跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/10 14:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許智堯
研究生(外文):Chih-Yao Hsu
論文名稱:全民健康保險修訂糖尿病藥品給付規定對於心血管疾病預防之成本效果分析:以DPP-4/SGLT2抑制劑之複方製劑為例
論文名稱(外文):Cost-Effectiveness of the Modified NHI Reimbursement Criteria on the Prevention of Cardiovascular Disease: Using DPP-4/SGLT2 Inhibitor Fixed-dose Combination Therapy as an Example
指導教授:楊銘欽楊銘欽引用關係
指導教授(外文):Ming-Chin Yang
口試委員:譚家惠蕭斐元
口試委員(外文):Elise Chia-Hui TanFei-Yuan Hsiao
口試日期:2021-05-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:健康政策與管理研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:103
中文關鍵詞:心血管疾病糖尿病DPP-4抑制劑SGLT2抑制劑複方製劑成本效果
外文關鍵詞:cardiovascular diseasediabetes mellitusDPP-4 inhibitorsSGLT2 inhibitorsfixed-dose combinationcost-effectiveness
DOI:10.6342/NTU202101032
相關次數:
  • 被引用被引用:0
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景:中央健康保險署於2020年5月修正DPP-4/SGLT2抑制劑之複方製劑的給付規定。此類複方製劑從限用於糖化血色素未低於8.5%者,修改為糖化血色素高於7.5%者即可使用。
目的:本研究以中央健康保險署的觀點,分析DPP-4/SGLT2抑制劑之複方製劑在給付規定修正後與修正前之成本效果。
方法:本研究使用馬可夫模型,針對第二型糖尿病患者,模擬在糖化血色素高於7.5%時得以服用DPP-4/SGLT2抑制劑之複方製劑(早期使用組)與在糖化血色素未低於8.5%時方能服用複方製劑(延遲使用組)的終身醫療費用和健康結果。模型使用參數取自全民健康保險研究資料庫2010年200萬人世代追蹤抽樣檔與已公開發表之文獻,醫療費用和健康結果採用3%的年折現率。研究結果以遞增成本效果比值呈現,並進行單因子敏感度分析、情境敏感度分析及機率性敏感度分析以瞭解不同參數對於研究結果之影響。
結果:早期使用組的終身醫療費用為新臺幣1,379,697.72元,生活品質校正生命年為9.07年;延遲使用組的終身醫療費用為新臺幣1,355,022.44元,生活品質校正生命年為8.79年。與延遲使用組相比,早期使用組的終身醫療費用較高,但也有較長的生活品質校正生命年。計算遞增成本效果比值後,可以得知每多得到一個生活品質校正生命年需多花的成本為新臺幣87,096.42元,早期使用組具有成本效果。從敏感度分析來看,早期使用組在絕大多數情況下也具有成本效果。
結論:對身處臺灣健康照護體系的第二型糖尿病患者而言,早期使用DPP-4/SGLT2抑制劑之複方製劑(給付規定修正後),相較於延遲使用(給付規定修正前)具有成本效果。
Background: In Taiwan, reimbursement of fixed-dose combination (FDC) products containing dipeptidyl peptidase-4 (DPP-4) inhibitors and sodium-glucose cotransporter-2 (SGLT2) inhibitors had been approved to treat people with type 2 diabetes and glycated hemoglobin ≥ 8.5% before May 2020. In May 2020, this regulation was modified to treat patients with glycated hemoglobin > 7.5%. The present study sought to evaluate the cost-effectiveness of SGLT2 inhibitor/DPP-4 inhibitor fixed-dose combination therapy for type 2 diabetes mellitus before and after the implementation of the modified reimbursement regulation.
Methods: A Markov model was developed to simulate the costs and health outcomes of patients receiving SGLT2 inhibitor/DPP-4 inhibitor FDC products with glycated hemoglobin levels > 7.5% (early use group) compared with those receiving FDC products with glycated hemoglobin levels ≥ 8.5% (delayed use group) over a lifetime horizon. Transition probabilities, costs, and health state utility values were obtained from published sources and the 2010 longitudinal generation tracking database of Taiwan's National Health Insurance. All costs and health outcomes were discounted at a rate of 3% per year. One-way sensitivity analyses, scenario analyses, and probabilistic sensitivity analyses were performed to explore the impact of changes in key data inputs.
Results: The early use group resulted in higher total lifetime costs (NT$1,379,697.72 vs NT$1,355,022.44) while yielding greater quality-adjusted life-years (QALYs) (9.07 vs 8.79) compared with the delayed use group. This translated to an incremental cost-effectiveness ratio of NT$87,096.42 per QALY gained. Sensitivity analyses verified the robustness of the model.
Conclusion: Compared to delayed treatment with SGLT2 inhibitor/DPP-4 inhibitor FDC products in patients whose HbA1c levels are ≥ 8.5%, early treatment with FDC products in patients whose HbA1c levels are > 7.5% is likely to be a cost-effective method for the management of patients with type 2 diabetes in a Taiwanese healthcare setting.
