跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/20 08:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:Degu Lere Keshebo
研究生(外文):Degu Lere Keshebo
論文名稱:溶劑脫層之過渡金屬二硫化物及六方氮化硼應用於製作水處理和氣體分離薄膜
論文名稱(外文):Solvent based exfoliation of transitional metal dichalcogenides and hexagonal boron nitride for membrane applications: Water treatment and gas separation
指導教授:胡蒨傑
指導教授(外文):Chien-Chieh Hu
口試委員:Juin-Yih LaiWei-Song Hung王志逢蔡協致Kueir-Rarn LeeDa Ming WangYing Ling LiuChung Tai-shungChien-Chieh Hu
口試委員(外文):Juin-Yih LaiWei-Song HungChih-Feng WangHsieh-Chih TsaiKueir-Rarn LeeDa Ming WangYing Ling LiuChung Tai-shungChien-Chieh Hu
口試日期:2021-07-16
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:應用科技研究所
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:116
中文關鍵詞:過渡金屬二硫化物六方氮化硼溶劑脫層二維奈米片單寧酸非共價官能化
外文關鍵詞:Transition metal dichalcogenideshexagonal boron nitridesolvent exfoliation2D nanosheetstannic acidnoncovalent functionalization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
由於工業化和環境汙染,環境永續需要高效能分離薄膜。薄膜在惡劣的環境下操作勢必遭遇薄膜污損、塑化和機械性質不足等急需解決問題。近年來,層狀材料的二維奈米片因其有趣的特性和廣泛的應用潛力而引起了人們的興趣,它們所製作的薄膜在環境方面的應用特別令人著迷。本論文探索經由溶劑脫層法產生二維奈米片和不同方法製作的二維奈米片薄膜的性能。光譜學和顯微技術被用於鑑定脫層的二維奈米片和製備的薄膜。研究的第一部分,溶劑 (NMP) 剝離的 WS2 奈米片被用於提升聚醚碸混合基質超濾薄膜的性能,該薄膜藉由相轉化法製備完成。純水通量、HA 和 BSA 截留率被用於研究嵌入的奈米片對混合基質薄膜的形態和性能的影響。混合奈米片薄膜的水通量從 200 L m-2 h-1bar-1 提高到 360 L m-2 h-1bar-1,溶質截留率分別為 89%提高到 98% (BSA) 和 87% 提高到 98% (HA)。 BSA過濾膜的抗污損分析顯示混合基質膜具有量好的抗污損性能。在研究的第二和第三部分, TA用於對TMDs 和 h-BN 進行簡單、環保的水溶液脫層同時進行非共價鍵官能化改質,TA 不僅是帶負電荷的界面活性劑,由於其雙親特性亦會吸附在分層的 TMD 和 h-BN 的二維納米片上,此特性可有效的使TMD 和 h-BN脫層。在第二部分的研究中,使用正電子湮滅光譜和 XRD分析 WSe2、MoSe2 和 MoS2 層狀薄膜的微觀結構和層間距,探討薄膜的微觀結構與其氣體分離機制的關聯性。研究所製備薄膜的 H2/CO2 分離性能超過了 Robeson upper boubd。比較WSe2 與 MoSe2薄膜的氣體分離效能,用 Mo 代替 W 時薄膜的主要氣體分離機制從分子篩變為 Knudsen 擴散。然而,硫屬元素原子的變化不會影響氣體分離機制。在第三部分研究中,層狀的官能化h-BN 納米片薄膜被用於快速的溶劑傳輸和溶質篩選,所製備的薄膜在水和有機溶劑中極其穩定,並且在溶劑傳輸方面表現出足夠的效率,具有出色的溶質篩選和長期抗污損性能。h-BN 納米片薄膜的溶劑快速傳輸和溶質的充足分離效率可能是由於穩定的奈米片間通道和層狀網絡,這賦予薄膜用於分離和純化發展的有利特性。2D 奈米片改善薄膜性能的原因可能是由於表面積增加、表面特性變化(親水性和表面電荷)、晶格對稱性的變化以及納米片的非共價官能化。因此,溶劑基脫層納米片狀材料製作的薄膜有非常廣闊的應用前景。
Due to current industrialization and environmental constraints, a highly permselective membrane is needed for environmental applications. However, membrane fouling, plasticization, and firmness problems have encountered during operation in harsh working environments. Layered materials in their two dimensional (2D) nanosheets have sparked a lot of interest in recent years due to their intriguing properties and wide variety of potential applications. Their application for membrane to the environmental aspects is fascinating. In this dissertation, solvent based exfoliation of 2D nanosheets and different avenues to synthesis membranes in a facial way applied. The exfoliated nanosheets and prepared membranes were characterized using spectroscopic and microscopic techniques. In the first approach, solvent N-methyl-2-pyrrolidone exfoliated nanosheets of WS2 used to improve performance of polyethersulfone mixed matrix ultrafiltration membrane, which was prepared via in phase inversion method. The effect of the embedded nanosheets on morphology and performance of the fabricated membrane investigated in terms of pure water flux, humic acid (HA) and bovine serum albumin (BSA) rejection. The water flux improved from 200 L m-2 h-1bar-1 to 360 L m-2 h-1bar-1 with the solutes rejection 89 to 98 % (BSA) and 87 to 98 (HA) after blending of nanosheets. Fouling resistance of the membranes for BSA filtration revealed that mixed matrix membrane has the best antifouling property. In the second and third approach, a simple, environmental-friendly aqueous exfoliation and noncovalent functionalization of transition metal dichalcogenides (TMDs) and hexagonal boron nitride (h-BN) were applied using tannic acid (TA) for laminar membranes synthesis. To delaminate bulk TMD and h-BN efficiently, TA is not only serves as a negatively charged surfactant but also adsorbs to the delaminated 2D nanosheets of TMD and h-BN owing to its amphiphilic nature. In the second application, the microstructure and interlayer spacing of WSe2, MoSe2, and MoS2 laminar membranes were explored using positron annihilation spectroscopy and X-ray diffraction to correlate membrane with their gas transport mechanism. The H2/CO2 separation performance of the resultant membranes surpasses the Robeson’s upper bound. On comparison of WSe2 with MoSe2, replacing W with Mo changes the dominative gas transport mechanism of the membrane from molecular sieving to Knudsen diffusion. However, a change in the chalcogen atom do not affect the gas transport mechanism. In third application, the functionalized exfoliated h-BN nanosheets laminar membrane used for ultrafast solvent transport and solutes screening. Fascinatingly, the membrane produced is extremely stable in both water and organic solvents, and it transports solvents with enough efficiency, effective solute screening, and long-term antifouling performance. The robust nanochannel and thin laminar networks of the nanosheets give the membrane with favorable qualities for separation and decontamination processes, which may explain the membrane's rapid transport of solvents and high separation efficiency of solutes. The improved performance of membrane using 2D nanosheets may be due to increased surface area, change surface chemistry (hydrophilicity and surface charge), change in lattice symmetry, and noncovalent functionalization of nanosheets. Herein, membrane applications of solvent-based exfoliated nanosheets of layered materials are promising.
