跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/29 23:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:白逸禾
研究生(外文):Chris Yi-Ho Bai
論文名稱:以汞燈與雷射投影機色匹配函數為基礎的個人化色彩管理新方法
論文名稱(外文):A Novel Approach to a Personalized Color Management System by Determining Observer Color Matching Functions Using Halogen and Laser Projectors
指導教授:歐立成歐立成引用關係
指導教授(外文):Li-Chen Ou
口試委員:羅梅君孫沛立歐陽盟林宗翰
口試委員(外文):Mei-Chun LoPei-Li SunMang Ou-YangTzung-Han Lin
口試日期:2021-08-11
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:應用科技研究所
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:119
中文關鍵詞:顯示設備觀測者同色異譜觀測者色匹配函數分類iccMAX
外文關鍵詞:DisplaysObserver MetamerismObserver CategoryiccMAX
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
當顯示設備在色域的擴展上有長足的進展時,在新一代窄頻寬背光顯示器所上呈現的觀測者同色異譜的現象卻是一個需要注意的地方。在先前的研究中顯示,使用窄頻寬背光顯示器時,在軟式打樣以及影片後製調色的情境中,會有產生觀測者同色異譜的現象。因此在本研究中,將探討相較於汞燈光源投影系統,雷射光源投影系統是否較容易產生觀測者同色異譜的現象?為了達到這個目的及驗證結論,在本研究中也將發展一套能夠快速判斷觀測者色匹配函數的方法。有此判斷方法後,下一步就可確認目前CIE所訂定的標準色匹配函數是否適用於雷射光源投影系統。
本研究的實驗共分為兩個部份來進行。實驗一是以色塊來進行實驗,而實驗二則是以影像來進行實驗。實驗一與實驗二中的觀測者本身的變動性 (intra-observer variability) 與觀測者間的變動性 (inter-observer variability) 則被拿來計算與分析,同時當成計算觀測者變動性 (observer variability) 的依據。在這兩個實驗中,觀測者變動性皆為高,表示觀測者同色異譜的現象容易產生在雷射光源的投影系統中。因此極需一個解決方案來減輕產生於雷射光源的投影系統上的觀測者同色異譜之現象。為發展此解決方案,本研究著重的重點在於如何推測個人的色匹配函數類別的方法。
在實驗一中,開發了由判斷14個色塊的方式而快速判斷色匹配函數類別的方法。在實驗二,藉由色塊類別的判斷進而預測該觀測者之所屬影像類別的判斷方法。色塊類別和影像類別之間有存在其關連性,但未來可藉由實施一些改進來提升其預測率。在每個實驗中,所得出的色匹配函數分類也和CIE標準色匹配函數進行比較。結果發現在兩個實驗中,CIE標準色匹配函數皆不是適用於雷射光源投影系統的最佳色匹配函數。故在使用雷射光源的投影系統時,一個新的色匹配函數類別是需要被定義。
當此快速色匹配函數判斷方法開發完成後,在需要開發個人化色彩管理系統時將會是事半功倍的。個人化色彩管理系統的開發對於降低觀測者同色異譜現象的產生是非常有助益的。
除了快速色匹配函數判斷方法的導入之外,iccMAX對於個人化色彩管理系統的開發也是必要的一環。雖然ICC v4可以使用device link profile來達到相同的目的,但當需要更換色匹配函數資料時,則需要大費周章地變動資料。新版iccMAX的架構可以接受自定義的色匹配函數資料,因此在更換色匹配函數資料時,相對上會容易許多。在本研究中也藉由本研究中所發展之快速判斷色匹配函數的方式與iccMAX的架構,驗證新一代個人色彩管理系統得以快速實現。
As display technology advances in color gamut, the potential of experiencing higher degree of observer metamerism is more likely with narrow bandwidth stimuli display devices. In previous studies, it was confirmed that observer metamerism was introduced in soft proofing and color grading scenarios. Hence, it is desired to investigate whether laser-based projection system would introduce observer metamerism compared to halogen-based projection system. In order to achieve the goal and verify the finding, it is necessary to develop a quick method to estimate observer’s color matching function category. With the method developed, the next step would be determining whether the CIE Standard Observer is suitable for the laser-based projection system.

