跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/21 15:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉哲瑋
研究生(外文):Che-Wei Liu
論文名稱:動態與靜態腰椎後方傳統及皮質骨釘固定器之有限元素分析
論文名稱(外文):Spinal Posterior Fixation by Static and Dynamic Traditional and Cortical Bone Trajectory Screws: A Finite-element Study
指導教授:林上智林上智引用關係
指導教授(外文):Shang-Chih Lin
口試委員:林上智潘如瑜葉祖德王誌謙汪志雄
口試委員(外文):Shang-Chih LinJu-Yu PanTsu-Te YehChih-Chien WangChih-Hsiung Wang
口試日期:2021-01-16
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:應用科技研究所
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:113
中文關鍵詞:腰椎有限元素分析皮質骨軌跡傳統軌跡
外文關鍵詞:Lumbar spineFinite element analysisCortical Bone TrajectoryTraditional Trajectory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 I
Abstract V
致謝 VIII
目錄 IX
圖目錄 XIII
表目錄 XVI
第一章 緒論 1
1-1 研究背景與動機 1
1-3 腰椎骨融合手術植入物介紹 2
1-4 腰椎椎弓根固定器之手術植入軌跡介紹 5
1-5 腰椎動態椎弓根固定器介紹 5
1-5-1 靜態高強度固定器 6
1-5-2 連接桿具橈性式動態固定器 7
1-5-3 連接桿具關節式動態固定器 8
1-5-4 骨釘頭具關節式動態固定器 9
1-6 論文架構 10
第二章 文獻回顧 11
2-1 術後椎間盤手術鄰近節衍生問題 11
2-2 椎弓根固定器之骨釘抗拔出能力 13
2-3 不同手術軌跡對於腰椎活動之影響 14
2-4 動態椎弓根固定器之生物力學效益 15
2-4-1 Dynesys動態椎弓根固定器之臨床結果 16
2-4-2 Dynesys動態椎弓根固定器之體外測試 18
2-4-3 Dynesys動態椎弓根固定器之有限元素分析 20
第三章 研究材料與方法 23
3-1 五節腰椎有限元素模型系統建立 23
3-1-1 幾何外型建立 24
3-1-2 模型材料性質設定 26
3-1-3 模型邊界設定 26
3-1-4 模型介面設定 27
3-1-5 網格優化設定 28
3-1-6 肌肉及韌帶組模型 29
3-1-7 模擬運動之控制法說明 31
3-1-8 模型分析可行性驗證方法 32
3-2 靜態椎弓根固定器不同骨釘植入參數有限元素模型建立 32
3-2-1 骨釘植入參數定義 33
3-2-2 骨釘尺寸規格定義 34
3-2-3 骨釘材料性質設定 34
3-2-4 骨釘與骨頭介面條件設定 35
3-3 腰椎椎弓跟固定器之皮質骨骨釘應力分散策略研究 35
3-3-1 皮質骨釘外徑與螺牙型式分界概念 35
3-3-2 皮質骨釘優化設計分析 35
3-3-3 有限元素模型參數設定 36
3-4 腰椎後方傳統及皮質骨釘動態椎弓根固定器有限元素模型建立 36
3-4-1 傳統與皮質骨骨釘動態固定器模擬 36
3-4-2 傳統與皮質骨骨釘動態固定器模擬 37
3-4-3 動態固定器零件之間及與骨頭介面條件設定 37
3-5 椎籠植入與小面關節切除對傳統及皮質骨釘的影響 38
3-5-1 小面關節切除及椎籠植入模擬 38
3-5-2 椎籠與骨釘材料性質設定 39
3-5-3 植入物與骨頭之介面條件設定 39
3-6 脊椎生物力學結果參數選定 40
3-6-1 椎間盤活動角度 40
3-6-2 椎間盤或椎籠應力 40
3-6-3 小面關節接觸力 41
3-6-4 骨釘應力 41
第四章 結果 42
4-1 腰椎有限元素模型可行性驗證 42
4-2 靜態椎弓根固定器不同骨釘植入參數有限元素模型建立 43
4-2-1 椎間盤活動角度 43
4-2-2 椎間盤應力 45
4-2-3 小面關節接觸力 49
4-2-4 骨釘應力 52
4-3 腰椎椎弓跟固定器之皮質骨骨釘應力分散策略研究 54
4-3-1 椎間盤活動角度 55
4-3-2 椎間盤應力 55
4-3-3 小面關節接觸力 56
4-3-4 骨釘應力 57
4-4 傳統及皮質骨釘靜態與動態固定器探討 58
4-4-1 椎間盤活動角度 58
4-4-2 椎間盤應力 60
4-4-3 小面關節接觸力 63
4-4-4 骨釘應力 65
4-5 小面關節切除與椎籠植入效益探討 68
4-5-1 椎間盤活動角度 68
4-5-2 椎籠應力 71
4-5-3 骨釘應力 72
第五章 討論 75
5-1骨釘手術參數系統性研究 75
5-1-1 骨釘直徑與椎間盤活動效果之關聯性 75
5-1-2 骨釘長度與椎間盤活動效果之關聯性 77
5-1-3 植入軌跡與椎間盤活動效果之關聯性 78
5-2 改良式皮質骨釘之優勢 80
5-3 傳統及皮質骨釘靜態與動態椎弓根固定器效益探討 82
5-4 小面關節切除與椎籠植入效益探討 84
第六章 結論與未來展望 88
6-1 結論 88
6-2 未來展望 90
第七章 參考文獻 91
1. https://drsuortho.pixnet.net/blog/post/44934031.