Contents page
Acknowledgements v
Abstract vi
Table of Contents x
List of figures xiii
List of tables xviii
List of symbols and abbreviations xix
Chapter 1 Introduction 1
1.1 Why membranes and 2D nanosheets? 1
1.2 Motivation and objectives 4
1.3 Thesis organization and general relationship among the three subjects. 6
Chapter 2 Literature review 8
2.1 Preparation and application of membranes 8
2.2 Properties of 2D layered materials 9
2.3 Synthesis of 2D layered naonsheets 10
2.3.1 Bottom-up approach 11
2.3.2 Top-down approach 12
2.4 Membrane synthesis from 2D nanosheets 16
2.5 Membrane application of 2D nanosheets 17
2.5.1 TMDs and h-BN nanosheets membrane for water treatment and organic solvent filtration. 17
2.5.2 TMDs nanosheets membrane for gas separation 23
Chapter 3 Solvent-exfoliated 2D WS2 for improved performance of polyethersulfone mixed-matrix ultrafiltration membrane for water treatment 27
3.1 Introduction 27
3.2 Experimental Methods 28
3.2.1 Materials 28
3.2.2 Sonication-assisted WS2 liquid phase exfoliation 28
3.2.3 Characterization of exfoliated tungsten disulfide (E-WS2) 2D nanosheets and membrane 29
3.2.4 Preparation of PES/ WS2 2D nanosheets mixed matrix membrane 30
3.2.5 Evaluation of separation performance 30
3.2.6 Anti-fouling of mixed matrix and pristine membranes 31
3.3 Result and discussion 32
3.3.1 Exfoliation and characterization of WS2 2D nanosheets 32
3.3.2. Membrane characterisation 34
3.3.3 Filtration performance of membranes 36
3.4 Conclusions 45
Chapter 4 Effect of composition of tannic acid assisted aqueous exfoliated 2D naosheets transitional metal dichalcogenides membranes in hydrogen separation mechanism. 46
4.1 Introduction 46
4.2 Materials and methods 47
4.2.1 Materials 47
4.2.2 Tannic acid assisted aqueous exfoliation of TMDs. 47
4.2.3 Characterization of 2D nanosheets 49
4.2.4 Membrane characterization 49
4.2.5 Interspace analysis of TMDs nanosheets membranes 50
4.2. 6 Gas permeation measurements 50
4.3 Result and discussion 52
4.3.1 Exfoliation and characterization 52
4.3.2 Membrane preparation 62
4.3.3 Gas transport results 65
4.4 Conclusions 72
Chapter 5 Simultaneous exfoliation and functionalization of hexagonal boron nitride in aqueous phase for ultrafast solvent transport of molecular solute screening membrane. 73
5.1 Introduction 73
5.2 Experimental section 74
5.2.1 Materials 74
5.2.2 Exfoliation of non-covalent functionalized hexagonal boron nitride nanosheets and membrane preparation. 75
5.2.3 Characterization of exfoliated nanosheets and membrane 76
5.2.4 Assessment of separation performance. 76
5.3 Result and discussion 77
5.3.1 Exfoliation and nanosheet characterization 77
5.3.2 Membrane synthesis and characterization. 87
5.3.4 Membrane stability on different supports. 89
5.3.5 Solvent permeance and separation performance of f-BNNs membrane. 94
5.4 Conclusion 100
Chapter 6 General conclusions and future perspective 101
6.1 General conclusions 101
6.2 Future perspective 103
References 104
Publications 115
[1] S. Engels, T. Markus, M. Modigell, L. Singheiser, Oxygen permeation and stability investigations on MIEC membrane materials under operating conditions for power plant processes, Journal of Membrane Science, 370 (2011) 58-69.
[2] D.L. Gin, R.D. Noble, Designing the next generation of chemical separation membranes, Science, 332 (2011) 674-676.
[3] P. Pfromm, W. Koros, Accelerated physical ageing of thin glassy polymer films: evidence from gas transport measurements, Polymer, 36 (1995) 2379-2387.
[4] D.L. Roberts, L. Abraham, Y. Blum, J. Way, Gas separation with glass membranes, in, SRI International, Menlo Park, CA (United States), 1992.
[5] M. Buonomenna, W. Yave, G. Golemme, Some approaches for high performance polymer based membranes for gas separation: block copolymers, carbon molecular sieves and mixed matrix membranes, RSC Advances, 2 (2012) 10745-10773.
[6] H.W. Kim, H.W. Yoon, S.-M. Yoon, B.M. Yoo, B.K. Ahn, Y.H. Cho, H.J. Shin, H. Yang, U. Paik, S. Kwon, Selective gas transport through few-layered graphene and graphene oxide membranes, Science, 342 (2013) 91-95.
[7] T. Hyun, J. Jeong, A. Chae, Y.K. Kim, D.-Y. Koh, 2D-enabled membranes: materials and beyond, BMC Chemical Engineering, 1 (2019) 12.
[8] V. Kochkodan, N. Hilal, A comprehensive review on surface modified polymer membranes for biofouling mitigation, Desalination, 356 (2015) 187-207.
[9] A. Kayvani Fard, G. McKay, A. Buekenhoudt, H. Al Sulaiti, F. Motmans, M. Khraisheh, M. Atieh, Inorganic Membranes: Preparation and application for water treatment and desalination, Materials, 11 (2018) 74.
[10] S. Benfer, U. Popp, H. Richter, C. Siewert, G. Tomandl, Development and characterization of ceramic nanofiltration membranes, Separation and Purification Technology, 22-23 (2001) 231-237.
[11] Y. Yoshino, T. Suzuki, B.N. Nair, H. Taguchi, N. Itoh, Development of tubular substrates, silica based membranes and membrane modules for hydrogen separation at high temperature, Journal of Membrane Science, 267 (2005) 8-17.
[12] Richard W. Baker, Overview of membrane science and technology, in: Membrane Technology and Applications, 2004, pp. 1-14.
[13] F. Tasselli, Membrane preparation techniques, Encyclopedia of Membranes, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015, pp. 1-3.
