跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/21 06:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何沛承
研究生(外文):Pei-Cheng Ho
論文名稱:應用多目標萬用演算法於考量車輛利用率 與平衡之貨物堆疊問題
論文名稱(外文):Applying Multi-Objective Metaheuristics to Container Loading Problem Considering Truck Utilization and Balance
指導教授:郭人介郭人介引用關係
指導教授(外文):Ren-Jieh Kuo
口試委員:歐陽超羅士哲
口試委員(外文):Chao Ou-YangShih-Che Lo
口試日期:2021-06-03
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:59
中文關鍵詞:貨物堆疊問題多目標演算法裝運優先順序平衡度
外文關鍵詞:Container Loading ProblemMulti-objective OptimizationShipment PriorityBalancing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:102
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
物料堆疊問題在物流供應鏈扮演很重要的角色,因為他可以用於許多實際應用中,例如運輸業或物流業,物料堆疊的主要問題就是把一群貨物裝載進去貨車或是貨櫃中並且運用不同的堆疊順序以求出最大化的利用率。
本研究探討多目標物料堆疊問題,並考量利用率與車輛平衡,也考慮了實際的限制再加入了裝運優先順序,考量車輛平衡是為了避免卡車在運送貨物時造成貨物的損壞或是意外的發生。本研究之實驗使用BR系列例題,因為例題只有提供貨物的尺寸,因此隨機生成了貨物的重量以及優先順序,本研究使用多目標基因演算法及多目標粒子群演算法去求解,並使用效能指標去比較演算法的優劣。
根據計算的結果,因為多目標基因演算法在計算利用率方面有比較好的結果,而多目標粒子群演算法在計算平衡度方面表現比較好,即使使用了效能指標,結論仍然不容易得出,因此使用者可以依據他的意願去選擇其中一種方法去求解。
The container loading problem plays an important role in logistics and supply chains. It can be applied to many kinds of real-world applications such as the transportation, or logistics, industry for delivery. The problem is to pack a set of cargos into container and full the utility of the container space to maximize the efficiency.
The multi-objective is processed to solve the CLP. There are two objectives of this study. First objective is to maximize the utilization of container and the second objective is to minimize the force penalty of truck wheel axle. This study also consider the constraint in the real-world application and add loading priority. It will be more practical to consider FP in order to balance the truck which can avoid damage when the truck is delivering the cargo. This study employs NSGA II and MOPSO to solve current problem. Because the benchmark dataset didn’t have weight of cargo, we randomize the weights and priorities for each cargo of BR instances. As the fitness cannot decide which algorithm is better, this study use the quality indicators to compare both of algorithms.
According to the computational result, it is not easy to determine the best method since NSGA II has better result in container utilization, while MOPSO has better performance in terms of force penalty. Even the quality indicators are applied, the conclusion is still not easy to make. Thus, user can select either method based on the objective function he/she prefers.
摘要 I
ABSTRACT II
致謝 III
CONTENTS IV
LIST OF FIGURES VI
LIST OF TABLES VII
CHAPER 1 INTRODUCTION 1
1.1 Research background and motivation 1
1.2 Research objectives 2
1.3 Research constrains and scope 2
1.4 Thesis organization 3
CHAPER 2 LITERATURE REVIEW 5
2.1 Container loading problem 5
2.1.1 Identical cargo and container 8
2.1.2 Multi-scale cargo and identical container 8
2.2 Metaheuristics 10
2.2.1 Non-dominated sorting genetic algorithm II (NSGA-II) 10
2.2.2 Multi-objective particle swarm optimization algorithm (MOPSO) 14
2.2.3 Multi-objective optimization using metaheuristics 15
CHAPER 3 METHODOLOGY 17
3.1 Problem 17
3.2 Notations 20
3.3 Mathematical formulation 21
3.4 Multi-objective genetic algorithm for CLP 23
3.5 Multi-objective particle swarm optimization for CLP 29
3.6 Performance evaluation 33
3.7 Quality indicator 33
CHAPER 4 EXPERIMENTAL RESULTS 35
4.1 Test instances 35
4.2 Datasets 36
4.3 Parameter setting 38
4.4 Experiment results 39
4.5 Statistical hypothesis testing 41
4.6 Time complexity analysis 43
CHAPER 5 CONLUSTIONS AND FUTURE RESEARCHE 44
5.1 Conclusions 44
5.2 Contributions 45
5.3 Future research 45
REFERENCES 46
Alonso, M.T., Alvarez-Valdes, R., Iori, M., Parreño, F. and Tamarit J.M., Mathematical models for multicontainer loading problems, Omega (United Kingdom) 66, 106-117, 2017.
