跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/17 01:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林筱真
研究生(外文):Hsiao-Chen Lin
論文名稱:探討運動訓練介入對合併化療與放射照射誘發之心肌功能異常之成效
論文名稱(外文):Effects of Exercise Training on Concurrent Chemoradiation Induced Myocardial Dysfunction
指導教授:王儷穎王儷穎引用關係
指導教授(外文):Li-Ying Wang
口試委員:謝忱希李安生
口試委員(外文):Chen-Hsi HsiehAn-Sheng Lee
口試日期:2021-01-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理治療學研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:74
中文關鍵詞:同步化學合併放射照射心肌功能運動訓練心臟重塑抗氧化能力
外文關鍵詞:Concurrent chemoradiationmyocardial functionexercise trainingcardiac remodelingantioxidant capacity
DOI:10.6342/NTU202100617
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究背景與目的:同步化學合併放射治療(concurrent chemoradiotherapy, CCRT)是常用的癌症綜合治療方案,且已知具心臟毒性。心肌受傷後的重塑過程,對於心臟功能是否會持續惡化是重要關鍵。心肌受傷後會產生病理性慢性代償肥大,最後導致心臟衰竭。急性心肌梗塞的動物模型研究顯示梗塞後介入運動訓練,可以降低心肌受傷後的病理性心肌肥大和纖維化。但運動訓練對心肌在CCRT後受傷的復原與重塑,是否具相似效益,則尚不清楚。因此,本研究的目的是探討心肌在放射合併化學治療模式傷害後,介入運動訓練,對心肌功能及重塑改善之影響及相關機制之探討。方法:本研究將18隻7週大之雄性Wistar大鼠,以每組6隻隨機分配到控制組(Ctrl)、同步化學合併放射照射組(CCRT)、及同步化學合併放射照射後運動訓練組(CCRTEx)。CCRT及CCRTEx組大鼠,接受單次,劑量8mg/kg的cisplatin注射,並在接受注射24小時後開始放射照射,照射劑量為每次5 Gy、一天1次,共5天總量為25 Gy。在完成CCRT後,CCRTEx組進行6週,每週5天,每次60分鐘之運動訓練。CCRT及CCRTEx大鼠在接受CCRT後第四週(T1)及第七週(T2)及Ctrl組在相對應周齡,皆以心臟超音波進行非侵入性心臟功能測試。所有大鼠在完成所有介入後一週,以導電心導管進行活體心臟功能測試(壓力-容積分析)。待分析結束後犧牲大鼠,取出其左心室組織進行心臟氧化壓力、抗氧化能力及纖維化分析。心臟所受之氧化壓力以活性氧含量;抗氧化能力以CuZnSOD及MnSOD mRNA表現量分析;纖維化及心肌重塑指標以MMP-2/-9、type I & III collagen蛋白質表現量及以Masson's trichrome染色計算膠原容積分數(collagen volume fraction; CVF)觀察纖維化變化。結果:相較於控制組,CCRT組左心室心肌纖維斷裂及白血球浸潤現象較為明顯,活性氧含量顯著較高(p< 0.05),以超音波測得之心臟收縮(fraction shortening (FS);p= 0.002)及舒張功能(isovolumic relaxation time (IVRT);p= 0.004)在T2顯著較差,MMP-2蛋白質表現量(p= 0.04)顯著較低,type III collagen蛋白質表現量(p= 0.02)及CVF(p= 0.01)皆顯著較高。相較於無運動訓練之對照組,CCRTEx組之大鼠,以壓力-容積分析測得之心臟收縮(ejection fraction (EF);p= 0.017)及舒張功能(Tau Weiss;p= 0.014)顯著較佳,左心室氧化壓力顯著較低(p< 0.05)。相較於未訓練的對照組,運動訓練組的抗氧化MnSOD mRNA表現量(p= 0.02)較高,MMP-2蛋白質表現量(p= 0.02)顯著較高,纖維化分析則可見CVF(p= 0.03) 在運動訓練組顯著較低。結論:本研究結果顯示6週之運動訓練可改善心臟之收縮及舒張功能,並藉由調控其抗氧化能力及心肌重塑之基質金屬蛋白酶表現量來降低同步化學合併放射照射引起之心肌功能異常。
Background and purpose: Concurrent chemoradiotherapy (CCRT) is a common treatment option for patients with cancers and is known to induce cardiotoxicity. Adverse cardiac remodeling leads to pathological cardiomyocyte hypertrophy and progressively deteriorating cardiac function to the point of failure. Compelling animal evidence has shown that post myocardial infarction exercise protects heart against pathological cardiac hypertrophy and fibrosis. Whether exercise training after CCRT provides similar beneficial effects remains to be determined. Therefore, this study aimed to investigate post-CCRT exercise training on cardiac remodeling and function, and the potential mechanisms were also explored in the rodent model. Methods: A total of 18 adult male Wistar rats aged 7-week-old were randomly assigned into control (Ctrl), CCRT, or exercise training after CCRT (CCRTEx) group (n= 6 per group). The CCRT and CCRTEx received a single cisplatin injection with a dose of 8 mg/kg. The radiation started 24 hours after cisplatin injection, with a dose of 5 Gy/fraction/day for 5 days (total dose of 25 Gy). 