[14] N. Agoudjil, S. Kermadi, A. Larbot, Synthesis of inorganic membrane by sol–gel process, Desalination, 223 (2008) 417-424.
[15] Z.Y. Yeo, T.L. Chew, P.W. Zhu, A.R. Mohamed, S.-P. Chai, Synthesis and performance of microporous inorganic membranes for CO2 separation: a review, Journal of Porous Materials, 20 (2013) 1457-1475.
[16] W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications, Materials Today, 20 (2017) 116-130.
[17] H. Wang, H. Feng, J. Li, Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage, Small, 10 (2014) 2165-2181.
[18] V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials, Science, 340 (2013) 1226419.
[19] J. Kang, L. Zhang, S.-H. Wei, A unified understanding of the thickness-dependent bandgap transition in hexagonal two-dimensional semiconductors, The journal of physical chemistry letters, 7 (2016) 597-602.
[20] X. Chen, A.R. McDonald, Functionalization of two‐dimensional transition‐metal dichalcogenides, Advanced Materials, 28 (2016) 5738-5746.
[21] D. Gonzalez Ortiz, C. Pochat-Bohatier, J. Cambedouzou, M. Bechelany, P. Miele, Exfoliation of hexagonal boron nitride (h-BN) in liquide phase by ion intercalation, Nanomaterials, 8 (2018) 716.
[22] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS 2: a new direct-gap semiconductor, Physical review letters, 105 (2010) 136805.
[23] J. Wang, G. Li, L. Li, Synthesis strategies about 2D materials, Two-Dimensional materials synthesis, characterization and potential applications; Nayak, PK, Ed, (2016) 1-20.
[24] Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, Synthesis of large‐area MoS2 atomic layers with chemical vapor deposition, Advanced Materials, 24 (2012) 2320-2325.
[25] Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, J. Lou, Large‐area vapor‐phase growth and characterization of MoS2 atomic layers on a SiO2 substrate, Small, 8 (2012) 966-971.
[26] D.J. Late, B. Liu, H.R. Matte, V.P. Dravid, C. Rao, Hysteresis in single-layer MoS2 field effect transistors, ACS nano, 6 (2012) 5635-5641.
[27] M. Yi, Z. Shen, A review on mechanical exfoliation for the scalable production of graphene, Journal of Materials Chemistry A, 3 (2015) 11700-11715.
[28] A. Ambrosi, Z. Sofer, M. Pumera, Lithium intercalation compound dramatically influences the electrochemical properties of exfoliated MoS2, Small, 11 (2015) 605-612.
[29] J. Peng, J. Wu, X. Li, Y. Zhou, Z. Yu, Y. Guo, J. Wu, Y. Lin, Z. Li, X. Wu, Very large-sized transition metal dichalcogenides monolayers from fast exfoliation by manual shaking, Journal of the American Chemical Society, 139 (2017) 9019-9025.
[30] A.Y.S. Eng, A. Ambrosi, Z. Sofer, P. Simek, M. Pumera, Electrochemistry of transition metal dichalcogenides: strong dependence on the metal-to-chalcogen composition and exfoliation method, ACS nano, 8 (2014) 12185-12198.
[31] J. Heising, M.G. Kanatzidis, Exfoliated and restacked MoS2 and WS2: Ionic or neutral species? Encapsulation and ordering of hard electropositive cations, Journal of the American Chemical Society, 121 (1999) 11720-11732.
[32] L. Nurdiwijayanto, R. Ma, N. Sakai, T. Sasaki, Stability and nature of chemically exfoliated MoS2 in aqueous suspensions, Inorganic chemistry, 56 (2017) 7620-7623.
[33] E.P. Nguyen, B.J. Carey, T. Daeneke, J.Z. Ou, K. Latham, S. Zhuiykov, K. Kalantar-zadeh, Investigation of two-solvent grinding-assisted liquid phase exfoliation of layered MoS2, Chemistry of Materials, 27 (2014) 53-59.
[34] L. Sun, H. Huang, X. Peng, Laminar MoS 2 membranes for molecule separation, Chemical communications, 49 (2013) 10718-10720.
[35] J.R. Brent, N. Savjani, P. O'Brien, Synthetic approaches to two-dimensional transition metal dichalcogenide nanosheets, Progress in Materials Science, 89 (2017) 411-478.
[36] J. Shen, Y. He, J. Wu, C. Gao, K. Keyshar, X. Zhang, Y. Yang, M. Ye, R. Vajtai, J. Lou, Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components, Nano letters, 15 (2015) 5449-5454.
[37] J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science, 331 (2011) 568-571.
[38] A. O’Neill, U. Khan, J.N. Coleman, Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size, Chemistry of Materials, 24 (2012) 2414-2421.
[39] A. Jawaid, D. Nepal, K. Park, M. Jespersen, A. Qualley, P. Mirau, L.F. Drummy, R.A. Vaia, Mechanism for liquid phase exfoliation of MoS2, Chemistry of Materials, 28 (2016) 337-348.
[40] R.J. Smith, P.J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O'Neill, G.S. Duesberg, J.C. Grunlan, G.J.A.m. Moriarty, Large‐scale exfoliation of inorganic layered compounds in aqueous surfactant solutions, Advanced Materials, 23 (2011) 3944-3948.
[41] C. Backes, B.M. Szydłowska, A. Harvey, S. Yuan, V. Vega-Mayoral, B.R. Davies, P.-l. Zhao, D. Hanlon, E.J. Santos, M.I. Katsnelson, Production of highly monolayer enriched dispersions of liquid-exfoliated nanosheets by liquid cascade centrifugation, Acs Nano, 10 (2016) 1589-1601.
[42] D. McAteer, Z. Gholamvand, N. McEvoy, A. Harvey, E. O’Malley, G.S. Duesberg, J.N. Coleman, Thickness dependence and percolation scaling of hydrogen production rate in MoS2 nanosheet and nanosheet–carbon nanotube composite catalytic electrodes, ACS nano, 10 (2016) 672-683.
[43] L. Guardia, J.I. Paredes, R. Rozada, S. Villar-Rodil, A. Martínez-Alonso, J.M. Tascón, Production of aqueous dispersions of inorganic graphene analogues by exfoliation and stabilization with non-ionic surfactants, Rsc Advances, 4 (2014) 14115-14127.
[44] C. Chen, J. Wang, D. Liu, C. Yang, Y. Liu, R.S. Ruoff, W. Lei, Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation, Nature Communications, 9 (2018) 1-8.
