer JB, et al. High-intensity exercise acutely increases substantia nigra and prefrontal brain activity in Parkinson's disease. Med Sci Monit. 2017;23:6064-6071.
45.Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadomski W, Niewiadomska G. BDNF as a promising therapeutic agent in Parkinson’s disease. Int J Mol Sci.. 2020;21(3):1170.
46.Roig M, Thomas R, Mang CS, et al. Time-dependent effects of cardiovascular exercise on memory. Exerc Sport Sci Rev. 2016;44(2):81-88.
47.Shimamoto H, Morimitsu H, Sugita S, Kimihiro N, Shigemori M, Kurihara Y. Motor evoked potentials of transcranial magnetic stimulation for Parkinson's disease. No to shinkei. 1996;48(9):825.
48.Kujirai T, Caramia M, Rothwell JC, et al. Corticocortical inhibition in human motor cortex. J Physiol. 1993;471(1):501-519.
49.Bramham CR, Messaoudi E. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol. 2005;76(2):99-125.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top