口試委員會審定書 i
謝辭 iii
中文摘要 iv
Abstract v
Table of Contents vii
List of Figures xii
List of Tables xiii
Chapter 1: Introduction 1
1.1 Background 1
1.1.1 Cardiovascular Disease 1
1.1.2 Cardiovascular Disease and Diabetes Mellitus 2
1.1.3 Sodium-Glucose Cotransporter-2 Inhibitors and CVD Prevention 3
1.1.4 National Health Insurance Reimbursement Criteria 4
1.2 Objective and Importance 5
Chapter 2: Literature Review 7
2.1 Cardiovascular Disease and Diabetes Mellitus 7
2.1.1 Cardiovascular Disease 7
2.1.2 Diabetes Mellitus 9
2.1.3 Cardiovascular Disease in Diabetes Mellitus 11
2.1.4 Prevention of Cardiovascular Disease in Diabetes Mellitus 12
2.2 Treatment of Type 2 Diabetes Mellitus 14
2.2.1 Lifestyle Management 14
2.2.2 Oral Anti-Diabetic Drugs 15
2.2.3 National Health Insurance Reimbursement Criteria in Taiwan 16
2.3 Clinical Effectiveness of Pharmacologic Interventions 18
2.3.1 DPP-4 Inhibitors 19
2.3.2 SGLT2 Inhibitors 22
2.3.3 Combination of DPP-4 Inhibitors and SGLT2 Inhibitors 24
2.4 Methods of Economic Evaluation 25
2.4.1 Different Types of Economic Evaluation 26
2.4.2 Economic Evaluation Using Modeling Approaches 27
2.5 Economic Studies of SGLT2 Inhibitors for Type 2 Diabetes Mellitus 29
2.5.1 General Characteristics of the Included Studies 35
2.5.2 Types of Interventions and Comparators 36
2.5.3 Health States 37
2.5.4 Costs 38
2.5.5 Utilities 39
2.5.6 Cost-Effectiveness of SGLT2 Inhibitors 39
2.5.7 Summary of the Included Studies 40
2.6 Summary 40
Chapter 3: Methods 43
3.1 Study Design 43
3.2 Model Assumptions and Description 44
3.3 Transition Probabilities 46
3.4 Treatment Effects 49
3.5 Costs 51
3.5.1 Data Sources 51
3.5.2 Data Analysis Using the LGTD 2010 53
3.6 Utilities 54
3.7 Statistical Analysis 55
Chapter 4: Results 57
4.1 Cost Data from the LGTD 2010 57
4.2 Base-Case Analysis 58
4.3 One-Way Sensitivity Analyses 59
4.4 Scenario Analyses 60
4.5 Probabilistic Sensitivity Analysis 62
Chapter 5: Discussion 65
5.1 Major Findings 65
5.2 Strengths 67
5.3 Limitations 68
Chapter 6: Conclusions 71
6.1 Conclusions 71
6.2 Recommendations 72
6.2.1 Recommendations to the NHIA 72
6.2.2 Recommendations for Future Research 72
Reference 75
Appendix: Research Ethics Committee Approval Letter 101
1. World Health Organization. Cardiovascular diseases (CVDs) [Internet]. Geneva: World Health Organization; 2017 [cited 2021 Jan 25]. Available from: https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
2. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1736-88.
3. Ministry of Health and Welfare. 2020 Taiwan Health and Welfare Report. Taipei: Ministry of Health and Welfare; 2020.
4. Tang CH, Chuang PY, Chen CA, Fang YC. Medical Costs of Cardiovascular Diseases in Taiwan. Value Health. 2014;17(7):A759-A60.
5. Li YH, Chen JW, Lin TH, Wang YC, Wu CC, Yeh HI, et al. A performance guide for major risk factors control in patients with atherosclerotic cardiovascular disease in Taiwan. J Formos Med Assoc. 2020;119(3):674-84.
6. O'Donnell MJ, Chin SL, Rangarajan S, Xavier D, Liu L, Zhang H, et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet. 2016;388(10046):761-75.
7. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937-52.
8. Almdal T, Scharling H, Jensen JS, Vestergaard H. The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: a population-based study of 13,000 men and women with 20 years of follow-up. Arch Intern Med. 2004;164(13):1422-6.
9. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577-89.
10. Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545-59.
11. ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560-72.
12. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129-39.
13. Skyler JS, Bergenstal R, Bonow RO, Buse J, Deedwania P, Gale EA, et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Diabetes Care. 2009;32(1):187-92.
14. Regier EE, Venkat MV, Close KL. More Than 7 Years of Hindsight: Revisiting the FDA's 2008 Guidance on Cardiovascular Outcomes Trials for Type 2 Diabetes Medications. Clin Diabetes. 2016;34(4):173-80.
15. Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, et al. Effect of Sitagliptin on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2015;373(3):232-42.
16. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017;377(7):644-57.
17. Rosenstock J, Kahn SE, Johansen OE, Zinman B, Espeland MA, Woerle HJ, et al. Effect of Linagliptin vs Glimepiride on Major Adverse Cardiovascular Outcomes in Patients With Type 2 Diabetes: The CAROLINA Randomized Clinical Trial. JAMA. 2019;322(12):1155-66.
18. Rosenstock J, Perkovic V, Johansen OE, Cooper ME, Kahn SE, Marx N, et al. Effect of Linagliptin vs Placebo on Major Cardiovascular Events in Adults With Type 2 Diabetes and High Cardiovascular and Renal Risk: The CARMELINA Randomized Clinical Trial. JAMA. 2019;321(1):69-79.
19. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(14):1317-26.
20. White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369(14):1327-35.
21. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. 2019;380(4):347-57.
22. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117-28.
23. Verma S, McMurray JJV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia. 2018;61(10):2108-17.
24. Hsieh CY, Su CC, Shao SC, Sung SF, Lin SJ, Kao Yang YH, et al. Taiwan's National Health Insurance Research Database: past and future. Clin Epidemiol. 2019;11:349-58.
25. Huang TL, Hsiao FY, Chiang CK, Shen LJ, Huang CF. Risk of cardiovascular events associated with dipeptidyl peptidase-4 inhibitors in patients with diabetes with and without chronic kidney disease: A nationwide cohort study. PLoS One. 2019;14(5):e0215248.
26. Chu CH, Hsu CC, Lin SY, Chuang LM, Liu JS, Tu ST. Trends in antidiabetic medical treatment from 2005 to 2014 in Taiwan. J Formos Med Assoc. 2019;118 Suppl 2:S74-S82.
27. National Health Insurance Administration. National Health Insurance Pharmaceutical Benefit and Reimbursement Schedule [Internet]. Taipei: National Health Insurance Administration; 2020 [cited 2021 Jan 25]. Available from: https://www.nhi.gov.tw/Content_List.aspx?n=E70D4F1BD029DC37.
28. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317-25.
29. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852-66.
30. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1-25.
31. Wong ND. Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol. 2014;11(5):276-89.
32. Jameson JL, Kasper DL, Fauci AS, Hauser SL, Longo DL, Loscalzo J, et al. Harrison's principles of internal medicine. 20th ed. New York: McGraw-Hill Education; 2018.
33. Avan A, Digaleh H, Di Napoli M, Stranges S, Behrouz R, Shojaeianbabaei G, et al. Socioeconomic status and stroke incidence, prevalence, mortality, and worldwide burden: an ecological analysis from the Global Burden of Disease Study 2017. BMC Med. 2019;17(1):191.
34. Katan M, Luft A. Global Burden of Stroke. Semin Neurol. 2018;38(2):208-11.
35. Gheorghe A, Griffiths U, Murphy A, Legido-Quigley H, Lamptey P, Perel P. The economic burden of cardiovascular disease and hypertension in low- and middle-income countries: a systematic review. BMC Public Health. 2018;18(1):975.
36. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123(8):933-44.
37. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442.
38. Ministry of Health and Welfare. Statistics of Medical Care, National Health Insurance 2018. Taipei: Ministry of Health and Welfare; 2019.
39. Lee CH, Cheng CL, Yang YH, Chao TH, Chen JY, Liu PY, et al. Trends in the incidence and management of acute myocardial infarction from 1999 to 2008: get with the guidelines performance measures in Taiwan. J Am Heart Assoc. 2014;3(4):e001066.
40. Yin WH, Lu TH, Chen KC, Cheng CF, Lee JC, Liang FW, et al. The temporal trends of incidence, treatment, and in-hospital mortality of acute myocardial infarction over 15 years in a Taiwanese population. Int J Cardiol. 2016;209:103-13.
41. American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S14-S31.
42. International Diabetes Federation. IDF Diabetes Atlas. 9th ed. Brussels: International Diabetes Federation; 2019.
43. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 2019;157:107843.
44. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88-98.
45. Baena-Diez JM, Penafiel J, Subirana I, Ramos R, Elosua R, Marin-Ibanez A, et al. Risk of Cause-Specific Death in Individuals With Diabetes: A Competing Risks Analysis. Diabetes Care. 2016;39(11):1987-95.
46. Li HY, Wu YL, Tu ST, Hwu CM, Liu JS, Chuang LM. Trends of mortality in diabetic patients in Taiwan: A nationwide survey in 2005-2014. J Formos Med Assoc. 2019;118 Suppl 2:S83-S9.
47. Li S, Wang J, Zhang B, Li X, Liu Y. Diabetes Mellitus and Cause-Specific Mortality: A Population-Based Study. Diabetes Metab J. 2019;43(3):319-41.
48. Tseng CH. Mortality and causes of death in a national sample of diabetic patients in Taiwan. Diabetes Care. 2004;27(7):1605-9.