In this study, a two-part experiment was designed and conducted. Experiment 1 was based on color patches and Experiment 2 was based on images. Intra-observer and inter-observer variability were calculated and analyzed to determine the observer variability. The observer variability in both experiments was reported to be high, and this indicated observer metamerism was introduced in laser-based projection system. Therefore, there is a need to derive a solution to minimize the effect of observer metamerism introduced by laser-based projection system. This study focuses on categorizing observer’s own color matching functions (CMFs) category.

In Experiment 1, a quick method utilizing 14 color patches to estimate observer’s color matching function category was developed. The estimated category was for color patches. In Experiment 2, a prediction was made using the quick method from the color patch category to estimate the category for images. A correlation existed, but some improvements were suggested to enhance the prediction rate in the future. Comparison to CIE Standard Observer was also conducted for each experiment, and the results suggested that the CIE Standard Observer was not suitable for laser-based projection system. A new observer category was required at least for the group of observers participating the experiments.

With the quick method of estimating observer color matching function category developed, it is much easier to achieve the realization of personalized color management system, hence, reducing the issue of observer metamerism.

iccMAX has made the realization of personalized color management system much more practical. Although there is a workaround using device link profile in ICC v4, updating CMFs data would be an issue. Since the new iccMAX architecture accepts the custom observer CMFs data natively, it is easier to utilize the iccMAX architecture to update the CMFs data. It is possible to develop a practical personalized color management system with iccMAX and the quick method developed in this study to enhance observer’s viewing experience and perceived accuracy.
中文摘要 I
ABSTRACT II
ACKNOWLEDGEMENT III
LIST OF FIGURES VIII
LIST OF TABLES XII
1. INTRODUCTION - 1 -
2. LITERATURE SURVEY - 4 -
2.1. DLP Projection System - 4 -
2.2. 3D Look-Up Table (3D LUT) - 9 -
2.3. Monte Carlo Simulation - 10 -
2.4. Studies Investigated in Observer Metamerism and Observer Metamerism Metric - 11 -
3. EXPERIMENTAL PREPARATION - 18 -
3.1. Selection of Projection Systems - 18 -
3.2. Establishment of Color Characterization Models for the Projection Systems - 19 -
3.2.1. Problem Encountered in Projection System Measurement - 20 -
3.2.2. Calibration Results of the Two Projection Systems - 20 -
3.2.3. Performance of the Characterization Models - 21 -
3.3. Display Types Used in the Experiment - 21 -
3.3.1. Broad Band Display - 22 -
3.3.2. Narrow Band Display - 22 -
3.4. Simulation for Observer Variations - 23 -
3.5. Selection of Reference Colors - 24 -
3.6. Pre-Determination of Color Matching Function Categories - 26 -
4. EXPERIMENT 1: COLOR PATCH EXPERIMENT - 27 -