[45] A. Achari, S. Sahana, M.J.E. Eswaramoorthy, E. Science, High performance MoS2 membranes: effects of thermally driven phase transition on CO2 separation efficiency, Energy and Environmental Science, 9 (2016) 1224-1228.
[46] X. Hai, K. Chang, H. Pang, M. Li, P. Li, H. Liu, L. Shi, J. Ye, Engineering the edges of MoS2 (WS2) crystals for direct exfoliation into monolayers in polar micromolecular solvents, Journal of the American Chemical Society, 138 (2016) 14962-14969.
[47] L. Ries, E. Petit, T. Michel, C.C. Diogo, C. Gervais, C. Salameh, M. Bechelany, S. Balme, P. Miele, N. Onofrio, D. Voiry, Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization, Nature Materials, 18 (2019) 1112-1117.
[48] Z. Wang, Q. Tu, S. Zheng, J.J. Urban, S. Li, B. Mi, Understanding the aqueous stability and filtration capability of MoS2 membranes, Nano Letters, 17 (2017) 7289-7298.
[49] H.M. Tham, S. Japip, T.S. Chung, WS2 deposition on cross-linked polyacrylonitrile with synergistic transformation to yield organic solvent nanofiltration membranes, Journal of Membrane Science, (2019) 117219.
[50] L. Sun, Y. Ying, H. Huang, Z. Song, Y. Mao, Z. Xu, X. Peng, Ultrafast molecule separation through layered WS(2) nanosheet membranes, ACS Nano, 8 (2014) 6304-6311.
[51] L. Qiu, X. Zhang, W. Yang, Y. Wang, G.P. Simon, D. Li, Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration, Chemical Communications, 47 (2011) 5810-5812.
[52] M. Deng, K. Kwac, M. Li, Y. Jung, H.G. Park, Stability, molecular sieving, and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide, Nano letters, 17 (2017) 2342-2348.
[53] S. Zheng, Q. Tu, J.J. Urban, S. Li, B. Mi, Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms, ACS nano, 11 (2017) 6440-6450.
[54] M. Hu, B. Mi, Enabling graphene oxide nanosheets as water separation membranes, Environmental Science & Technology, 47 (2013) 3715-3723.
[55] D. Lembke, S. Bertolazzi, A. Kis, Single-layer MoS2 electronics, Accounts of chemical research, 48 (2015) 100-110.
[56] S. Abdikheibari, W. Lei, L.F. Dumée, N. Milne, K.J. Baskaran, Thin film nanocomposite nanofiltration membranes from amine functionalized-boron nitride/polypiperazine amide with enhanced flux and fouling resistance, Journal of Material Chemistry A, 6 (2018) 12066-12081.
[57] D. Gonzalez-Ortiz, C. Pochat-Bohatier, S. Gassara, J. Cambedouzou, M. Bechelany, P.J. Miele, Development of novel h-BNNS/PVA porous membranes via Pickering emulsion templating, Green Chemistry, 20 (2018) 4319-4329.
[58] A. Hafeez, Z.A. Karim, A.F. Ismail, A. Samavati, K.A.M. Said, S.J. Selambakkannu, Functionalized boron nitride composite ultrafiltration membrane for dye removal from aqueous solution, Journal of Membrane Science, 612 (2020) 118473.
[59] S.C. O’Hern, M.S. Boutilier, J. C. Idrobo, Y. Song, J. Kong, T. Laoui, M. Atieh, R. Karnik, Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes, Nano letters, 14 (2014) 1234-1241.
[60] G. Liu, W. Jin, N. Xu, Graphene-based membranes, Chemical Society Reviews, 44 (2015) 5016-5030.
[61] W. Lei, D. Portehault, D. Liu, S. Qin, Y. Chen, Porous boron nitride nanosheets for effective water cleaning, Nature Communications, 4 (2013) 1-7.
[62] T.A. Otitoju, A.L. Ahmad, B.S. Ooi, Recent advances in hydrophilic modification and performance of polyethersulfone (PES) membrane via additive blending, RSC Advances, 8 (2018) 22710-22728.
[63] M. Peyravi, A. Rahimpour, M. Jahanshahi, A. Javadi, A. Shockravi, Tailoring the surface properties of PES ultrafiltration membranes to reduce the fouling resistance using synthesized hydrophilic copolymer, Microporous and Mesoporous Materials, 160 (2012) 114-125.
[64] A. Rahimpour, S.S. Madaeni, Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: Preparation, morphology, performance and antifouling properties, Journal of Membrane Science, 305 (2007) 299-312.
[65] V. Vatanpour, S.S. Madaeni, A.R. Khataee, E. Salehi, S. Zinadini, H.A. Monfared, TiO2 embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance, Desalination, 292 (2012) 19-29.
[66] H. Wu, J. Mansouri, V. Chen, Silica nanoparticles as carriers of antifouling ligands for PVDF ultrafiltration membranes, Journal of Membrane Science, 433 (2013) 135-151.
[67] Y. Li, S. Yang, K. Zhang, B. Van der Bruggen, Thin film nanocomposite reverse osmosis membrane modified by two dimensional laminar MoS2 with improved desalination performance and fouling-resistant characteristics, Desalination, 454 (2019) 48-58.
[68] M.S.S.A. Saraswathi, D. Rana, P. Vijayakumar, S. Alwarappan, A. Nagendran, Tailored PVDF nanocomposite membranes using exfoliated MoS2 nanosheets for improved permeation and antifouling performance, New Journal of Chemistry, 41 (2017) 14315-14324.
[69] H. Li, Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H.J. Ploehn, Y. Bao, M. Yu, Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation, Science, 342 (2013) 95-98.
[70] C. Chi, X. Wang, Y. Peng, Y. Qian, Z. Hu, J. Dong, D. Zhao, Facile preparation of graphene oxide membranes for gas separation, Chemistry of Materials, 28 (2016) 2921-2927.
[71] D. Wang, Z. Wang, L. Wang, L. Hu, J. Jin, Ultrathin membranes of single-layered MoS2 nanosheets for high-permeance hydrogen separation, Nanoscale, 7 (2015) 17649-17652.
[72] M. Ostwal, D.B. Shinde, X. Wang, I. Gadwal, Z. Lai, Graphene oxide – molybdenum disulfide hybrid membranes for hydrogen separation, Journal of Membrane Science, 550 (2018) 145-154.
[73] Y. Shen, H. Wang, X. Zhang, Y. Zhang, MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method, ACS applied materials & interfaces, 8 (2016) 23371-23378.