49. Sheen YJ, Hsu CC, Jiang YD, Huang CN, Liu JS, Sheu WH. Trends in prevalence and incidence of diabetes mellitus from 2005 to 2014 in Taiwan. J Formos Med Assoc. 2019;118 Suppl 2:S66-S73.
50. Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215-22.
51. Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL, Powe NR, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004;141(6):421-31.
52. Coutinho M, Gerstein HC, Wang Y, Yusuf S. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care. 1999;22(2):233-40.
53. Levitan EB, Song Y, Ford ES, Liu S. Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch Intern Med. 2004;164(19):2147-55.
54. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339(4):229-34.
55. De Backer G, Ambrosioni E, Borch-Johnsen K, Brotons C, Cifkova R, Dallongeville J, et al. European guidelines on cardiovascular disease prevention in clinical practice: third joint task force of European and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of eight societies and by invited experts). Eur J Cardiovasc Prev Rehabil. 2003;10(4):S1-S10.
56. National Cholesterol Education Program (NCEP) Expert Panel. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) Final Report. Circulation. 2002;106(25):3143-421.
57. American Diabetes Association. 3. Prevention or Delay of Type 2 Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S32-S6.
58. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255-323.
59. American Diabetes Association. 5. Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S48-S65.
60. Estruch R, Ros E, Salas-Salvado J, Covas MI, Corella D, Aros F, et al. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N Engl J Med. 2018;378(25):e34.
61. Evert AB, Dennison M, Gardner CD, Garvey WT, Lau KHK, MacLeod J, et al. Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report. Diabetes Care. 2019;42(5):731-54.
62. Sluik D, Buijsse B, Muckelbauer R, Kaaks R, Teucher B, Johnsen NF, et al. Physical Activity and Mortality in Individuals With Diabetes Mellitus: A Prospective Study and Meta-analysis. Arch Intern Med. 2012;172(17):1285-95.
63. Diabetes Control and Complications Trial Research Group. Effect of intensive diabetes management on macrovascular events and risk factors in the Diabetes Control and Complications Trial. Am J Cardiol. 1995;75(14):894-903.
64. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643-53.
65. American Diabetes Association. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S98-S110.
66. American Diabetes Association. Introduction: Standards of Medical Care in Diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S1-S2.
67. MacLeod J, Franz MJ, Handu D, Gradwell E, Brown C, Evert A, et al. Academy of Nutrition and Dietetics Nutrition Practice Guideline for Type 1 and Type 2 Diabetes in Adults: Nutrition Intervention Evidence Reviews and Recommendations. J Acad Nutr Diet. 2017;117(10):1637-58.
68. Franz MJ, Boucher JL, Rutten-Ramos S, VanWormer JJ. Lifestyle weight-loss intervention outcomes in overweight and obese adults with type 2 diabetes: a systematic review and meta-analysis of randomized clinical trials. J Acad Nutr Diet. 2015;115(9):1447-63.
69. Hamdy O, Mottalib A, Morsi A, El-Sayed N, Goebel-Fabbri A, Arathuzik G, et al. Long-term effect of intensive lifestyle intervention on cardiovascular risk factors in patients with diabetes in real-world clinical practice: a 5-year longitudinal study. BMJ Open Diabetes Res Care. 2017;5(1):e000259.
70. Lean ME, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet. 2018;391(10120):541-51.
71. Lean MEJ, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. 2019;7(5):344-55.
72. Bird SR, Hawley JA. Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc Med. 2016;2(1):e000143.
73. Umpierre D, Ribeiro PA, Kramer CK, Leitao CB, Zucatti AT, Azevedo MJ, et al. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2011;305(17):1790-9.
74. Buse JB, Wexler DJ, Tsapas A, Rossing P, Mingrone G, Mathieu C, et al. 2019 Update to: Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2020;43(2):487-93.
75. Diabetes Association of the Republic of China (Taiwan). Executive summary of the DAROC clinical practice guidelines for diabetes care- 2018. J Formos Med Assoc. 2020;119(2):577-86.
76. Davies MJ, D'Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, et al. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2018;41(12):2669-701.
77. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356(24):2457-71.
78. Muscelli E, Casolaro A, Gastaldelli A, Mari A, Seghieri G, Astiarraga B, et al. Mechanisms for the antihyperglycemic effect of sitagliptin in patients with type 2 diabetes. J Clin Endocrinol Metab. 2012;97(8):2818-26.
79. Zannad F, Cannon CP, Cushman WC, Bakris GL, Menon V, Perez AT, et al. Heart failure and mortality outcomes in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: a multicentre, randomised, double-blind trial. Lancet. 2015;385(9982):2067-76.
80. Li L, Li S, Deng K, Liu J, Vandvik PO, Zhao P, et al. Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: systematic review and meta-analysis of randomised and observational studies. BMJ. 2016;352:i610.