2. Weinstein JN, Spratt KF, Spengler D, Brick C, Reid S. Spinal pedicle fixation: reliability and validity of roentgenogram-based assessment and surgical factors on successful screw placement. Spine (Phila Pa 1976). 1988;13(9):1012-8.
3. Matsukawa K, Yato Y, Hynes RA, Imabayashi H, Hosogane N, Yoshihara Y, et al. Comparison of Pedicle Screw Fixation Strength Among Different Transpedicular Trajectories: A Finite Element Study. Clinical spine surgery. 2017;30(7):301-7.
4. Matsukawa K, Yato Y, Imabayashi H, Hosogane N, Abe Y, Asazuma T, et al. Biomechanical evaluation of fixation strength among different sizes of pedicle screws using the cortical bone trajectory: what is the ideal screw size for optimal fixation? Acta neurochirurgica. 2016;158(3):465-71.
5. Matsukawa K, Yato Y, Imabayashi H, Hosogane N, Asazuma T, Nemoto K. Biomechanical evaluation of the fixation strength of lumbar pedicle screws using cortical bone trajectory: a finite element study. Journal of neurosurgery Spine. 2015;23(4):471-8.
6. Deshmukh AS, Chauhan PN, Noolvi MN, Chaturvedi K, Ganguly K, Shukla SS, et al. Polymeric micelles: Basic research to clinical practice. International journal of pharmaceutics. 2017;532(1):249-68.
7. Zimmer [http://www.zimmer.com].
8. CY B. Dynamic instrumentation for fusion with Isobar TTL™: biomechanical and clinical aspects. ArgoSpine News & Journal. 2010;22(2):62-66.
9. Bono CM, Kadaba M, Vaccaro AR. Posterior pedicle fixation-based dynamic stabilization devices for the treatment of degenerative diseases of the lumbar spine. Journal of spinal disorders & techniques. 2009;22(5):376-83.
10. Lee CK. Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine (Phila Pa 1976). 1988;13(3):375-7.
11. Schlegel JD, Smith JA, Schleusener RL. Lumbar motion segment pathology adjacent to thoracolumbar, lumbar, and lumbosacral fusions. Spine (Phila Pa 1976). 1996;21(8):970-81.
12. Kuslich SD, Danielson G, Dowdle JD, Sherman J, Fredrickson B, Yuan H, et al. Four-year follow-up results of lumbar spine arthrodesis using the Bagby and Kuslich lumbar fusion cage. Spine (Phila Pa 1976). 2000;25(20):2656-62.
13. Chou WY, Hsu CJ, Chang WN, Wong CY. Adjacent segment degeneration after lumbar spinal posterolateral fusion with instrumentation in elderly patients. Archives of orthopaedic and trauma surgery. 2002;122(1):39-43.
14. Lee CK, Langrana NA. Lumbosacral spinal fusion. A biomechanical study. Spine (Phila Pa 1976). 1984;9(6):574-81.
15. Cunningham BW, Gordon JD, Dmitriev AE, Hu N, McAfee PC. Biomechanical evaluation of total disc replacement arthroplasty: an in vitro human cadaveric model. Spine (Phila Pa 1976). 2003;28(20):S110-7.
