|
1. Dao, V.-D., N.H. Vu, and S.J.N.E. Yun, Recent advances and challenges for solar-driven water evaporation system toward applications. 2020. 68: p. 104324. 2. Zhu, M., et al., Plasmonic wood for high‐efficiency solar steam generation. 2018. 8(4): p. 1701028. 3. Wang, X., et al., Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes. 2017. 195: p. 414-425. 4. Politano, A., et al., Photothermal membrane distillation for seawater desalination. 2017. 29(2): p. 1603504. 5. Shang, M., et al., Full-spectrum solar-to-heat conversion membrane with interfacial plasmonic heating ability for high-efficiency desalination of seawater. 2017. 1(1): p. 56-61. 6. Lin, Y., et al., Copper nanoparticles with near-unity, omnidirectional, and broadband optical absorption for highly efficient solar steam generation. 2018. 30(1): p. 015402. 7. Liu, X., et al., Bifunctional, moth-eye-like nanostructured black titania nanocomposites for solar-driven clean water generation. 2018. 10(46): p. 39661-39669. 8. Liu, X., et al., Black titania/graphene oxide nanocomposite films with excellent photothermal property for solar steam generation. 2018. 33(6): p. 674. 9. Zhu, G., et al., Constructing black titania with unique nanocage structure for solar desalination. 2016. 8(46): p. 31716-31721. 10. Ghim, D., et al., Mechanically interlocked 1T/2H phases of MoS2 nanosheets for solar thermal water purification. 2018. 53: p. 949-957. 11. Yang, X., et al., An ultrathin flexible 2D membrane based on single‐walled nanotube–MoS2 hybrid film for high‐performance solar steam generation. 2018. 28(3): p. 1704505. 12. Guo, Z., et al., PEGylated self-growth MoS2 on a cotton cloth substrate for high-efficiency solar energy utilization. 2018. 10(29): p. 24583-24589. 13. Ding, D., et al., Non-stoichiometric MoO 3− x quantum dots as a light-harvesting material for interfacial water evaporation. 2017. 53(50): p. 6744-6747. 14. Chen, R., et al., Magnetically recyclable self-assembled thin films for highly efficient water evaporation by interfacial solar heating. 2017. 7(32): p. 19849-19855. 15. Song, H., et al., Cold vapor generation beyond the input solar energy limit. 2018. 5(8): p. 1800222. 16. Zhu, L., et al., Shape conformal and thermal insulative organic solar absorber sponge for photothermal water evaporation and thermoelectric power generation. 2019. 9(22): p. 1900250. 17. Li, T., et al., Scalable and highly efficient mesoporous wood‐based solar steam generation device: localized heat, rapid water transport. 2018. 28(16): p. 1707134. 18. Kim, K., et al., Mesoporous three-dimensional graphene networks for highly efficient solar desalination under 1 sun illumination. 2018. 10(18): p. 15602-15608. 19. Wang, C., et al., A facile and general strategy to deposit polypyrrole on various substrates for efficient solar‐driven evaporation. 2019. 3(1): p. 1800108. 20. Wu, X., et al., Evaporation above a bulk water surface using an oil lamp inspired highly efficient solar-steam generation strategy. 2018. 6(26): p. 12267-12274. 21. Wu, X., et al., A plant‐transpiration‐process‐inspired strategy for highly efficient solar evaporation. 2017. 1(6): p. 1700046. 22. Yin, X., et al., Macroporous double-network hydrogel for high-efficiency solar steam generation under 1 sun illumination. 2018. 10(13): p. 10998-11007. 23. Zhao, F., et al., Highly efficient solar vapour generation via hierarchically nanostructured gels. 2018. 13(6): p. 489-495. 24. Arunkumar, T., et al., An experimental study on a hemispherical solar still. 2012. 286: p. 342-348. 25. Dwivedi, V. and G.J.D. Tiwari, Experimental validation of thermal model of a double slope active solar still under natural circulation mode. 2010. 250(1): p. 49-55. 26. Kabeel, A., et al., Theoretical and experimental parametric study of modified stepped solar still. 2012. 289: p. 12-20. 27. Sivakumar, V., E.G.J.R. Sundaram, and S.E. Reviews, Improvement techniques of solar still efficiency: A review. 2013. 28: p. 246-264. 28. Neumann, O., et al., Solar vapor generation enabled by nanoparticles. 2013. 7(1): p. 42-49. 29. Guo, A., et al., Diameter effect of gold nanoparticles on photothermal conversion for solar steam generation. 2017. 7(8): p. 4815-4824. 30. Fang, Z., et al., Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. 2013. 13(4): p. 1736-1742. 31. Li, X., et al., Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. 2016. 113(49): p. 13953-13958. 32. Li, Y., et al., Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination. 2017. 41: p. 201-209. 33. Xu, N., et al., Mushrooms as efficient solar steam‐generation devices. 2017. 