81. Liu JJ, Lee T, DeFronzo RA. Why Do SGLT2 inhibitors inhibit only 30-50% of renal glucose reabsorption in humans? Diabetes. 2012;61(9):2199-204.
82. Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393(10166):31-9.
83. Cho YK, Kang YM, Lee SE, Lee J, Park JY, Lee WJ, et al. Efficacy and safety of combination therapy with SGLT2 and DPP4 inhibitors in the treatment of type 2 diabetes: A systematic review and meta-analysis. Diabetes Metab. 2018;44(5):393-401.
84. Li D, Shi W, Wang T, Tang H. SGLT2 inhibitor plus DPP-4 inhibitor as combination therapy for type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes Metab. 2018;20(8):1972-6.
85. Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW. Methods for the economic evaluation of health care programmes. 4th ed. Oxford: Oxford University Press; 2015.
86. Briggs AH, Claxton K, Sculpher MJ. Decision modelling for health economic evaluation. Oxford: Oxford University Press; 2006.
87. Gray A, Clarke P, Wolstenholme J, Wordsworth S. Applied methods of cost-effectiveness analysis in health care. Oxford: Oxford University Press; 2011.
88. Hong D, Si L, Jiang M, Shao H, Ming WK, Zhao Y, et al. Cost Effectiveness of Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitors, Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists, and Dipeptidyl Peptidase-4 (DPP-4) Inhibitors: A Systematic Review. Pharmacoeconomics. 2019;37(6):777-818.
89. van Haalen HG, Pompen M, Bergenheim K, McEwan P, Townsend R, Roudaut M. Cost effectiveness of adding dapagliflozin to insulin for the treatment of type 2 diabetes mellitus in the Netherlands. Clin Drug Investig. 2014;34(2):135-46.
90. Charokopou M, McEwan P, Lister S, Callan L, Bergenheim K, Tolley K, et al. The cost-effectiveness of dapagliflozin versus sulfonylurea as an add-on to metformin in the treatment of Type 2 diabetes mellitus. Diabet Med. 2015;32(7):890-8.
91. Charokopou M, McEwan P, Lister S, Callan L, Bergenheim K, Tolley K, et al. Cost-effectiveness of dapagliflozin versus DPP-4 inhibitors as an add-on to Metformin in the Treatment of Type 2 Diabetes Mellitus from a UK Healthcare System Perspective. BMC Health Serv Res. 2015;15:496.
92. Neslusan C, Teschemaker A, Johansen P, Willis M, Valencia-Mendoza A, Puig A. Cost-Effectiveness of Canagliflozin versus Sitagliptin as Add-on to Metformin in Patients with Type 2 Diabetes Mellitus in Mexico. Value Health Reg Issues. 2015;8:8-19.
93. Sabale U, Ekman M, Granstrom O, Bergenheim K, McEwan P. Cost-effectiveness of dapagliflozin (Forxiga(R)) added to metformin compared with sulfonylurea added to metformin in type 2 diabetes in the Nordic countries. Prim Care Diabetes. 2015;9(1):39-47.
94. Gu S, Mu Y, Zhai S, Zeng Y, Zhen X, Dong H. Cost-Effectiveness of Dapagliflozin versus Acarbose as a Monotherapy in Type 2 Diabetes in China. PLoS One. 2016;11(11):e0165629.
95. Sabapathy S, Neslusan C, Yoong K, Teschemaker A, Johansen P, Willis M. Cost-effectiveness of Canagliflozin versus Sitagliptin When Added to Metformin and Sulfonylurea in Type 2 Diabetes in Canada. J Popul Ther Clin Pharmacol. 2016;23(2):e151-e68.
96. Tzanetakos C, Tentolouris N, Kourlaba G, Maniadakis N. Cost-Effectiveness of Dapagliflozin as Add-On to Metformin for the Treatment of Type 2 Diabetes Mellitus in Greece. Clin Drug Investig. 2016;36(8):649-59.
97. Shao H, Zhai S, Zou D, Mir MU, Zawadzki NK, Shi Q, et al. Cost-effectiveness analysis of dapagliflozin versus glimepiride as monotherapy in a Chinese population with type 2 diabetes mellitus. Curr Med Res Opin. 2017;33(2):359-69.
98. Vega-Hernandez G, Wojcik R, Schlueter M. Cost-Effectiveness of Liraglutide Versus Dapagliflozin for the Treatment of Patients with Type 2 Diabetes Mellitus in the UK. Diabetes Ther. 2017;8(3):513-30.
99. Chakravarty A, Rastogi M, Dhankhar P, Bell KF. Comparison of costs and outcomes of dapagliflozin with other glucose-lowering therapy classes added to metformin using a short-term cost-effectiveness model in the US setting. J Med Econ. 2018;21(5):497-509.
100. Gourzoulidis G, Tzanetakos C, Ioannidis I, Tsapas A, Kourlaba G, Papageorgiou G, et al. Cost-Effectiveness of Empagliflozin for the Treatment of Patients with Type 2 Diabetes Mellitus at Increased Cardiovascular Risk in Greece. Clin Drug Investig. 2018;38(5):417-26.
