跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/28 12:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:姜羽柔
研究生(外文):Yu-Jou Chiang
論文名稱:開發高穿透度聚苯胺/還原氧化石墨烯奈米複合對電極及設計最適化電解液配比實現具高光著色效率之光驅動電致色變元件
論文名稱(外文):Developing Highly Transparent PANI/rGO Nanocomposite Counter Electrode and Designing Optimized Electrolyte Composition to Achieve High Photocoloration Efficiency Photoelectrochromic Devices
指導教授:葉旻鑫
指導教授(外文):Min-Hsin Yeh
口試委員:江志強何國川
口試委員(外文):Jyh-Chiang JiangKuo-Chuan Ho
口試日期:2021-7-26
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:121
中文關鍵詞:染料敏化太陽能電池電致色變元件快速響應時間高透光電催化材料光驅動電致色變元件光著色效率聚苯胺還原氧化石墨烯自供電系統智慧節能窗
外文關鍵詞:Dye-sensitized solar cellselectrochromic devicefast responsehighly transparent electrocatalytic layerphotoelectrochromic devicephotocoloration efficiencypolyanilinereduced graphene oxideself-powered systemsmart window
相關次數:
  • 被引用被引用:0
  • 點閱點閱:102
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要I
Abstract III
Table of Contents V
List of Tables VIII
List of Figures IX
Nomenclature XIV
Chapter 1 Introduction 1
1.1 Preface 1
1.2 Introduction of electrochromism 1
1.2.1 Development and application of electrochromic technology 2
1.2.2 Electrochromic materials 4
1.2.3 Types of electrochromic devices 5
1.3 Introduction of dye-sensitized solar cells 9
1.3.1 The background and current development of solar cells 10
1.3.2 Working mechanism of dye-sensitized solar cells 11
1.3.3 Types of dye-sensitized solar cells 14
1.4 Introduction of self-powered system 17
1.5 Introduction of photoelectrochromic devices 19
1.5.1 Types of photoelectrochromic devices 21
1.5.2 The background and current development of photoelectrochromic devices 22
Chapter 2 Literature Review and Research Scope 25
2.1 Impact of Composition on the Performance of Photoelectrochromic Devices 25
2.1.1 The effect of electrolytes on photoelectrochromic devices 25
2.1.2 The effect of counter electrodes on photoelectrochromic devices 28
2.2 Development of Bifacial Dye-sensitized Solar Cell 29
2.3 Motivation of Research 32
Chapter 3 Experimental Procedure 36
3.1 Experimental Chemicals and Instrument 36
3.1.1 Experimental and analytical instruments 36
3.1.2 Electrochemical analysis 37
3.1.3 Photovoltaic properties for PECDs 40
3.1.4 Ultraviolet-visible (UV-Vis) spectroscopy 41
3.1.5 Field emission - scanning electron microscopy (FE-SEM) 42
3.1.6 Raman spectroscopy 43
3.2 Experimental Materials 45
3.3 Experimental Procedure 46
3.3.1 Fabrication of photoelectrodes 46
3.3.2 Preparation of PEDOT-MeOH films on photoelectrodes 46
3.3.3 Preparation of PANI, PANI/rGO films as counter electrodes 47
3.3.4 Assembly of PECDs 47
3.4 Experimental Setup 47
3.4.1 UV-Vis spectroscopy analysis of electrochromic film in three-electrode system 47
3.4.2 UV-Vis spectroscopy analysis of photoelectrochromic device 48
3.4.3 Measurement of photovoltaic efficiency 49
Chapter 4 Development a highly transparent electropolymerized PANI/rGO nanocomposites as a Pt-free electrocatalytic layer in photoelectrochromic device 51
4.1 Motivation and Conceptual Design 51
4.2 Results and Discussion 52
4.2.1 Electrochemical and optical properties of PEDOT-MeOH film 52
4.2.2 Optimizing the thickness of PANI films for PECDs 53
4.2.3 Morphological and structural characterizations of PANI and PANI/rGO films 56
4.2.4 Optimizing the content of rGO in PANI CEs 58
4.2.5 The coloration kinetics of PECDs 61
4.3 Summary 65
Chapter 5 Optimize the molar ratio of I-/I3- and the contents of TBP in the electrolyte to realize both high optical contrast and fast-responsive control photoelectrochromic device 66
5.1 Motivation and Conceptual Design 66
5.2 Results and Discussion 67
5.2.1 Optimizing the concentration of I2 in electrolyte 67
5.2.2 Effects of I2 concentration on devices 70
5.2.3 Optimizing the concentration of TBP in electrolyte 71
5.2.4 Effects of TBP concentration on devices 74
5.2.5 Effects of excessive TBP on electrolyte and CE 75
5.3 Summary 77
Chapter 6 Conclusion and Suggestion 80
6.1 Conclusion 80
6.2 Suggestions and Prospects 81
Reference 84
Appendix A 101
[1] A. Cannavale, P. Cossari, G.E. Eperon, S. Colella, F. Fiorito, G. Gigli, H.J. Snaith, A. Listorti, Forthcoming perspectives of photoelectrochromic devices: a critical review, Energy Environmental Science, 2016, 9, 2682-2719.