Araya, I., Moyano, M. and Sanchez, C., A beam search algorithm for the biobjective container loading problem, European Journal of Operational Research 286(2), 417-431, 2020.
Araya, I. and Riff, M.C., A beam search approach to the container loading problem, Computers & Operations Research 43, 100–107, 2014.
Bischoff, E.E. and Ratcliff, M., Issues in the developmentof approaches to container loading, Omega 23, 377-390, 1995.
Bischoff, E.E., Janetz, F. and Ratcliff, M., Loading pallets with non-identical items, European Journal of Operational Research 84, 681-692, 1995.
Bortfeldt, A., Gehring, H. and Mack, D., A parallel tabu search algorithm for solving the container loading problem, Parallel Computing 29, 641-662, 2003.
Bortfeldt, A. and Gehring, H., A genetic algorithm for solving the container loading problem, International Transactions in Operational Research 4(5–6), 401-418, 2006.
Bortfeldt, A. and Wascher, G., Constraints in container loading: a state-of-the-art review, European Journal of Operational Research 229, 1-20, 2013.
Chen, C.S., Lee, S.M. and Shen, Q.S., An analytical model for the container loading problem, European Journal of Operational Research 80, 68-76, 1995.
Coello, C.A. and Lechuga, M.S., MOPSO: a proposal for multiple objective particle swarm optimization, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600) 2, 1051-1056, 2002.
Deb, K., Pratap, A., Agarwal, S., and Meyarivan T., A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation 6(2), 182-197, 2002.
Dereli, T. and Das, S.G., Development of a decision support system for solving container loading problems, Parallel Computing 25(2), 138-147, 2010.
George, J.A., A method for solving container packing for a single size of box, Journal of Operations Research Society 43(4), 307-312, 1992.
George, J.A. and Robinson, D.F., A heuristic for packing boxes in a container,”Computers and Operations Research 7, 147-156, 1980.
Gimenez-Palacios, I., Alonso, M.T., Alvarez-Valdes, R. and Parreño, F., Logistic constraints in container loading problems: the impact of complete shipment conditions, TOP 29, 177-203, 2021.
Goncalves, J.F. and Resende, M.G.C., A parallel multi-population biased random-key genetic algorithm for a container loading problem, Computers & Operations Research 39, 179-190, 2012.
Hisao I., Ryo I., Yu S. and Yusuke N., How to Specify a Reference Point in Hypervolume Calculation for Fair Performance Comparison, Evol Comput 2018, 26 (3): 411-440, 2018.
Horn, J., Nafpliotis, N. and Goldberg, D.E., A niched Pareto genetic algorithm for multiobjective optimization, Proceedings of IEEE World Congress on Computational Intelligence 1, 82-87, 1994.
Huang, Y., Hwang, F. and Lu, H., An effective placement method for the single container loading problem, Computers & Industrial Engineering 97, 212-221, 2016.
Jamrus, T. and Chien, C.F., Extended priority-based hybrid genetic algorithm for the less-than-container loading problem, Computers & Industrial Engineering 96, 227-236, 2016.
Kang, K., Moon, I. and Wang, H., A hybrid genetic algorithm with a new packing strategy for the three-dimensional bin packing problem, Applied Mathematics and Computation 219, 1287-1299, 2012.
Kennedy, J. and Eberhart, R., Particle swarm optimization, Proceedings of ICNN'95- International Conference on Neural Networks 4, 1942-1948, 1995.
Knowles, J. and Corne, D., The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 98-105 Vol. 1, 1999.