[74] M. Yu, H.H. Funke, R.D. Noble, J.L. Falconer, H2 separation using defect-free, inorganic composite membranes, Journal of the American Chemical Society, 133 (2011) 1748-1750.
[75] Y. Peng, Y. Li, Y. Ban, H. Jin, W. Jiao, X. Liu, W. Yang, Metal-organic framework nanosheets as building blocks for molecular sieving membranes, Science, 346 (2014) 1356-1359.
[76] Y. Li, F. Liang, H. Bux, W. Yang, J. Caro, Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation, Journal of Membrane Science, 354 (2010) 48-54.
[77] H. Suda, K. Haraya, Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide, The Journal of Physical Chemistry B, 101 (1997) 3988-3994.
[78] R.M. De Vos, H. Verweij, High-selectivity, high-flux silica membranes for gas separation, Science, 279 (1998) 1710-1711.
[79] D. Wang, Z. Wang, L. Wang, L. Hu, J.J.N. Jin, Ultrathin membranes of single-layered MoS2 nanosheets for high-permeance hydrogen separation, Nanoscale, 7 (2015) 17649-17652.
[80] L.M. Robeson, The upper bound revisited, Journal of Membrane Science, 320 (2008) 390-400.
[81] R. Jha, P.K. Guha, An effective liquid-phase exfoliation approach to fabricate tungsten disulfide into ultrathin two-dimensional semiconducting nanosheets, Journal of Materials Science, 52 (2017) 7256-7268.
[82] S. Zinadini, A.A. Zinatizadeh, M. Rahimi, V. Vatanpour, H. Zangeneh, Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates, Journal of Membrane Science, 453 (2014) 292-301.
[83] Y. Zhang, X. Cheng, X. Jiang, J.J. Urban, C.H. Lau, S. Liu, L. Shao, Robust natural nanocomposites realizing unprecedented ultrafast precise molecular separations, Materials Today, 36 (2020) 40-47.
[84] L. Jiang, J. Yun, Y. Wang, H. Yang, Z. Xu, Z.-l. Xu, High-flux, anti-fouling dendrimer grafted PAN membrane: Fabrication, performance and mechanisms, Journal of Membrane Science, 596 (2020).
[85] K.A. Gebru, C. Das, Removal of bovine serum albumin from wastewater using fouling resistant ultrafiltration membranes based on the blends of cellulose acetate, and PVP-TiO2 nanoparticles, Journal of Environtal Management, 200 (2017) 283-294.
[86] N. Dong, Y. Li, Y. Feng, S. Zhang, X. Zhang, C. Chang, J. Fan, L. Zhang, J.J. Wang, Optical limiting and theoretical modelling of layered transition metal dichalcogenide nanosheets, Scientific Reports, 5 (2015) 1-10.
[87] A. Berkdemir, H.R. Gutiérrez, A.R. Botello-Méndez, N. Perea-López, A.L. Elías, C. I. Chia, B. Wang, V.H. Crespi, F. López-Urías, J. C. Charlier, H. Terrones, M. Terrones, Identification of individual and few layers of WS2 using Raman Spectroscopy, Scientific Reports, 3 (2013).
[88] J. Yang, J. U. Lee, H. Cheong, Excitation energy dependence of Raman spectra of few-layer WS2, FlatChem, 3 (2017) 64-70.
[89] S. Karunakaran, S. Pandit, B. Basu, M. De, Simultaneous Exfoliation and Functionalization of 2H-MoS2 by Thiolated Surfactants: Applications in enhanced antibacterial activity, Journal of the American Chemical Society, 140 (2018) 12634-12644.
[90] H. Zhang, D. Taymazov, M.-P. Li, Z.-H. Huang, W.-L. Liu, X. Zhang, X.-H. Ma, Z.-L. Xu, Construction of MoS2 composite membranes on ceramic hollow fibers for efficient water desalination, Journal of Membrane Science, 592 (2019) 117369.
[91] Z. X. Low, J. Ji, D. Blumenstock, Y. M. Chew, D. Wolverson, D. Mattia, Fouling resistant 2D boron nitride nanosheet – PES nanofiltration membranes, Journal of Membrane Science, 563 (2018) 949-956.
[92] A. Abdel-Karim, S. Leaper, M. Alberto, A. Vijayaraghavan, X. Fan, S.M. Holmes, E.R. Souaya, M.I. Badawy, P. Gorgojo, High flux and fouling resistant flat sheet polyethersulfone membranes incorporated with graphene oxide for ultrafiltration applications, Chemical Engineering Journal, 334 (2018) 789-799.
[93] I.M. Wienk, R.M. Boom, M.A.M. Beerlage, A.M.W. Bulte, C.A. Smolders, H. Strathmann, Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers, Journal of Membrane Science, 113 (1996) 361-371.
[94] L. Shen, X. Bian, X. Lu, L. Shi, Z. Liu, L. Chen, Z. Hou, K. Fan, Preparation and characterization of ZnO/polyethersulfone (PES) hybrid membranes, Desalination, 293 (2012) 21-29.
[95] J.J. Song, Y. Huang, S.-W. Nam, M. Yu, J. Heo, N. Her, J.R.V. Flora, Y. Yoon, Ultrathin graphene oxide membranes for the removal of humic acid, Separation and Purification Technology, 144 (2015) 162-167.
[96] A. Mehrparvar, A. Rahimpour, M. Jahanshahi, Modified ultrafiltration membranes for humic acid removal, Journal of the Taiwan Institute of Chemical Engineers, 45 (2014) 275-282.
[97] A. Razmjou, J. Mansouri, V. Chen, The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes, Journal of Membrane Science, 378 (2011) 73-84.
[98] Z. X. Low, A. Razmjou, K. Wang, S. Gray, M. Duke, H. Wang, Effect of addition of two-dimensional ZIF-L nanoflakes on the properties of polyethersulfone ultrafiltration membrane, Journal of Membrane Science, 460 (2014) 9-17.
[99] Y. Orooji, M. Faghih, A. Razmjou, J. Hou, P. Moazzam, N. Emami, M. Aghababaie, F. Nourisfa, V. Chen, W. Jin, Nanostructured mesoporous carbon polyethersulfone composite ultrafiltration membrane with significantly low protein adsorption and bacterial adhesion, Carbon, 111 (2017) 689-704.
[100] J.M. Luque-Alled, A. Abdel-Karim, M. Alberto, S. Leaper, M. Perez-Page, K. Huang, A. Vijayaraghavan, A.S. El-Kalliny, S.M. Holmes, P. Gorgojo, Polyethersulfone membranes: From ultrafiltration to nanofiltration via the incorporation of APTS functionalized-graphene oxide, Separation and Purification Technology, 230 (2020) 115836.