1 week after received CCRT, The CCRTEx underwent exercise training on a motor-driven treadmill for 60 minutes/day, 5 days/week, for a total of 6 weeks. The myocardial function was examined using non-invasive echocardiography at 4-week (T1) and 7-week post-CCRT (T2) and invasive pressure-volume (P-V) analysis after T2. Rats were sacrificed after myocardial function analysis, and the hearts were removed en bloc. The left ventricular tissue was used for oxidative stress, antioxidant capacity, and fibrosis analysis. Oxidative stress was determined by analyzing reactive oxygen species (ROS) level and antioxidant capacity was determined by analyzing CuZnSOD and MnSOD mRNA expression. Myocardial fibrosis and remodeling were examined using protein expression of MMP-2/-9, type I and III collagen, and myocardial interstitial collagen volume fraction (CVF) measured by Masson’s trichrome staining. Results: Compared to Ctrl group, sporadic fragmentation of myocardial fibers and leukocyte infiltration were more obvious in the LV myocardium in CCRT group. In CCRT group, the level of ROS (p< 0.05) was significantly higher, the cardiac systolic (fraction shortening (FS); p= 0.002) and diastolic function (isovolumic relaxation time (IVRT); p= 0.004) measured by echocardiography at T2 were significantly worse compared to those of Ctrl group. Compared to Ctrl group, protein expression level of MMP-2 (p= 0.04) was significantly lower, and type III collagen protein expression level (p= 0.02) and the CVF (p= 0.01) were significantly higher in CCRT group. Compared to CCRT group with no exercise training, rats in CCRTEx group demonstrated better cardiac systolic (ejection fraction (EF); p= 0.017) and diastolic function (Tau Weiss; p= 0.014) in PV analysis. In CCRTEx group, ROS level was significantly lower (p< 0.05), and MnSOD mRNA (p= 0.02) was higher than those of CCRT group. In CCRTEx group, protein expression level of MMP-2 (p= 0.02) was significantly higher, and CVF was significantly lower than those of CCRT group (p= 0.03). Conclusions: This study showed that aerobic exercise training after CCRT could enhance cardiac antioxidant defense system and reduce myocardial contractile dysfunction due to remodeling.
致謝 i
中文摘要 ii
Abstract iv
Tables x
Figures xi
Chapter 1. Introduction 1
1.1 Background and purpose 1
1.2 Study hypotheses 2
1.3 Clinical relevance of the study 3
Chapter 2. Literature review 5
2.1 Radiation induced cardiotoxicity 5
2.2 Cisplatin-induced cardiotoxicity 9
2.3 Concurrent chemoradiation induced cardiotoxicity 13
2.4 The effects of exercise in CCRT-related to cardiotoxicity 14
Chapter 3. Methods 18
3.1 Study design 18
3.2 Animals 18
3.3 Sample size calculation 18
3.4 Procedures 19
3.4.1 Groups 19
3.4.2 Cisplatin 19
3.4.3 Irradiation 19
3.4.4 Aerobic exercise training 20
3.5 Measurements 20
3.5.1 Cardiac function 20
3.5.2 Histology 23
3.5.3 Oxidative stress 27
3.5.4 Antioxidant capacity 28
3.5.5 Myocardial fibrosis and remodeling 32
3.6 Variables 35
3.6.1 Independent variables 35
3.6.2 Dependent variables 35
3.7 Statistical analysis 38
Chapter 4. Results 39
4.1 General Characteristic 39
4.2 Histology 39
4.3 Oxidative stress 39
4.4 Echocardiography 40
4.5 Pressure-volume loop 40
4.6 Antioxidant capacity 41
4.7 Myocardial fibrosis and remodeling 42
Chapter 5. Discussion 43
Chapter 6. Conclusion 51
References 52
Appendix 74
1.Cancer Registry Annual Report, Taiwan. 2016.