16. Weinhoffer SL, Guyer RD, Herbert M, Griffith SL. Intradiscal pressure measurements above an instrumented fusion. A cadaveric study. Spine (Phila Pa 1976). 1995;20(5):526-31.
17. Rohlmann A, Calisse J, Bergmann G, Weber U. Internal spinal fixator stiffness has only a minor influence on stresses in the adjacent discs. Spine (Phila Pa 1976). 1999;24(12):1192-5; discussion 5-6.
18. Chen CS, Cheng CK, Liu CL, Lo WH. Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Medical engineering & physics. 2001;23(7):483-91.
19. Chen CS, Cheng CK, Liu CL. A biomechanical comparison of posterolateral fusion and posterior fusion in the lumbar spine. Journal of spinal disorders & techniques. 2002;15(1):53-63.
20. Phillips FM, Reuben J, Wetzel FT. Intervertebral disc degeneration adjacent to a lumbar fusion. An experimental rabbit model. The Journal of bone and joint surgery British volume. 2002;84(2):289-94.
21. Wiltse LL, Radecki SE, Biel HM, DiMartino PP, Oas RA, Farjalla G, et al. Comparative study of the incidence and severity of degenerative change in the transition zones after instrumented versus noninstrumented fusions of the lumbar spine. Journal of spinal disorders. 1999;12(1):27-33.
22. Cho KS, Kang SG, Yoo DS, Huh PW, Kim DS, Lee SB. Risk factors and surgical treatment for symptomatic adjacent segment degeneration after lumbar spine fusion. Journal of Korean Neurosurgical Society. 2009;46(5):425-30.
23. Park JY, Chin DK, Cho YE. Accelerated L5-S1 Segment Degeneration after Spinal Fusion on and above L4-5 : Minimum 4-Year Follow-Up Results. Journal of Korean Neurosurgical Society. 2009;45(2):81-4.
24. Hirano T, Hasegawa K, Takahashi HE, Uchiyama S, Hara T, Washio T, et al. Structural characteristics of the pedicle and its role in screw stability. Spine (Phila Pa 1976). 1997;22(21):2504-9; discussion 10.
25. Zindrick MR, Wiltse LL, Widell EH, Thomas JC, Holland WR, Field BT, et al. A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clinical orthopaedics and related research. 1986(203):99-112.
26. Santoni BG, Hynes RA, McGilvray KC, Rodriguez-Canessa G, Lyons AS, Henson MA, et al. Cortical bone trajectory for lumbar pedicle screws. The spine journal : official journal of the North American Spine Society. 2009;9(5):366-73.
27. Perez-Orribo L, Kalb S, Reyes PM, Chang SW, Crawford NR. Biomechanics of lumbar cortical screw-rod fixation versus pedicle screw-rod fixation with and without interbody support. Spine (Phila Pa 1976). 2013;38(8):635-41.
28. Chien CY, Kuo YJ, Lin SC, Chuang WH, Luh YP. Kinematic and mechanical comparisons of lumbar Improved fixation using Dynesys and Cosmic systems. Spine (Phila Pa 1976). 2014;39(15):E878-84.
29. Oshino H, Sakakibara T, Inaba T, Yoshikawa T, Kato T, Kasai Y. A biomechanical comparison between cortical bone trajectory fixation and pedicle screw fixation. Journal of orthopaedic surgery and research. 2015;10:125.
30. JJ Y RB, PC M, An HS. Motion Preservation Surgery of the Spine. 3rd ed. 2008.
31. Freudiger S, Dubois G, Lorrain M. Dynamic neutralisation of the lumbar spine confirmed on a new lumbar spine simulator in vitro. Archives of orthopaedic and trauma surgery. 1999;119(3-4):127-32.
32. Stoll TM, Dubois G, Schwarzenbach O. The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2002;11 Suppl 2(Suppl 2):S170-8.
33. Grob D, Benini A, Junge A, Mannion AF. Clinical experience with the Dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine (Phila Pa 1976). 2005;30(3):324-31.
34. Putzier M, Schneider SV, Funk JF, Tohtz SW, Perka C. The surgical treatment of the lumbar disc prolapse: nucleotomy with additional transpedicular dynamic stabilization versus nucleotomy alone. Spine (Phila Pa 1976). 2005;30(5):E109-14.