[101] S. Karunakaran, S. Pandit, B. Basu, M. De, Simultaneous exfoliation and functionalization of 2H-MoS2 by thiolated surfactants: Applications in enhanced antibacterial activity, Journal of the American Chemical Society, 140 (2018) 12634-12644.
[102] X. Zhang, Z. Lai, Q. Ma, H. Zhang, Novel structured transition metal dichalcogenide nanosheets, Chem Soc Rev, 47 (2018) 3301-3338.
[103] K. Leng, Z. Chen, X. Zhao, W. Tang, B. Tian, C.T. Nai, W. Zhou, K.P. Loh, Phase restructuring in transition metal dichalcogenides for highly stable energy storage, ACS Nano, 10 (2016) 9208-9215.
[104] U. Patil, N.M. Caffrey, Composition dependence of the charge-driven phase transition in group-VI transition metal dichalcogenides, Physical Review B, 100 (2019).
[105] X. Hai, K. Chang, H. Pang, M. Li, P. Li, H. Liu, L. Shi, J. Ye, Engineering the edges of MoS2 (WS2) crystals for direct exfoliation into monolayers in polar micromolecular solvents, Journal of the American Chemical Society, 138 (2016) 14962-14969.
[106] E.T. Gizaw, H. H. Yeh, J.P. Chu, C. C. Hu, Fabrication and characterization of nitrogen selective thin-film metallic glass/polyacrylonitrile composite membrane for gas separation, Separation and Purification Technology, 237 (2020) 116340.
[107] S.K. Sharma, P.K. Pujari, Role of free volume characteristics of polymer matrix in bulk physical properties of polymer nanocomposites: A review of positron annihilation lifetime studies, Progress in Polymer Science, 75 (2017) 31-47.
[108] M. Sadrzadeh, M. Amirilargani, K. Shahidi, T. Mohammadi, Gas permeation through a synthesized composite PDMS/PES membrane, Journal of Membrane Science, 342 (2009) 236-250.
[109] P.F. Zito, A. Caravella, A. Brunetti, E. Drioli, G. Barbieri, Knudsen and surface diffusion competing for gas permeation inside silicalite membranes, Journal of Membrane Science, 523 (2017) 456-469.
[110] J.H. Shin, H.J. Yu, H. An, A.S. Lee, S.S. Hwang, S.Y. Lee, J.S. Lee, Rigid double-stranded siloxane-induced high-flux carbon molecular sieve hollow fiber membranes for CO2/CH4 separation, Journal of Membrane Science, 570-571 (2019) 504-512.
[111] C. Zhang, D. F. Hu, J. W. Xu, M. Q. Ma, H. Xing, K. Yao, J. Ji, Z. K. Xu, Polyphenol-assisted exfoliation of transition metal dichalcogenides into nanosheets as photothermal nanocarriers for enhanced antibiofilm activity, ACS Nano, 12 (2018) 12347-12356.
[112] G. Guan, S. Zhang, S. Liu, Y. Cai, M. Low, C.P. Teng, I.Y. Phang, Y. Cheng, K.L. Duei, B.M. Srinivasan, Y. Zheng, Y. W. Zhang, M.Y. Han, Protein induces layer-by-layer exfoliation of transition metal dichalcogenides, Journal of the American Chemical Society, 137 (2015) 6152-6155.
[113] R. Woodward, R. Howe, T. Runcorn, G. Hu, F. Torrisi, E. Kelleher, T.J.O.e. Hasan, Wideband saturable absorption in few-layer molybdenum diselenide (MoSe2) for Q-switching Yb-, Er-and Tm-doped fiber lasers, Optics Express, 23 (2015) 20051-20061.
[114] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D.R. Zahn, Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2, Optics Express, 21 (2013) 4908-4916.
[115] G. Cunningham, M. Lotya, C.S. Cucinotta, S. Sanvito, S.D. Bergin, R. Menzel, M.S. Shaffer, J.N. Coleman, Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds, ACS nano, 6 (2012) 3468-3480.
[116] P. Han, Creating Optoelectronic Devices From Atomically Thin Materials Grown by Chemical Vapor Deposition, in, Georgetown University, 2019.
[117] Y. Su, D. Liu, G. Yang, Q. Han, Y. Qian, Y. Liu, L. Wang, J.M. Razal, W.J. Lei, Transition metal dichalcogenides (TMDs) membranes with ultrasmall nanosheets for ultrafast molecule separation, ACS Applied Materials and Interfaces, 12 (2020) 45453–45459.
[118] C. Backes, T.M. Higgins, A. Kelly, C. Boland, A. Harvey, D. Hanlon, J.N. Coleman, Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation, Chemistry of Materials, 29 (2017) 243-255.
[119] B. Sapkota, W. Liang, A. VahidMohammadi, R. Karnik, A. Noy, M.J.N.C. Wanunu, High permeability sub-nanometre sieve composite MoS2 membranes, Nature Communications, 11 (2020) 1-9.
[120] C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G.-H. Nam, M. Sindoro, H. Zhang, Recent advances in ultrathin two-dimensional nanomaterials, Chemical Reviews, 117 (2017) 6225-6331.
[121] M. Samadi, N. Sarikhani, M. Zirak, H. Zhang, H.-L. Zhang, A.Z. Moshfegh, Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives, Nanoscale Horizons, 3 (2018) 90-204.
[122] Z. Gholamvand, D. McAteer, C. Backes, N. McEvoy, A. Harvey, N.C. Berner, D. Hanlon, C. Bradley, I. Godwin, A. Rovetta, Comparison of liquid exfoliated transition metal dichalcogenides reveals MoSe2 to be the most effective hydrogen evolution catalyst, Nanoscale, 8 (2016) 5737-5749.
[123] W. Hirunpinyopas, E. Prestat, S.D. Worrall, S.J. Haigh, R.A. Dryfe, M.A. Bissett, Desalination and nanofiltration through functionalized laminar MoS2 membranes, ACS nano, 11 (2017) 11082-11090.
[124] L. Wang, M.S. Boutilier, P.R. Kidambi, D. Jang, N.G. Hadjiconstantinou, R. Karnik, Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes, Nature Nanotechnology, 12 (2017) 509.
[125] H. Du, J. Li, J. Zhang, G. Su, X. Li, Y. Zhao, Separation of hydrogen and nitrogen gases with porous graphene membrane, The Journal of Physical Chemistry C, 115 (2011) 23261-23266.