2.Mamon H, Tepper J. Combination chemoradiation therapy: the whole is more than the sum of the parts. J Clin Oncol. 2014;32:367-369.
3.Henning R, Harbison R. Cardio-oncology: cardiovascular complications of cancer therapy. Future Cardiol. 2017;13:379-396.
4.Esophageal and Esophagogastric Junction Cancers. National Comprehensive Cancer Network. 2019. Accessed November 1, 2019.
5.Non-Small Cell Lung Cancer. National Comprehensive Cancer Network. 2019. Accessed November 1, 2019.
6.Dasari S, Tchounwou P. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;5:364-378.
7.Exercise for Cardiovascular Disease Prevention and Treatment. 2017.
8.Heidenreich PA, Schnittger I, Strauss HW, et al. Screening for coronary artery disease after mediastinal irradiation for Hodgkin's disease. J Clin Oncol. 2007;25:43-49.
9.Groarke J, Nguyen P, Nohria A, Ferrari R, Cheng S, Moslehi J. Cardiovascular complications of radiation therapy for thoracic malignancies: the role for non-invasive imaging for detection of cardiovascular disease. Eur Heart J 2014;35:612-623.
10.Barbetakis N, Xenikakis T, Paliouras D, et al. Pericardiectomy for radiation-induced constrictive pericarditis. Hellenic J Cardiol. 2010;51:214-218.
11.Seemann I, Gabriels K, Visser NL, et al. Irradiation induced modest changes in murine cardiac function despite progressive structural damage to the myocardium and microvasculature. Radiother Oncol. 2012;103:143-150.
12.Lauer D. Prevention of cardiac remodeling after experimental myocardial infarction. Role of the angiotensin II type 2 receptor stimulation and modulation of MMP/TIMP axis. (dissertation, Universitätsmedizin Berlin). 2016.
13.Spetz J, Moslehi J, Sarosiek K. Radiation-induced cardiovascular toxicity: Mechanisms, prevention, and treatment. Curr Treat Options Cardiovasc Med. 2018;20:31.
14.Liu LK, Ouyang W, Zhao X, et al. Pathogenesis and prevention of radiation-induced myocardial fibrosis. Asian Pac J Cancer Prev 2017;18:583-587.
15.Hahn V, Lenihan D, Ky B. Cancer therapy-induced cardiotoxicity: basic mechanisms and potential cardioprotective therapies. J Am Heart Assoc. 2014;3:58-66.
16.Wang H, Wei J, Zheng Q, et al. Radiation-induced heart disease: a review of classification, mechanism and prevention. Int J Biol Sci. 2019;15:2128-2138.
17.Bhatt AS, Ambrosy AP, Velazquez EJ. Adverse remodeling and reverse remodeling after myocardial infarction. Curr Cardiol Rep. 2017;19:71.
18.Sutton M, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. Circulation. 2000;101:2981-2988.
19.Seiwert TY, Salama JK, Vokes EE. The concurrent chemoradiation paradigm—general principles. Nat Clin Pract Oncol. 2007;4:86-100.
20.Hull M, Morris C, Pepin C, Mendenhall N. Valvular dysfunction and carotid, subclavian, and coronary artery disease in survivors of hodgkin lymphoma treated with radiation therapy. JAMA. 2003;290:2831-2837.
21.Xu J, Cao Y. Radiation-induced carotid artery stenosis: a comprehensive review of the literature. Interv Neurol. 2014;2:183-192.
22.Taunk NK, Haffty BG, Kostis JB, Goyal S. Radiation-induced heart disease: pathologic abnormalities and putative mechanisms. Front Oncol. 2015;5:39.
23.Madan R, Benson R, Sharma D, Julka P, Rath G. Radiation induced heart disease: Pathogenesis, management and review literature. J Egypt Natl Canc Inst. 2015;27:187-193.