101. Neslusan C, Teschemaker A, Willis M, Johansen P, Vo L. Cost-Effectiveness Analysis of Canagliflozin 300 mg Versus Dapagliflozin 10 mg Added to Metformin in Patients with Type 2 Diabetes in the United States. Diabetes Ther. 2018;9(2):565-81.
102. Nguyen E, Coleman CI, Nair S, Weeda ER. Cost-utility of empagliflozin in patients with type 2 diabetes at high cardiovascular risk. J Diabetes Complications. 2018;32(2):210-5.
103. Cai X, Shi L, Yang W, Gu S, Chen Y, Nie L, et al. Cost-effectiveness analysis of dapagliflozin treatment versus metformin treatment in Chinese population with type 2 diabetes. J Med Econ. 2019;22(4):336-43.
104. Chin KL, Ofori-Asenso R, Si S, Hird TR, Magliano DJ, Zoungas S, et al. Cost-effectiveness of first-line versus delayed use of combination dapagliflozin and metformin in patients with type 2 diabetes. Sci Rep. 2019;9(1):3256.
105. Hou X, Wan X, Wu B. Cost-Effectiveness of Canagliflozin Versus Dapagliflozin Added to Metformin in Patients With Type 2 Diabetes in China. Front Pharmacol. 2019;10:480.
106. Kaku K, Haneda M, Sakamaki H, Yasui A, Murata T, Ustyugova A, et al. Cost-effectiveness Analysis of Empagliflozin in Japan Based on Results From the Asian subpopulation in the EMPA-REG OUTCOME Trial. Clin Ther. 2019;41(10):2021-40.e11.
107. Kansal A, Reifsnider OS, Proskorovsky I, Zheng Y, Pfarr E, George JT, et al. Cost-effectiveness analysis of empagliflozin treatment in people with Type 2 diabetes and established cardiovascular disease in the EMPA-REG OUTCOME trial. Diabet Med. 2019;36(11):1494-502.
108. Pawaskar M, Bilir SP, Kowal S, Gonzalez C, Rajpathak S, Davies G. Cost-effectiveness of intensification with sodium-glucose co-transporter-2 inhibitors in patients with type 2 diabetes on metformin and sitagliptin vs direct intensification with insulin in the United Kingdom. Diabetes Obes Metab. 2019;21(4):1010-7.
109. Pawaskar M, Bilir SP, Kowal S, Gonzalez C, Rajpathak S, Davies G. Cost-effectiveness of DPP-4 inhibitor and SGLT2 inhibitor combination therapy for type 2 diabetes. Am J Manag Care. 2019;25(5):231-8.
110. Ramos M, Foos V, Ustyugova A, Hau N, Gandhi P, Lamotte M. Cost-Effectiveness Analysis of Empagliflozin in Comparison to Sitagliptin and Saxagliptin Based on Cardiovascular Outcome Trials in Patients with Type 2 Diabetes and Established Cardiovascular Disease. Diabetes Ther. 2019;10(6):2153-67.
111. Bain SC, Hansen BB, Malkin SJP, Nuhoho S, Valentine WJ, Chubb B, et al. Oral Semaglutide Versus Empagliflozin, Sitagliptin and Liraglutide in the UK: Long-Term Cost-Effectiveness Analyses Based on the PIONEER Clinical Trial Programme. Diabetes Ther. 2020;11(1):259-77.
112. Gorgojo-Martinez JJ, Malkin SJP, Martin V, Hallen N, Hunt B. Assessing the cost-effectiveness of a once-weekly GLP-1 analogue versus an SGLT-2 inhibitor in the Spanish setting: Once-weekly semaglutide versus empagliflozin. J Med Econ. 2020;23(2):193-203.
113. Hung A, Jois B, Lugo A, Slejko JF. Cost-effectiveness of diabetes treatment sequences to inform step therapy policies. Am J Manag Care. 2020;26(3):e76-e83.
114. Men P, Liu T, Zhai S. Empagliflozin in Type 2 Diabetes Mellitus Patients with High Cardiovascular Risk: A Model-Based Cost-Utility Analysis in China. Diabetes Metab Syndr Obes. 2020;13:2823-31.
115. Nian H, Wan X, Ma J, Jie F, Wu B. Economic evaluation of dapagliflozin versus metformin in Chinese patients whose diabetes is inadequately controlled with diet and exercise. Cost Eff Resour Alloc. 2020;18:12.
116. Ramos M, Ustyugova A, Hau N, Lamotte M. Cost-effectiveness of empagliflozin compared with liraglutide based on cardiovascular outcome trials in Type II diabetes. J Comp Eff Res. 2020;9(11):781-94.