[126] D. Nanda, K.-L. Tung, W.-S. Hung, C.-H. Lo, Y.-C. Jean, K.-R. Lee, C.-C. Hu, J.-Y. Lai, Characterization of fouled nanofiltration membranes using positron annihilation spectroscopy, Journal of Membrane Science, 382 (2011) 124-134.
[127] H. Suda, K. Haraya, Gas permeation through micropores of carbon molecular sieve membranes derived from Kapton polyimide, Journal of Physics and Chemistry B, 101 (1997) 3988-3994.
[128] Y. Huang, E. Sutter, N.N. Shi, J. Zheng, T. Yang, D. Englund, H.-J. Gao, P. Sutter, Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials, ACS Nano, 9 (2015) 10612-10620.
[129] J. Yu, J. Li, W. Zhang, H. Chang, Synthesis of high quality two-dimensional materials via chemical vapor deposition, Chemical Science, 6 (2015) 6705-6716.
[130] K.-K. Liu, W. Zhang, Y. H. Lee, Y. C. Lin, M. T. Chang, C. Y. Su, C. S. Chang, H. Li, Y. Shi, H. Zhang, Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates, Nano Letter, 12 (2012) 1538-1544.
[131] A. Sumiyoshi, H. Hyodo, K. Kimura, Li-intercalation into hexagonal boron nitride, Journal of Physics and Chemistry of Solids, 71 (2010) 569-571.
[132] C. Zhi, Y. Bando, C. Tang, H. Kuwahara, D. Golberg, Large‐scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties, Advanced Materials, 21 (2009) 2889-2893.
[133] J.H. Warner, M.H. Rummeli, A. Bachmatiuk, B. Buchner, Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation, ACS Nano, 4 (2010) 1299-1304.
[134] K. G. Zhou, N. N. Mao, H. X. Wang, Y. Peng, H. L. Zhang, A Mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues, Angewandte Chemie, 50 (2011) 10839-10842.
[135] H. Ye, T. Lu, C. Xu, B. Han, N. Meng, L. Xu, Liquid‐phase exfoliation of hexagonal boron nitride into boron nitride nanosheets in common organic solvents with hyperbranched polyethylene as stabilizer, Macromolcular Chemistry and Physics, 219 (2018) 1700482.
[136] W. Lei, V.N. Mochalin, D. Liu, S. Qin, Y. Gogotsi, Y. Chen, Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization, Nature Communications, 6 (2015) 8849.
[137] S. Zhao, S. Xie, Z. Zhao, J. Zhang, L. Li, Z.J.A.S.C. Xin, Green and high-efficiency production of graphene by tannic acid-assisted exfoliation of graphite in water, ACS Sustainable Chemistry and Engineering, 6 (2018) 7652-7661.
[138] S.T. Kassa, C.C. Hu, D.L. Keshebo, M. Belle Marie Ang, J.Y. Lai, J.P. Chu, Surface modification of high-rejection ultrafiltration membrane with antifouling capability using activated oxygen treatment and metallic glass deposition, Applied Surface Science, 529 (2020) 147131.
[139] S. Ravula, J.B. Essner, G.A. Baker, Kitchen‐Inspired Nanochemistry: Dispersion, exfoliation, and hybridization of functional MoS2 nanosheets using culinary hydrocolloids, ChemNanoMat, 1 (2015) 167-177.
[140] P. Tao, S. Yao, F. Liu, B. Wang, F. Huang, M. Wang, Recent advances in exfoliation techniques of layered and non-layered materials for energy conversion and storage, Journal of Material Chemistry A, 7 (2019) 23512-23536.
[141] A. O’Neill, U. Khan, J.N. Coleman, Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size, Chemistry of Mateerials 24 (2012) 2414-2421.
[142] P. Turner, M. Hodnett, R. Dorey, J.D. Carey, Controlled sonication as a route to in-situ graphene flake size control, Scientific Reports, 9 (2019) 8710.
[143] B. Zhang, Q. Wu, H. Yu, C. Bulin, H. Sun, R. Li, X. Ge, R. Xing, High-efficient liquid exfoliation of boron nitride nanosheets using aqueous solution of alkanolamine, Nanoscale Research Letters, 12 (2017) 596.
[144] Y. Wang, Z.X. Low, S. Kim, H. Zhang, X. Chen, J. Hou, J.G. Seong, Y.M. Lee, G.P. Simon, C.H.J.A.C. Davies, Functionalized boron nitride nanosheets: a thermally rearranged polymer nanocomposite membrane for hydrogen separation, Angewandte Chemie, 130 (2018) 16288-16293.
[145] J. Shim, H.J. Kim, B.G. Kim, Y.S. Kim, D.-G. Kim, J.-C. Lee, 2D boron nitride nanoflakes as a multifunctional additive in gel polymer electrolytes for safe, long cycle life and high rate lithium metal batteries, Energy and Environmental Science, 10 (2017) 1911-1916.
[146] Y. Liang, D. Wu, X. Feng, K.J. Müllen, Dispersion of graphene sheets in organic solvent supported by ionic interactions, Advanced Materilas, 21 (2009) 1679-1683.
[147] Y. Chen, X. Zhang, P. Yu, Y.J. Ma, Stable dispersions of graphene and highly conducting graphene films: a new approach to creating colloids of graphene monolayers, Chemical Communication, (2009) 4527-4529.
[148] M.A. Pantoja-Castro, H.J.González-Rodríguez, Study by infrared spectroscopy and thermogravimetric analysis of tannins and tannic acid, Revista latinoamericana de química, 39 (2011) 107-112.
[149] K. Deshmukh, G.M. Joshi, Embedded capacitor applications of graphene oxide reinforced poly (3, 4-ethylenedioxythiophene)-tetramethacrylate (PEDOT-TMA) composites, Journal of Materials Science: Materials in Electronics, 26 (2015) 5896-5909.
[150] F. Lu, F. Wang, W. Gao, X. Huang, X. Zhang, Y.J. Li, Aqueous soluble boron nitride nanosheets via anionic compound-assisted exfoliation, Ingenta Connect, 3 (2013) 144-150.
[151] C. Zhi, Y. Bando, C. Tang, S. Honda, K. Sato, H. Kuwahara, D.J. Golberg, Characteristics of boron nitride nanotube–polyaniline composites, Angewandte Chemie, 117 (2005) 8143-8146.
[152] R.V. Gorbachev, I. Riaz, R.R. Nair, R. Jalil, L. Britnell, B.D. Belle, E.W. Hill, K.S. Novoselov, K. Watanabe, T.Taniguchi, Hunting for monolayer boron nitride: optical and Raman signatures, Small, 7 (2011) 465-468.