24.Murtha LA, Schuliga MJ, Mabotuwana NS, et al. The Processes and Mechanisms of Cardiac and Pulmonary Fibrosis. Front Physiol. 2017;8:777.
25.Lijnen PJ, van Pelt JF, Fagard RH. Stimulation of reactive oxygen species and collagen synthesis by angiotensin II in cardiac fibroblasts. Cardiovasc Ther. 2012;30:1-8.
26.Boerma M, Roberto KA, Hauer-Jensen M. Prevention and treatment of functional and structural radiation injury in the rat heart by pentoxifylline and alpha-tocopherol. Int J Radiat Oncol Biol Phys. 2008;72:170-177.
27.Mezzaroma E, Di X, Graves P, et al. A mouse model of radiation-induced cardiomyopathy. Int J Cardiol. 2012;156:231-233.
28.Floresu M, Cinteza M, Vinereanu D. Chemotherapy-induced cardiotoxicity. Maedica. 2013;8:59-67.
29.Dugbartey G, Peppone L, Graaf Id. An integrative view of cisplatin-induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures. Toxicology. 2016;14:58-66.
30.Townsend DM, Tew KD, He L, King JB, Hanigan MH. Role of glutathione S-transferase Pi in cisplatin-induced nephrotoxicity. Biomed Pharmacother. 2009;63:79-85.
31.Guglin M, Aljayeh M, Saiyad S, Ali R, Curtis AB. Introducing a new entity: chemotherapy-induced arrhythmia. Europace. 2009;11:1579-1586.
32.Bano N, Najam R, Qazi F. Adverse cardiac manifestations of cisplatin - A review. Int. J. Pharm. Sci. Rev. Res. 2013;18:80-85.
33.Moore RA, Adel N, Riedel E, et al. High incidence of thromboembolic events in patients treated with cisplatin-based chemotherapy: a large retrospective analysis. J Clin Oncol. 2011;29:3466-3473.
34.Wang J, He D, Zhang Q, Han Y, Jin S, Qi F. Resveratrol protects against Cisplatin-induced cardiotoxicity by alleviating oxidative damage. Cancer Biother Radiopharm. 2009;24:675-680.
35.El-Sawalhi MM, Ahmed LA. Exploring the protective role of apocynin, a specific NADPH oxidase inhibitor, in cisplatin-induced cardiotoxicity in rats. Chem Biol Interact. 2014;207:58-66.
36.Angsutararux P, Luanpitpong S, Issaragrisil S. Chemotherapy-induced cardiotoxicity: overview of the roles of oxidative stress. Oxid Med Cell Longev. 2015;2015:795602-795607.
37.Yuce A, Atessahin A, Ceribasi AO, Aksakal M. Ellagic acid prevents cisplatin-induced oxidative stress in liver and heart tissue of rats. Basic Clin Pharmacol Toxicol. 2007;101:345-349.
38.El-Awady S, Moustafa Y, Abo-Elmatty D, Radwan A. Cisplatin-induced cardiotoxicity: Mechanisms and cardioprotective strategies. Eur J Pharmacol. 2011;650:335-341.
39.Saleh RM, Awadin WF, El-Shafei RA, Elseady YY, Wehaish FE, Elshal MF. Cardioprotective role of tadalafil against cisplatin-induced cardiovascular damage in rats. Eur J Pharmacol. 2015;765:574-581.
40.Rose P, Bundy B, Watkins E, et al. Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. N Engl J Med. 1999;340:1144-1153.
41.Herskovic A, Martz K, al-Sarraf M, et al. Combined chemotherapy and radiotherapy compared with radiotherapy alone in patients with canecer of the esophagus. N Engl J Med. 1992;18:1593-1598.
42.Bosch DJ, Muijs CT, Mul VE, et al. Impact of neoadjuvant chemoradiotherapy on postoperative course after curative-intent transthoracic esophagectomy in esophageal cancer patients. Ann Surg Oncol. 2014;21:605-611.
43.Cooper J, Pajak T, Forastiere A, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med. 2004;350:1937-1944.
44.Huncharek M, Kupelnick B. Combined chemoradiation versus radiation therapy alone in locally advanced nasopharyngeal carcinoma. Am J Clin Oncol. 2002;25:219-223.