4.1. EXPERIMENTAL PROCEDURES - 27 -
4.2. DETERMINING INTRA-OBSERVER VARIATION AND INTER-OBSERVER VARIATION - 31 -
4.3. METHOD OF CATEGORY DETERMINATION - 32 -
4.4. EXPERIMENTAL RESULTS AND DISCUSSIONS - 32 -
4.4.1. PRE-TEST AND IMPROVEMENTS MADE FOR THE MAIN EXPERIMENT - 32 -
4.4.2. REPEATABILITY FOR EACH REFERENCE COLOR PATCH - 33 -
4.4.3. INTRA- AND INTER-OBSERVER VARIATIONS - 33 -
4.4.4. OBSERVER CATEGORY RESULTS - 35 -
4.4.5. OBSERVER CATEGORY REDUCTION - 36 -
4.4.6. QUICK TRANSFORMATION METHOD - 41 -
5. EXPERIMENT 2: IMAGE EXPERIMENT - 43 -
5.1. EXPERIMENTAL PROCEDURES - 43 -
5.2. IMAGE PREPARATION - 46 -
5.3. DETERMINING INTRA-OBSERVER VARIATION AND INTER-OBSERVER VARIATION - 48 -
5.4. METHOD OF CATEGORY DETERMINATION - 49 -
5.5. EXPERIMENTAL RESULTS AND DISCUSSIONS - 49 -
5.5.1. SUITABILITY FOR INTERCHANGING CIE 1964 AND CIE 1931 STANDARD OBSERVERS - 49 -
5.5.2. INTRA-OBSERVER AND INTER-OBSERVER VARIATIONS - 52 -
5.5.3. AGREEMENT BETWEEN COLOR PATCH CATEGORY AND IMAGE CATEGORY - 54 -
5.5.4. OBSERVER CATEGORY RESULTS - 55 -
6. PERSONALIZED COLOR MANAGEMENT SYSTEM WITH ICCMAX - 57 -
6.1. THE NEED FOR PERSONALIZED COLOR MANAGEMENT SYSTEM - 57 -
6.2. CURRENT METHOD OF IMPLEMENTING PERSONALIZED COLOR MANAGEMENT SYSTEM - 57 -
6.3. PERSONALIZED COLOR MANAGEMENT SYSTEM USING ICCMAX - 59 -
7. CONCLUSION 64
REFERENCES 66
APPENDICES 71
APPENDIX A: STANDARD OPERATING PROCEDURE (SOP) FOR ESTIMATING OBSERVER CMFS CATEGORY 71
APPENDIX B: TEST PATCHES FOR EVALUATING CHATACTERIZATION MODEL 75
APPENDIX C: INSTRUCTIONS TO THE OBSERVERS FOR EXPERIMENT 1 76
APPENDIX D: EXPERIMENT DATA AND MCDM ANALYSIS FOR EXPERIMENT 1 77
APPENDIX E: EACH TEST PATCH AND CATEGROY COMBINATION’S E00* VALUE FOR MCDM ANALYSIS IN EXPERIMENT 1 90
APPENDIX F: OBSERVER'S RESPONSE TO EACH REFERENCE PATCH'S SELECTION IN EXPERIMENT 1 91
APPENDIX G: NUMBER OF OBSERVERS ASSIGNED TO EACH CATEGORY IN EXPERIMENT 1 91
APPENDIX H: INSTRUCTIONS TO THE OBSERVERS FOR EXPERIMENT 2 92
APPENDIX I: EXPERIMENT DATA FOR REFERENCE PATCH #7 ~ #14 93
APPENDIX J: EXPERIMENT DATA AND MCDM ANALYSIS FOR EXPERIMENT 2 94
APPENDIX K: EACH TEST IMAGE AND CATEGROY COMBINATION’S E00* VALUE FOR MCDM ANALYSIS IN EXPERIMENT 1 102
APPENDIX L: TOTAL NUMBER OF RESPONSES FOR EACH CATEGORY IN EXPERIMENT 2 103
APPENDIX M: NUMBER OF OBSERVERS ASSIGNED TO EACH CATEGORY IN EXPERIMENT 2 103
1 Asano Y, Fairchild MD, Blond´e L, Morvan P. Observer variability in color image matching on a LCD monitor and a laser projector. Paper presented at: 22nd Color and Imaging Conference and 2nd Congress of the International Academy of Digital Pathology; November 14, 2014. Boston, Massachusetts, USA.
2 Kuo WG. Quantification of Metamerism and Color Constancy. [PhD. thesis]. Loughborough: Loughborough University; 1995.
3 Chen Q, Feng L, Li Y, Cai S. Reviews on Observer Metamerism and Individual Color Vision Variability. In: Zhao P, Ouyang Y, Xu M, Yang L, Ren Y, eds. Advances in Graphic Communication, Printing and Packaging, Proceedings of 2018 9th China Academic Conference on Printing and Packaging. Springer; 2019:23-30.