Lai, X., Hao, J.K., Fu, Z.H. and Yue, D., Diversity-preserving quantum particle swarm optimization for the multidimensional knapsack problem, Expert Systems with Applications 149, 113310, 2020.
Laumanns, M., Rudolph, G. and Schwefel, H.P., A spatial predator-prey approach to multi-objective optimization: A preliminary study, LNCS. 5., 241-249, 1998.
Li, M. and Yao, X., Quality evaluation of solution sets in multi-objective optimization: A survey, ACM Computing Surveys (CSUR) 52(2), 1-38, 2019.
Li, X., Zhao, Z. and Zhang, K., A genetic algorithm for the three-dimensional bin packing problem with heterogeneous bins, International Journal of Computer Trends and Technology (IJCTT) 17(1), 33-38, 2014.
Lim, A. and Ying, W., A new method for the three dimensional container packing Problem, AAAI American Association for Artificial Intelligence 1, 342-347, 2001.
Lins, L., Lins, S. and Morabito, R., An n-tet graph approach for non-guillotine packings of n-dimensional boxes into an n-container, European Journal of Operational Research 141, 421-439, 2002.
Liu, F.H. and Hsiao, C.J., A three-dimensional pallet loading method for single-size boxes, Journal of the Operational Research Society 48, 726-735, 1997.
Liu, J., Yue, Y., Dong, Z., Maple, C. and Keech, M., A novel hybrid tabu search approach to container loading, Computers & Operations Research 38, 797-807, 2011.
Mack, D., Bortfeldt, A. and Gehring, H., A parallel hybrid local search algorithm for the container loading problem, International Transactions in Operational Research 11, 511-533, 2004.
Moura, A. and Oliveira, J.F., A GRASP approach to the container-loading problem, IEEE Intelligent Systems 20, 50-57, 2005.
Parreño, F., Alvarez-Valdes, R., Oliveira, J. and Tamarit, J., Neighborhood structures for the container loading problem: a VNS implementation, Journal of Heuristics 16, 1-22, 2010.
Parreño, F., Alvarez-Valdes, R., Tamarit, J.M. and Oliveira, J.F., A maximal-space algorithm for the container loading problem, INFORMS Journal on Computing 20, 412-422, 2008.
Ren, J., Tian, Y. and Sawaragi, T., A tree search method for the container loading problem with shipment priority, European Journal of Operational Research 214, 526-535, 2011.
Rezoug, A., Bader-El-Den, M. and Boughaci D., Hybrid genetic algorithms to solve the multidimensional knapsack problem, In: Talbi EG., Nakib A. (eds) Bioinspired Heuristics for Optimization. Studies in Computational Intelligence 774. Springer, Cham, 235-250, 2019.
Saputra, W.F., Damayanti, D.D. and Santosa B., Container loading allocation to improve space and loading utilization of fleet compaetment capacity by using genetic algorithm, e-Proceeding of Engineering 6(2), Agustus, 6237-6245, 2019.
Schott, J.R., Fault tolerant design using single and multicriteria genetic algorithm optimization, Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 199-200, 1995.
Srinivas, N. and Deb, K., Muiltiobjective optimization using nondominated sorting in genetic algorithms, Evolutionary Computation 2, 221-248, 1994.
Wang, Z.J., Li, K. and Levy, J., A heuristic for the container loading problem: A tertiary-tree-based dynamic space decomposition approach, European Journal of Operational Research 191, 86-99, 2008.
Zeineldin, R.A., Morsy, A.M., A Modified artificial bee colony for solving the container loading problem, International Journal of Computer Applications (0975 – 8887) 114(3), 19-24, 2015.
Zhao, X., Bennell, J.A., Bektas, T. and Dowsland, K., A comparative review of 3D container loading algorithms, International Transactions in Operational Research 23 (1-2), 287-320, 2016.
Zitzler, E. and Thiele, L., Multiobjective optimization using evolutionary algorithms—A comparative case study, In Proceedings of the International Conference on Parallel Problem Solving from Nature (PPSN’98), 292-301, 1998.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top