35. Schnake KJ, Schaeren S, Jeanneret B. Dynamic stabilization in addition to decompression for lumbar spinal stenosis with degenerative spondylolisthesis. Spine (Phila Pa 1976). 2006;31(4):442-9.
36. Beastall J, Karadimas E, Siddiqui M, Nicol M, Hughes J, Smith F, et al. The Dynesys lumbar spinal stabilization system: a preliminary report on positional magnetic resonance imaging findings. Spine (Phila Pa 1976). 2007;32(6):685-90.
37. Schmoelz W, Huber JF, Nydegger T, Dipl I, Claes L, Wilke HJ. Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. Journal of spinal disorders & techniques. 2003;16(4):418-23.
38. Strube P TS, Hoff E, Gross C, Perka C, Putzier M. Dynamic stabilization adjacent to single-level fusion: part I. Biomechanical effects on lumbar spinal motion. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2010;19(12):2171-2180.
39. Niosi CA, Zhu QA, Wilson DC, Keynan O, Wilson DR, Oxland TR. Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 2006;15(6):913-22.
40. Niosi CA, Wilson DC, Zhu Q, Keynan O, Wilson DR, Oxland TR. The effect of dynamic posterior stabilization on facet joint contact forces: an in vitro investigation. Spine (Phila Pa 1976). 2008;33(1):19-26.
41. Cheng BC, Gordon J, Cheng J, Welch WC. Immediate biomechanical effects of lumbar posterior dynamic stabilization above a circumferential fusion. Spine (Phila Pa 1976). 2007;32(23):2551-7.
42. Zander T, Rohlmann A, Burra NK, Bergmann G. Effect of a posterior dynamic implant adjacent to a rigid spinal fixator. Clinical biomechanics (Bristol, Avon). 2006;21(8):767-74.
43. Rohlmann A, Nabil Boustani H, Bergmann G, Zander T. Effect of a pedicle-screw-based motion preservation system on lumbar spine biomechanics: a probabilistic finite element study with subsequent sensitivity analysis. Journal of biomechanics. 2010;43(15):2963-9.
44. Moumene M HJ. Is Posterior Dynamic Stabilization an Option to Avoid Adjacent Segment Decompensation? 2010:207-211. 2010;207-211.
45. Liu CL, Zhong ZC, Shih SL, Hung C, Lee YE, Chen CS. Influence of Dynesys system screw profile on adjacent segment and screw. Journal of spinal disorders & techniques. 2010;23(6):410-7.
46. Liu CL ZZ, Hsu HW, Shih SL, Wang ST, Hung C, Chen CS. :cord pretension of the Dynesys dynamic stabilisation system on the biomechanics of the lumbar spine: a finite element analysis. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2009,. 2011;20(11):1850-1858.
47. Kuslich SD, Ulstrom CL, Michael CJ. The tissue origin of low back pain and sciatica: a report of pain response to tissue stimulation during operations on the lumbar spine using local anesthesia. The Orthopedic clinics of North America. 1991;22(2):181-7.
48. Schwarzer AC, Aprill CN, Derby R, Fortin J, Kine G, Bogduk N. The prevalence and clinical features of internal disc disruption in patients with chronic low back pain. Spine (Phila Pa 1976). 1995;20(17):1878-83.
49. McNally DS, Shackleford IM, Goodship AE, Mulholland RC. In vivo stress measurement can predict pain on discography. Spine (Phila Pa 1976). 1996;21(22):2580-7.
50. Luoma K, Riihimäki H, Raininko R, Luukkonen R, Lamminen A, Viikari-Juntura E. Lumbar disc degeneration in relation to occupation. Scandinavian journal of work, environment & health. 1998;24(5):358-66.
51. Gudavalli MR, Triano JJ. An analytical model of lumbar motion segment in flexion. Journal of manipulative and physiological therapeutics. 1999;22(4):201-8.
52. Yamamoto I, Panjabi MM, Crisco T, Oxland T. Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine (Phila Pa 1976). 1989;14(11):1256-60.
53. Chen CS, Chen WJ, Cheng CK, Jao SH, Chueh SC, Wang CC. Failure analysis of broken pedicle screws on spinal instrumentation. Medical engineering & physics. 2005;27(6):487-96
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