4 Sarkar A, Blond´e L, Callet PL, Autrussear F, Morvan P, Stauder J. A color matching experiment using two displpays: design considerations and pilot test results. Paper presented at: Fifth European Conference on Color in Graphics, Imaging and Vision, CGIV; June 2010, Joensuu, Finland.
5 CIE. International Lighting Vocabulary. Genève: Bureau Central de la Commission Electrotechnique Internationale; c2011.
6 Artigas JM, Felipe A, Navea A, Fandiño A, Artigas C. Spectral transmission of the human crystalline lens in adult and elderly persons. Invest. Ophthalmol. Vis. Sci. 2012;53(7):4076-4084.
7 Berendschot TT. Lens aging in relation to nutritional determinants and possible risk factors for age-related cataract. Arch. Ophthalmol. 2002; 120(12): 1732-1737.
8 Backhaus W, Kliegl R, Werner JS. eds. Color Vision: Perspectives from Different Disciplines. Berlin: Walter de Gruyter; 2011.
9 Werner JS, Schefrin BE. Loci of achromatic points throughout the life span. J Opt Soc Am A. 1993; 10(7):1509-1516.
10 Schefrin BE, Werner JS. Age-related changes in the color appearance of broadband surfaces. Color Res Appl. 1993; 19(6): 380-389.
11 Xu J, Pokorny J, Smith VC. Optical density of the human lens. J Opt Soc Am A. 1997; 14(5):953-960.
12 Sarkar A. Identification and Assignment of Colorimetric Observer Categories and Their Applications in Color and Vision Sciences. [PhD. thesis]. École, France: Université de Nantes; 2011.
13 Howell O, Eperjesi F, Bartlett H. Macular pigment optical density in young adults of South Asian origin. Invest. Ophthalmol. Visual Sci. 2013; 54(4):2711-2719.
14 Iannaccone A, Mura M, Gallaher KT, et al. Macular pigment optical density in the eldery: Findings in a large biracial Midsouth population sample. Invest. Ophthalmol. Visual Sci. 2007; 48(4):1458-1465.
15 Ciulla TA, Curran-Celantano J, Cooper DA, et al. Macular pigment optical density in a midwestern sample. Ophthalmology. 2001; 108(4):730-737.
16 Bone RA, Landrum JT, Guerra LH, Ruiz CA. Lutein and zeaxanthin dietary supplements raise macular pigment density and serum concentrations of these carotenoids in humans. J. Nutr. 2003; 133(4):992-998.
17 Neitz J, Neitz M, He JC, Shevell SK. Trichromatic color vision with only two spectrally distinct photopigments. Nat. Neurosci. 1999; 2(10):884-888.
18 Asano Y. Individual Colorimetric Observers for Personalized Color Imaging. [PhD. thesis]. Rochester, USA: Rochester Institute of Technology; 2015.
19 Sharma A. Examining Color Performance Between 3-Chip LCD and 1-Chip DLP Projection Technologies. https://mediaserver.goepson.com/ImConvServlet/imconv/8c881ece9997ad9a6762d8219cfe12484c33f9f0/original?use=banner. Accessed August 27, 2021.
20 Hornbeck LJ. Digital Light Processing and MEMS: an overview. Paper presented at: Digest IEEE/Leos 1996 Summer Topical Meeting. Advanced Applications of Lasers in Materials and Processing; August 5, 1996. Keystone, CO, USA.
21 Katal G, Tyagi N, Joshi A. Digital Light Processing and its Future Applications. Int. J. Scr. Res. Pub. 2013;3(4):1658-1665.
22 Texas Instruments. Single-Panel DLPTM Projection System Optics, Application Report Discovery DLPA002. https://www.ti.com/pdfs/dlpdmd/Discoverydlpa002.pdf. March 2005. Accessed August 27, 2021.