117. Ramos M, Cummings MH, Ustyugova A, Raza SI, de Silva SU, Lamotte M. Long-Term Cost-Effectiveness Analyses of Empagliflozin Versus Oral Semaglutide, in Addition to Metformin, for the Treatment of Type 2 Diabetes in the UK. Diabetes Ther. 2020;11(9):2041-55.
118. Torre E, Bruno GM, Di Matteo S, Martinotti C, Valentino MC, Bottaro LC, et al. Cost-Utility Analysis of Saxagliptin/Dapagliflozin Versus Gliclazide and Insulin Glargine: Economic Implications of the Outcomes of the CVD-Real Studies I and II. Health Serv Insights. 2020;13:1178632920929982.
119. Van der Linden N, Van Olst S, Nekeman S, Uyl-de Groot CA. The cost-effectiveness of dapagliflozin compared to DPP-4 inhibitors in the treatment of type 2 diabetes mellitus in the Netherlands. Diabet Med. 2020:e14371.
120. McEwan P, Peters JR, Bergenheim K, Currie CJ. Evaluation of the costs and outcomes from changes in risk factors in type 2 diabetes using the Cardiff stochastic simulation cost-utility model (DiabForecaster). Curr Med Res Opin. 2006;22(1):121-9.
121. Palmer AJ, Roze S, Valentine WJ, Minshall ME, Foos V, Lurati FM, et al. The CORE Diabetes Model: Projecting long-term clinical outcomes, costs and cost-effectiveness of interventions in diabetes mellitus (types 1 and 2) to support clinical and reimbursement decision-making. Curr Med Res Opin. 2004;20 Suppl 1:S5-S26.
122. Palmer AJ, Mount Hood 5 Modeling Group, Clarke P, Gray A, Leal J, Lloyd A, et al. Computer modeling of diabetes and its complications: a report on the Fifth Mount Hood challenge meeting. Value Health. 2013;16(4):670-85.
123. Wu B, Ma J, Zhang S, Zhou L, Wu H. Development and validation of a Health Policy Model of Type 2 diabetes in Chinese setting. J Comp Eff Res. 2018;7(8):749-63.
124. Charokopou M, Sabater FJ, Townsend R, Roudaut M, McEwan P, Verheggen BG. Methods applied in cost-effectiveness models for treatment strategies in type 2 diabetes mellitus and their use in Health Technology Assessments: a systematic review of the literature from 2008 to 2013. Curr Med Res Opin. 2016;32(2):207-18.
125. Palmer AJ, Roze S, Valentine WJ, Minshall ME, Foos V, Lurati FM, et al. Validation of the CORE Diabetes Model against epidemiological and clinical studies. Curr Med Res Opin. 2004;20 Suppl 1:S27-S40.
126. McEwan P, Foos V, Palmer JL, Lamotte M, Lloyd A, Grant D. Validation of the IMS CORE Diabetes Model. Value Health. 2014;17(6):714-24.
127. McEwan P, Ward T, Bennett H, Bergenheim K. Validation of the UKPDS 82 risk equations within the Cardiff Diabetes Model. Cost Eff Resour Alloc. 2015;13:12.
128. Clarke P, Gray A, Holman R. Estimating utility values for health states of type 2 diabetic patients using the EQ-5D (UKPDS 62). Med Decis Making. 2002;22(4):340-9.
129. Currie CJ, McEwan P, Peters JR, Patel TC, Dixon S. The routine collation of health outcomes data from hospital treated subjects in the Health Outcomes Data Repository (HODaR): descriptive analysis from the first 20,000 subjects. Value Health. 2005;8(5):581-90.
130. Currie CJ, Morgan CL, Poole CD, Sharplin P, Lammert M, McEwan P. Multivariate models of health-related utility and the fear of hypoglycaemia in people with diabetes. Curr Med Res Opin. 2006;22(8):1523-34.
131. Lee CH, Wu YL, Kuo JF, Chen JF, Chin MC, Hung YJ. Prevalence of diabetic macrovascular complications and related factors from 2005 to 2014 in Taiwan: A nationwide survey. J Formos Med Assoc. 2019;118 Suppl 2:S96-S102.
132. Lin KD, Hsu CC, Ou HY, Wang CY, Chin MC, Shin SJ. Diabetes-related kidney, eye, and foot disease in Taiwan: An analysis of nationwide data from 2005 to 2014. J Formos Med Assoc. 2019;118 Suppl 2:S103-S10.
133. Cherukuri L, Smith MS, Tayek JA. The durability of oral diabetic medications: Time to A1c baseline and a review of common oral medications used by the primary care provider. Endocrinol Diabetes Metab J. 2018;2(3).
134. McGuire DK, Shih WJ, Cosentino F, Charbonnel B, Cherney DZI, Dagogo-Jack S, et al. Association of SGLT2 Inhibitors With Cardiovascular and Kidney Outcomes in Patients With Type 2 Diabetes: A Meta-analysis. JAMA Cardiol. 2020.