29(28): p. 1606762. 34. Li, W., et al., Synergistic High‐Rate Solar Steaming and Mercury Removal with MoS2/C@ Polyurethane Composite Sponges. 2018. 8(32): p. 1802108. 35. Derluyn, H., et al., Saline water evaporation and crystallization-induced deformations in building stone: insights from high-resolution neutron radiography. 2019. 128(3): p. 895-913. 36. Finnerty, C., et al., Synthetic graphene oxide leaf for solar desalination with zero liquid discharge. 2017. 51(20): p. 11701-11709. 37. Ito, Y., et al., Multifunctional porous graphene for high‐efficiency steam generation by heat localization. 2015. 27(29): p. 4302-4307. 38. Kou, H., et al., Recyclable CNT-coupled cotton fabrics for low-cost and efficient desalination of seawater under sunlight. 2019. 462: p. 29-38. 39. He, S., et al., Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. 2019. 12(5): p. 1558-1567. 40. Xu, W., et al., Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination. 2018. 8(14): p. 1702884. 41. Hu, R., et al., A Janus evaporator with low tortuosity for long-term solar desalination. 2019. 7(25): p. 15333-15340. 42. Yang, Y., et al., A general salt-resistant hydrophilic/hydrophobic nanoporous double layer design for efficient and stable solar water evaporation distillation. 2018. 5(6): p. 1143-1150. 43. Shi, Y., et al., Solar evaporator with controlled salt precipitation for zero liquid discharge desalination. 2018. 52(20): p. 11822-11830. 44. Xia, Y., et al., Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. 2019. 12(6): p. 1840-1847. 45. Al-Ghouti, M., et al., The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. 2003. 69(3): p. 229-238. 46. Qian, T., J. Li, and Y.J.S.r. Deng, Pore structure modified diatomite-supported PEG composites for thermal energy storage. 2016. 6: p. 32392. 47. Fang, J., et al., Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation. 2017. 5(34): p. 17817-17821. 48. Hubadillah, S.K., et al., Effect of fabrication parameters on physical properties of metakaolin-based ceramic hollow fibre membrane (CHFM). 2016. 42(14): p. 15547-15558. 49. Hubadillah, S.K., et al., Effect of kaolin particle size and loading on the characteristics of kaolin ceramic support prepared via phase inversion technique. 2016. 4(2): p. 164-177. 50. Frost, R.L. and J. Kristof, Raman and infrared spectroscopic studies of kaolinite surfaces modified by intercalation, in Clay surfaces: fundamental and applications. 2004, Elsevier. p. 184-215. 51. Wen, D., Y.J.J.o.t. Ding, and h. transfer, Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). 2004. 18(4): p. 481-485. 52. Kasaeian, A., et al., Performance evaluation and nanofluid using capability study of a solar parabolic trough collector. 2015. 89: p. 368-375. 53. Li, M., et al., Carbon nanotube grafted with polyalcohol and its influence on the thermal conductivity of phase change material. 2014. 83: p. 325-329. 54. Berber, S., Y.-K. Kwon, and D.J.P.r.l. Tománek, Unusually high thermal conductivity of carbon nanotubes. 2000. 84(20): p. 4613. 55. Shi, L., et al., Recyclable Fe3O4@ CNT nanoparticles for high-efficiency solar vapor generation. 2017. 149: p. 401-408. 56. Han, Z. and A.J.P.i.p.s. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. 2011. 36(7): p. 914-944. 57. Li, W., et al., Fe3O4/PVDF-HFP photothermal membrane with in-situ heating for sustainable, stable and efficient pilot-scale solar-driven membrane distillation. 2020. 478: p. 114288. 58. Wu, X., et al., Localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process. 2018. 6(39): p. 18799-18807. 59. Alsharief, A., et al., CNT–PVDF freestanding sheets for direct solar evaporation toward continuous desalination applications. 2020. 55(7): p. 2860-2869. 60. Zou, Y., et al., Flexible and Robust Polyaniline Composites for Highly Efficient and Durable Solar Desalination. 2020. 3(3): p. 2634-2642. 61. Wang, H., et al., Characterization and thermal behavior of kaolin. 2011. 105(1): p. 157-160. 62. Rashad, A.M.J.C. and b. materials, Metakaolin as cementitious material: History, scours, production and composition–A comprehensive overview. 2013. 41: p. 303-318. 63. Kurdyukov, D., et al., Infiltration of silica colloidal crystals with molten salts and semiconductors under capillary forces. 2010. 492(1-2): p. 611-615. 64. Bian, Y., et al., Carbonized Bamboos as Excellent 3D Solar Vapor‐Generation Devices. 2019. 4(4): p. 1800593. 65. Cotruvo, J.A.J.N.i.D.W., Desalination guidelines development for drinking water: background. 2005. 13. 66. Organization, W.H., Guidelines for drinking-water quality. 1993: World Health Organization.
|