23 Brennesholtz MS, Stupp EH. Projection Displays. 2nd ed. Chichester, UK: John Wiley & Sons; 2008:57-62.
24 Hornbeck LJ. Digital Light Processing for high-brightness, high-resolution applications. Invited Paper presented at: Electronic Imaging 1997, Projection Displays III; February 10, 1997; San Jose, California, USA.
25 Brennesholtz MS, Stupp EH. Projection Displays. 2nd ed. Chichester, UK: John Wiley & Sons; 2008:233-238.
26 Brennesholtz MS, Stupp EH. Projection Displays. 2nd ed. Chichester, UK: John Wiley & Sons; 2008:249-252.
27 Monk DW. DLP Projection Technology. In: Chen J ed. Handbook of Visual Display Technology. New York: Springer; 2012:2081-2093.
28 Thomas JB. Colorimetric Characterization of Displays and Multi-Display Systems. [PhD. thesis]. Dijon: Universite ́ de Bourgogne; 2009.
29 Bastani B, Cressman B, Funt B. Calibrated Color Mapping Between LCD and CRT Displays: A Case Study. Color Res Appl. 2005; 30(6):438-447.
30 Colantoni P, Thomas JB. A color management process for real time color reconstruction of multispectral images. Paper presented at: 16th Scandinavian Conference, SCIA; June 15, 2009. Oslo, Norway.
31 Muralidhar K. Monte Carlo simulation. In: Bidgoli H. ed. Encyclopedia of Information Systems. 1st ed. Elsevier; 2003; 193-201.
32 Gentle JE. Computational statistics. In: Peterson P. ed. International Encyclopedia of Education. 3rd ed. Elsevier; 2010; 93-97.
33 Gilli M, Maringer D, Schumann E. Generating random numbers. In: Gilli M, Maringer D, Schumann E. ed. Numerical Methods and Optimization in Finance. 2nd ed. Academic Press; 2019; 103-132.
34 Ruan K. Cyber risk measurement in the hyperconnected world. In: Ruan K. ed. Digital Asset Valuation and Cyber Risk Measurement. Academic Press; 2019; 75-86.
35 Monte Carlo Simulation. IBM Cloud Education. https://www.ibm.com/cloud/learn/monte-carlo-simulation. Published: 2020/08/24. Accessed September 10, 2021.
36 Observer Function Database. Rochester Institute of Technology. https://www.rit.edu/cos/colorscience/re_AsanoObserverFunctions.php. Accessed August 25, 2017.
37 Alfvin RL, Fairchild MD. Observer variability in metameric color matches using color reproduction media. Color Res Appl. 1997; 22(3):174-188.
38 Rich DC, Jalijali J. Effects of observer metamerism in the determination of human color-matching functions. Color Res Appl. 1995; 20(1):29-35.
39 Pobboravsky I. Effect of small color differences in color vision on the matching of soft and hard proofs. Paper presented at: TAGA 1988;
40 Oicherman B, Luo MR, Rigg B, Robertson AR. Effect of observer metamerism on colour matching of display and surface colours. Color Res Appl. 2008; 33(5):346-359.
41 Maxell JC. On the theory of compound colours, and the relations of the colours of the spectrum. Philos. Trans. R. Soc. London, Ser. A. 1860; 150:57-84.
42 Wright WD. A trichromatic colorimeter with spectral primaries. Trans. Opt. Soc. 1928; 29(5):225-242.
43 Wright WD. A re-determination of the trichromatic coefficients of the spectral colours. Trans. Opt. Soc. 1929; 30(4):141-164.
44 Guild J. The colorimetric properties of the spectrum. Philos. Trans. R. Soc. London, Ser. A. 1932; 230:149-187.
45 Stiles WS, Burch JM. N.P.L. colour-matching investigation: Final report. Opt. Acta: Intl. J Opt. 1958; 6(1):1-26.
46 Sarkar A. Final Report for R1-54: Variability in Color-Matching Functions. http://files.cie.co.at/521_R1-54%20Final%20Report.pdf. Published 2011. Accessed August 12, 2017.