135. Adelborg K, Szepligeti S, Sundboll J, Horvath-Puho E, Henderson VW, Ording A, et al. Risk of Stroke in Patients With Heart Failure: A Population-Based 30-Year Cohort Study. Stroke. 2017;48(5):1161-8.
136. Cannon CP, Pratley R, Dagogo-Jack S, Mancuso J, Huyck S, Masiukiewicz U, et al. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. N Engl J Med. 2020;383(15):1425-35.
137. Foley RN, Herzog CA, Collins AJ. Smoking and cardiovascular outcomes in dialysis patients: the United States Renal Data System Wave 2 study. Kidney Int. 2003;63(4):1462-7.
138. Wang HH, Hung SY, Sung JM, Hung KY, Wang JD. Risk of stroke in long-term dialysis patients compared with the general population. Am J Kidney Dis. 2014;63(4):604-11.
139. United States Renal Data System. 2019 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2019.
140. United States Renal Data System. 2020 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases; 2020.
141. Ministry of the Interior. Eliminated specified cause of death abridged life table of Republic of China, 2019 [Internet]. Taipei: Ministry of the Interior; 2020 [cited 2021 Jan 25]. Available from: https://www.moi.gov.tw/cp.aspx?n=12864.
142. Arnott C, Li Q, Kang A, Neuen BL, Bompoint S, Lam CSP, et al. Sodium-Glucose Cotransporter 2 Inhibition for the Prevention of Cardiovascular Events in Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2020;9(3):e014908.
143. Neuen BL, Young T, Heerspink HJL, Neal B, Perkovic V, Billot L, et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2019;7(11):845-54.
144. National Health Insurance Administration. National Health Insurance Drug Reimbursement Prices [Internet]. Taipei: National Health Insurance Administration; 2020 [cited 2021 Jan 25]. Available from: https://www.nhi.gov.tw/Content_List.aspx?n=238507DCFE832EAE.
145. Taiwanese Association of Diabetes Educators. 2019 Diabetes Atlas of Taiwan: Type 2 Diabetes. Taipei: Taiwanese Association of Diabetes Educators; 2019.
146. Lin YJ, Wang CY, Cheng SW, Ko Y. Patient preferences for diabetes-related complications in Taiwan. Curr Med Res Opin. 2019;35(1):7-13.
147. Rajan N, Boye KS, Gibbs M, Lee YJ, Davey P, Ball M, et al. Utilities for Type 2 Diabetes Treatment-Related Attributes in a South Korean and Taiwanese Population. Value Health Reg Issues. 2016;9:67-71.
148. Executive Yuan. National Statistics: National Accounts [Internet]. Taipei: Directorate General of Budget, Accounting and Statistics; 2019 [cited 2021 Jan 25]. Available from: http://statdb.dgbas.gov.tw/pxweb/Dialog/NI.asp.
149. Laiteerapong N, Ham SA, Gao Y, Moffet HH, Liu JY, Huang ES, et al. The Legacy Effect in Type 2 Diabetes: Impact of Early Glycemic Control on Future Complications (The Diabetes & Aging Study). Diabetes Care. 2019;42(3):416-26.
150. Paul SK, Klein K, Thorsted BL, Wolden ML, Khunti K. Delay in treatment intensification increases the risks of cardiovascular events in patients with type 2 diabetes. Cardiovasc Diabetol. 2015;14:100.
151. Matthews DR, Paldanius PM, Proot P, Chiang Y, Stumvoll M, Del Prato S, et al. Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial. Lancet. 2019;394(10208):1519-29.
152. Hutubessy R, Chisholm D, Edejer TT. Generalized cost-effectiveness analysis for national-level priority-setting in the health sector. Cost Eff Resour Alloc. 2003;1(1):8.
153. Clar C, Gill JA, Court R, Waugh N. Systematic review of SGLT2 receptor inhibitors in dual or triple therapy in type 2 diabetes. BMJ Open. 2012;2(5):e001007.
154. Musso G, Gambino R, Cassader M, Pagano G. A novel approach to control hyperglycemia in type 2 diabetes: sodium glucose co-transport (SGLT) inhibitors: systematic review and meta-analysis of randomized trials. Ann Med. 2012;44(4):375-93.
155. Liu J, Li L, Li S, Wang Y, Qin X, Deng K, et al. Sodium-glucose co-transporter-2 inhibitors and the risk of diabetic ketoacidosis in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2020;22(9):1619-27.
156. Singh AK, Singh R. Gender difference in cardiovascular outcomes with SGLT-2 inhibitors and GLP-1 receptor agonist in type 2 diabetes: A systematic review and meta-analysis of cardio-vascular outcome trials. Diabetes Metab Syndr. 2020;14(3):181-7.
157. Karagiannis T, Tsapas A, Athanasiadou E, Avgerinos I, Liakos A, Matthews DR, et al. GLP-1 receptor agonists and SGLT2 inhibitors for older people with type 2 diabetes: A systematic review and meta-analysis. Diabetes Res Clin Pract. 2021;174:108737.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