[153] D. Bollas, P. Pappas, J. Parthenios, C.J. Galiotis, Stress generation by shape memory alloy wires embedded in polymer composites, Acta Materialia, 55 (2007) 5489-5499.
[154] Y. Kubota, K. Watanabe, O. Tsuda, T.J. Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure, Science, 317 (2007) 932-934.
[155] Q. Weng, X. Wang, C. Zhi, Y. Bando, D.J. Golberg, Boron nitride porous microbelts for hydrogen storage, ACS nano, 7 (2013) 1558-1565.
[156] B. Singh, G. Kaur, P. Singh, K. Singh, B. Kumar, A. Vij, M. Kumar, R. Bala, R. Meena, A.J. Singh, Nanostructured boron nitride with high water dispersibility for boron neutron capture therapy, Scientific Reports, 6 (2016) 35535.
[157] M. Guan, L. Hao, L. Chen, F. Gao, S. Qiu, H. Zhou, H. Chen, X. Zhou, Facile mechanical-induced functionalization of hexagonal boron nitride and its application as vehicles for antibacterial essential oil, ACS Sustainable Chemistry & Engineering, 8 (2020) 15120-15133.
[158] Y.-K. Lin, R.-S. Chen, T.-C. Chou, Y.-H. Lee, Y.-F. Chen, K.-H. Chen, L.-C. Chen, Thickness-dependent binding energy shift in few-layer MoS2 grown by chemical vapor deposition, ACS applied materials & interfaces, 8 (2016) 22637-22646.
[159] M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H.J.N.c. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nature Chemistry, 5 (2013) 263-275.
[160] A.A. Muhabie, C. C. Cheng, J.-J. Huang, Z.-S. Liao, S. Y. Huang, C. W. Chiu, D. J. Lee, Non-covalently functionalized boron nitride mediated by a highly self-assembled supramolecular polymer, Chemistry of Materials, 29 (2017) 8513-8520.
[161] T. Morishita, H.J. Okamoto, Facile exfoliation and noncovalent superacid functionalization of boron nitride nanosheets and their use for highly thermally conductive and electrically insulating polymer nanocomposites, ACS applied materials & interfaces, 8 (2016) 27064-27073.
[162] Z. Gao, C. Zhi, Y. Bando, D. Golberg, T.J. Serizawa, interfaces, Noncovalent functionalization of disentangled boron nitride nanotubes with flavin mononucleotides for strong and stable visible-light emission in aqueous solution, ACS applied materials & interfaces 3 (2011) 627-632.
[163] L.H. Li, A.M. Glushenkov, S.K. Hait, P. Hodgson, Y.J. Chen, High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil, Scientific Reports, 4 (2014) 1-6.
[164] M. Du, Y. Wu, X.J. Hao, A facile chemical exfoliation method to obtain large size boron nitride nanosheets, CrystEngComm, 15 (2013) 1782-1786.
[165] Y. Xue, Q. Liu, G. He, K. Xu, L. Jiang, X. Hu, J.J. Hu, Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets, Nanoscale research letters, 8 (2013) 49.
[166] A.S. Singh, S. Halder, A. Kumar, P. Chen, Tannic acid functionalization of bamboo micron fibes: Its capability to toughen epoxy based biocomposites, Materials Chemistry and Physics, 243 (2020) 122112.
[167] A.S. Singh, S. Halder, J. Wang, M.A. Imam, P.J.Chen, Tannic acid intermediated surface functionalization of bamboo micron fibers to enhance mechanical performance of hybrid GFRP, Composites Part B, 177 (2019) 107322.
[168] W. Wei, J. Liu, J. Jiang, Computational design of 2D covalent-organic framework membranes for organic solvent nanofiltration, ACS Sustainable Chemistry & Engineering, 7 (2019) 1734-1744.
[169] T.C. Merkel, H. Lin, X. Wei, R. Baker, Power plant post-combustion carbon dioxide capture: An opportunity for membranes, Journal of Membrane Science, 359 (2010) 126-139.
[170] J. Lin, W. Ye, H. Zeng, H. Yang, J. Shen, S. Darvishmanesh, P. Luis, A. Sotto, B. Van der Bruggen, Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes, Journal of Membrane Science, 477 (2015) 183-193.
[171] X. Wang, H. Wang, Y. Wang, J. Gao, J. Liu, Y. Zhang, Hydrotalcite/graphene oxide hybrid nanosheets functionalized nanofiltration membrane for desalination, Desalination, 451 (2019) 209-218.
[172] B. Lian, J. Deng, G. Leslie, H. Bustamante, V. Sahajwalla, Y. Nishina, R.K. Joshi, Surfactant modified graphene oxide laminates for filtration, Carbon, 116 (2017) 240-245.
[173] P. Zhang, J. L. Gong, G.M. Zeng, B. Song, W. Cao, H. Y. Liu, S.Y. Huan, P. Peng, Novel “loose” GO/MoS2 composites membranes with enhanced permeability for effective salts and dyes rejection at low pressure, Journal of Membrane Science, 574 (2019) 112-123.
[174] J. Wang, P. Zhang, B. Liang, Y. Liu, T. Xu, L. Wang, B. Cao, K. Pan, Graphene Oxide as an Effective Barrier on a Porous Nanofibrous Membrane for Water Treatment, ACS Applied Materials & Interfaces, 8 (2016) 6211-6218.
[175] Z. Wang, Y. Zhu, D. Ji, Z. Li, H. Yu, Scalable exfoliation and high-efficiency separation membrane of boron nitride nanosheets, ChemistrySelect, 5 (2020) 3567-3573.
[176] P. Cheng, Y. Chen, Y. H. Gu, X. Yan, W.-Z. Lang, Hybrid 2D WS2/GO nanofiltration membranes for finely molecular sieving, Journal of Membrane Science, 591 (2019) 117308.
[177] H.M. Tham, S. Japip, T. S. Chung, WS2 deposition on cross-linked polyacrylonitrile with synergistic transformation to yield organic solvent nanofiltration membranes, Journal of Membrane Science, 588 (2019) 117219.
[178] P. Cheng, Y. Chen, X. Yan, Y. Wang, W. Z. Lang, Highly stable and antibacterial two-dimensional tungsten disulfide lamellar membrane for water filtration, ChemSusChem, 12 (2019) 275-282.
[179] L. Nie, K. Goh, Y. Wang, J. Lee, Y. Huang, H.E. Karahan, K. Zhou, M.D. Guiver, T. H. Bae, Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration, Science Advances, 6 (2020) eaaz9184.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top