45.Trovò M, Minatel E, Veronesi A, et al. Combined radiotherapy and chemotherapy versus radiotherapy alone in locally advanced epidermoid bronchogenic carcinoma. Cancer. 1990;65:400-404.
46.West M, Loughney L, Ambler G, et al. The effect of neoadjuvant chemotherapy and chemoradiotherapy on exercise capacity and outcome following upper gastrointestinal cancer surgery: an observational cohort study. BMC Cancer. 2016;16:710.
47.Lund M, Alexandersson von Döbeln G, Nilsson M, et al. Effects on heart function of neoadjuvant chemotherapy and chemoradiotherapy in patients with cancer in the esophagus or gastroesophageal junction – a prospective cohort pilot study within a randomized clinical trial. Radiat Oncol. 2015;10.
48.Lund M, Tsai JA, Nilsson M, Winter R, Lundell L, Kalman S. Effects of neoadjuvant chemo or chemoradiotherapy for oesophageal cancer on perioperative haemodynamics: A prospective cohort study within a randomised clinical trial. Eur J Anaesthesiol. 2016;33:653-661.
49.Salata C, Ferreira-Machado SC, De Andrade CB, Mencalha AL, Mandarim-De-Lacerda CA, de Almeida CE. Apoptosis induction of cardiomyocytes and subsequent fibrosis after irradiation and neoadjuvant chemotherapy. Int J Radiat Biol. 2014;90:284-290.
50.Scott JM, Lakoski S, Mackey JR, Douglas PS, Haykowsky MJ, Jones LW. The potential role of aerobic exercise to modulate cardiotoxicity of molecularly targeted cancer therapeutics. Oncologist. 2013;18:221-231.
51.Mann N, Rosenzweig A. Can exercise teach us how to treat heart disease? Circulation. 2012;126:2625-2635.
52.Xu X, Wan W, Ji L, et al. Exercise training combined with angiotensin II receptor blockade limits post-infarct ventricular remodelling in rats. Cardiovasc Res. 2008;78:523-532.
53.Xu X, Wan W, Powers AS, et al. Effects of exercise training on cardiac function and myocardial remodeling in post myocardial infarction rats. J Mol Cell Cardiol. 2008;44:114-122.
54.Jia D, Hou L, Lv Y, Xi L, Tian Z. Postinfarction exercise training alleviates cardiac dysfunction and adverse remodeling via mitochondrial biogenesis and SIRT1/PGC-1α/PI3K/Akt signaling. J Cell Physiol. 2019;234:23705-23718.
55.Cai M, Shi X, Chen T, et al. Exercise training activates neuregulin 1/ErbB signaling and promotes cardiac repair in a rat myocardial infarction model. Life Sci. 2016;15:1-9.
56.Oláh A, Németh BT, Mátyás C, et al. Cardiac effects of acute exhaustive exercise in a rat model. Int J Cardiol. 2015;182:258-266.
57.Tao L, Bei Y, Lin S, et al. Exercise training protects against acute myocardial infarction via improving myocardial energy metabolism and mitochondrial biogenesis. Cell Physiol Biochem. 2015;37:162-175.
58.Pacher P, Nagayama T, Mukhopadhyay P, Batkai S, Kass DA. Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nat Protoc. 2008;3:1422-1434.
59.Chang WH. Effects of exercise preconditioning on radiation-induced cardiac
dysfunction - animal study. (Master's thesis, NTU). 2019.
60.Siprov AV, Vashurkina IM, Masyagin VA. Comparative evaluation of antioxidant drug influence on a radio therapy efficiency and oxidative status in mice. Russ Open Med J. 2013;8:906-910.
61.Yang PY. Effect of Resistive Breathing Training on Radiation-Induced Diaphragm Contractile Dysfunction-Animal Study. (Master's thesis, NTU). 2014.
62.Yang HL, Hsieh PL, Huang CH, et al. Early Moderate Intensity Aerobic Exercise Intervention Prevents Doxorubicin-caused Cardiac Dysfunction through Inhibition of Cardiac Fibrosis and Inflammation. Cancers. 2020;12:1102-1107.
63.Orenstein TL, Parker TG, Butany JW, et al. Favorable left ventricular remodeling following large myocardial infarction by exercise training. Effect on ventricular morphology and gene expression. J Clin Invest. 1995; 96: 858-66.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top