47 Speranskaya NI, Determination of spectrum color coordinates for 27 normal observers. Opt. Spectrosc. 1959; 7:424.
48 CIE, Fundamental Chromaticity Diagram with Physiological Axes – Part 1. Vienna: Central Bureau of the CIE; c2006:170-171.
49 Stockman A, Sharpe L. The spectral sensitivities of the middle-and long-wavelength sensitive cones derived from measurements in observers of known genotype. Vision Res. 2000; 40:1711-1737.
50 Sarkar A, Autrusseau F, Vienot F, Le Callet P, Blond´e L. From CIE 2006 physiological model to improved age-dependent and average colorimetric observers. J Opt Soc Am. 2011; 28(10):2033-2048.
51 Stockman A, MacLeod D, Johnson N. Spectral sensitivity of the human cones. J Opt Soc Am A. 1993; 10:2491-2521.
52 Allen E. An index of metamerism for observer differences. Paper presented at: 1st AIC congress, Color 69; June 9, 1969. Musterschmidt, Gottingen, Sweden.
53 CIE TC-1.07. Special Metamerism Index: Change in Observer. Vienna, Central Bureau of the CIE; c1989.
54 Nayatani Y, Hashimoto K, Takahama, K, Sobagaki H. Comparison of methods for assessing observer metamerism. Color Res Appl. 1985;10(3):147-155.
55 Takahama K, Sobagaki H, Nayatani Y. Prediction of observer variation in estimation colorimetric values. Color Res Appl. 1985;10(2):106-117.
56 North AD, Fairchild MD. Measuring color-matching functions. Part II. New data for assessing observer metamerism. Color Res Appl. 1993;18(3):163-170.
57 Hu Y, Wei MC, Luo MR. Observer metamerism to display white point using different primary sets. Opt. Express. 2020; 28(14):20305-20323.
58 Wu JL, Wei MC, Fu Y, Cui CH. Color mismatch and observer metamerism between conventional liquid crystal displays and organic light emitting diode displays. Opt. Express. 2021; 29(8):12292-12306.
59 Fang JY, Kim YJ. A Matrix-Based Method of Color Correction for Metamerism Failure between LCD and OLED. SID Symp. Dig. Tech. Pap. 2018; 49(1):1044-1047.
60 Long DL, Fairchild MD. Modeling Observer Variability and Metamerism Failure in Electronic Color Displays. J. Imaging Sci. Technol. 2014; 58(3):14-27.
61 Moan SL, Tanksale TM, Byshko R, Urban P. An observer-metamerism sensitivity index for electronic displays. J. Soc. Inf. Disp. 2017; 25(9):554-560.
62 Vora PL, Trussell, HJ. Measure of goodness of a set of color- scanning filters. J. Opt. Soc. Am. A. 1993; 10(7):1499-1508.
63 Xie H, Farnand SP, Murdoch MJ. Observer metamerism in commercial displays. J. Opt. Soc. Am. A. 2020; 37(4):61-69.
64 Heckaman RL, Ho J. Observer Metamerism and Its Effect on Color Accuracy in Display Media Technology. SID Symp. Dig. Tech. Pap. 2016; 47(1):723-726.
65 Fairchild MD, Wyble DR. Mean observer metamerism and the selection of display primaries. Paper presented at: 15th IS&T/SID Color Imaging Conference; November 2007; Albuquerque, New Mexico, USA.
66 Ramanath R. Minimizing observer metamerism in display systems. Color Res Appl. 2009;34(5): 391-398.
67 Berns RS. Billmeyer and Saltzman’s Principles of Color Technology. 4th Edition. New York: John Wiley & Sons, c2019.
68 Bai CYH, Ou LC, Observer variability study and method to implement observer categories for novel light source projection system, Color Res Appl. 2021;46(5):1019-1033.
69 iccMAX. International Color Consortium. https://www.color.org/iccmax/index.xalter. Accessed: August 20, 2021.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top