|
[1] A. Abdelhamed, S. Lin, and M. S. Brown. A high quality denoising dataset for smartphone cameras. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1692–1700, 2018. [2] M. Aittala and F. Durand. Burst image deblurring using permutation invariant convolutional neural networks. In Proceedings of the European Conference on Computer Vision (ECCV), pages 731–747, 2018. [3] A. Alsaiari, R. Rustagi, M. M. Thomas, A. G. Forbes, et al. Image denoising using a generative adversarial network. In2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT), pages 126–132. IEEE,2019. [4] J. Anaya and A. Barbu. Renoir-a dataset for real low light noise image reduction.arXiv preprint arXiv, 1409:6, 2014. [5] T. Brooks, B. Mildenhall, T. Xue, J. Chen, D. Sharlet, and J. T. Barron. Unprocessing images for learned raw denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 11036–11045, 2019. [6] J. Caballero, C. Ledig, A. Aitken, A. Acosta, J. Totz, Z. Wang, and W. Shi. Real-time video superresolution with spatio-temporal networks and motion compensation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,pages 4778–4787, 2017. [7] C. Chen, Q. Chen, J. Xu, and V. Koltun. Learning to see in the dark. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3291–3300, 2018. [8] J. Chen, J. Chen, H. Chao, and M. Yang. Image blind denoising with generative adversarial network based noise modeling. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3155–3164, 2018. [9] S. Chen, D. Shi, M. Sadiq, and M. Zhu. Image denoising via generative adversarial networks with detail loss. In Proceedings of the 2019 2nd International Conference on Information Science and Systems, pages 261–265, 2019. [10] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Color image denoising via sparse 3d collaborative filtering with grouping constraint in luminance-chrominance space. In 2007 IEEE International Conference on Image Processing, volume 1, pages I–313. IEEE, 2007. [11] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by sparse 3d transform domain collaborative filtering.IEEE Transactions on image processing,16(8):2080–2095, 2007. [12] M. Gharbi, G. Chaurasia, S. Paris, and F. Durand. Deep joint demosaicking and denoising. ACM Transactions on Graphics (TOG), 35(6):1–12, 2016. [13] C. Godard, K. Matzen, and M. Uyttendaele. Deep burst denoising. In Proceedings of the European Conference on Computer Vision (ECCV), pages 538–554, 2018. [14] S. Gu, R. Timofte, and L. Van Gool. Multi-bin trainable linear unit for fast image restoration networks.arXiv preprint arXiv:1807.11389, 2018. [15] S. Guo, Z. Yan, K. Zhang, W. Zuo, and L. Zhang. Toward convolutional blind denoising of real photographs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1712–1722, 2019. [16] Y. Huang, W. Wang, and L. Wang. Bidirectional recurrent convolutional networks for multi-frame super-resolution. Advances in neural information processing systems,28:235–243, 2015. [17] Y. Jo, S. Wug Oh, J. Kang, and S. Joo Kim. Deep video super-resolution network using dynamic upsampling filters without explicit motion compensation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3224–3232, 2018. [18] A. Kappeler, S. Yoo, Q. Dai, and A. K. Katsaggelos. Video super-resolution with convolutional neural networks. IEEE Transactions on Computational Imaging,2(2):109–122, 2016. [19] S. Lefkimmiatis. Non-local color image denoising with convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3587–3596, 2017. [20] J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, andT. Aila. Noise2noise: Learning image restoration without clean data. arXiv preprint arXiv:1803.04189, 2018. [21] D. Liu, B. Wen, Y. Fan, C. C. Loy, and T. S. Huang. Non-local recurrent network for image restoration. In Advances in Neural Information Processing Systems, pages 1673–1682, 2018. [22] M. Maggioni, G. Boracchi, A. Foi, and K. Egiazarian. Video denoising, deblocking,and enhancement through separable 4d non-local spatio-temporal transforms. IEEE Transactions on image processing, 21(9):3952–3966, 2012. [23] O. Makansi, E. Ilg, and T. Brox. End-to-end learning of video super-resolution with motion compensation. In German conference on pattern recognition, pages 203–214. Springer, 2017. [24] F. Perazzi, J. PontTuset, B. McWilliams, L. Van Gool, M. Gross, and A. Sorkine-Hornung. A benchmark dataset and evaluation methodology for video object segmentation. In Computer Vision and Pattern Recognition, 2016. [25] T. Plotz and S. Roth. Benchmarking denoising algorithms with real photographs. In Proceedings of the IEEE conference on computer vision and pattern recognition,pages 1586–1595, 2017. [26] T. Plötz and S. Roth. Neural nearest neighbors networks. Advances in Neural Information Processing Systems, 31:1087–1098, 2018. [27] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, andZ. Wang. Real-time single image and video super-resolution using an efficient subpixel convolutional neural network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1874–1883, 2016. [28] Y. Tai, J. Yang, X. Liu, and C. Xu. Memnet: A persistent memory network for image restoration. In Proceedings of the IEEE international conference on computer vision, pages 4539–4547, 2017. [29] X. Tao, H. Gao, R. Liao, J. Wang, and J. Jia. Detail revealing deep video super-resolution. In Proceedings of the IEEE International Conference on Computer Vision, pages 4472–4480, 2017. [30] M. Tassano, J. Delon, and T. Veit. Fastdvdnet: Towards real-time deep video denoising without flow estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1354–1363, 2020. [31] Y. Tian, Y. Zhang, Y. Fu, and C. Xu. Tdan: Temporally deformable alignment network for video superresolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3360–3369, 2020. [32] X. Wang, K. C. Chan, K. Yu, C. Dong, and C. Change Loy. Edvr: Video restoration with enhanced deformable convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages 0–0, 2019. [33] J. Xu, H. Li, Z. Liang, D. Zhang, and L. Zhang. Real-world noisy image denoising: A new benchmark.arXiv preprint arXiv:1804.02603, 2018. [34] T. Xue, B. Chen, J. Wu, D. Wei, and W. T. Freeman. Video enhancement with task-oriented flow. International Journal of Computer Vision, 127(8):1106–1125, 2019. [35] D. Yang and J. Sun. Bm3dnet: A convolutional neural network for transform-domain collaborative filtering.IEEE Signal Processing Letters, 25(1):55–59, 2017. [36] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Transactions on Image Processing, 26(7):3142–3155, 2017. [37] K. Zhang, W. Zuo, S. Gu, and L. Zhang. Learning deep cnn denoiser prior for image restoration. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3929–3938, 2017. [38] K. Zhang, W. Zuo, and L. Zhang. Ffdnet: Toward a fast and flexible solution for cnn-based image denoising. IEEE Transactions on Image Processing, 27(9):4608–4622,2018. [39] Q. ZhiPing, Z. YuanQi, S .Yi, and L.XiangBo. A new generative adversarial network for texture preserving image denoising. In 2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA), pages 1–5. IEEE, 2018.
|