[2] Z. Tong, Y. Tian, H. Zhang, X. Li, J. Ji, H. Qu, N. Li, J. Zhao, Y. Li, Recent advances in multifunctional electrochromic energy storage devices and photoelectrochromic devices, Science China Chemistry, 2017, 60, 13-37.
[3] K. Wang, H. Wu, Y. Meng, Y. Zhang, Z. Wei, Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window, Energy Environmental Science, 2012, 5, 8384-8389.
[4] D. Ge, E. Lee, L. Yang, Y. Cho, M. Li, D.S. Gianola, S. Yang, A robust smart window: reversibly switching from high transparency to angle‐independent structural color display, Advanced Materials, 2015, 27, 2489-2495.
[5] M.-H. Yeh, L. Lin, P.-K. Yang, Z.L. Wang, Motion-driven electrochromic reactions for self-powered smart window system, ACS Nano, 2015, 9, 4757-4765.
[6] F. Bella, G. Leftheriotis, G. Griffini, G. Syrrokostas, S. Turri, M. Grätzel, C. Gerbaldi, A new design paradigm for smart windows: photocurable polymers for quasi‐solid photoelectrochromic devices with excellent long‐term stability under real outdoor operating conditions, Advanced Functional Materials, 2016, 26, 1127-1137.
[7] S.Y. Chun, S. Park, S.I. Lee, H.D. Nguyen, K.-K. Lee, S. Hong, C.-H. Han, M. Cho, H.-K. Choi, K. Kwak, Operando Raman and UV-Vis spectroscopic investigation of the coloring and bleaching mechanism of self-powered photochromic devices for smart windows, Nano Energy, 2021, 82, 105721.
[8] H. Ling, J. Wu, F. Su, Y. Tian, Y.J. Liu, Automatic light-adjusting electrochromic device powered by perovskite solar cell, Nature Communications, 2021, 12, 1-8.
[9] R. Araujo, Photochromism in glasses containing silver halides, Contemporary Physics, 1980, 21, 77-84.
[10] R.J. Araujo, Opthalmic glass particularly photochromic glass, Journal of Non-Crystalline Solids, 1982, 47, 69-86.
[11] E. Hadjoudis, M. Vittorakis, I. Moustakali-Mavridis, Photochromism and thermochromism of schiff bases in the solid state and in rigid glasses, Tetrahedron, 1987, 43, 1345-1360.
[12] S. Babulanam, T. Eriksson, G. Niklasson, C. Granqvist, Thermochromic VO2 films for energy-efficient windows, Solar Energy Materials, 1987, 16, 347-363.
[13] C.M. Lampert, Electrochromic materials and devices for energy efficient windows, Solar Energy Materials, 1984, 11, 1-27.
[14] J. Svensson, C. Granqvist, Electrochromic coatings for “smart windows”, Solar Energy Materials, 1985, 12, 391-402.
[15] C. Granqvist, Chromogenic materials for transmittance control of large-area windows, Critical Reviews in Solid State and Material Sciences, 1990, 16, 291-308.
[16] S. Araki, K. Nakamura, K. Kobayashi, A. Tsuboi, N. Kobayashi, Electrochemical optical‐modulation device with reversible transformation between transparent, mirror, and black, Advanced Materials, 2012, 24, OP122-OP126.
[17] A. Tsuboi, K. Nakamura, N. Kobayashi, A Localized Surface Plasmon Resonance‐Based Multicolor Electrochromic Device with Electrochemically Size‐Controlled Silver Nanoparticles, Advanced Materials, 2013, 25, 3197-3201.
[18] H.-J. Yen, K.-Y. Lin, G.-S. Liou, Transmissive to black electrochromic aramids with high near-infrared and multicolor electrochromism based on electroactive tetraphenylbenzidine units, Journal of Materials Chemistry, 2011, 21, 6230-6237.
[19] F. Chen, X. Fu, J. Zhang, X. Wan, Near-infrared and multicolored electrochromism of solution processable triphenylamine-anthraquinone imide hybrid systems, Electrochimica Acta, 2013, 99, 211-218.
[20] A. Llordés, G. Garcia, J. Gazquez, D.J. Milliron, Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites, Nature, 2013, 500, 323-326.
[21] E.L. Runnerstrom, A. Llordés, S.D. Lounis, D.J. Milliron, Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals, Chemical Communications,
2014, 50, 10555-10572.
[22] E. Brimm, J. Brantley, J. Lorenz, M. Jellinek, Sodium and Potassium Tungsten Bronzes1, 1a, Journal of the American Chemical Society, 1951, 73, 5427-5432.
[23] S. Deb, A novel electrophotographic system, Applied Optics, 1969, 8, 192-195.
[24] L. Meunier, F.M. Kelly, C. Cochrane, V. Koncar, Flexible displays for smart clothing: Part II—Electrochromic displays, 2011.
[25] P. Wójcik, Printable organic and inorganic materials for flexible electrochemical devices, 2013.
[26] B.W. Faughnan, R.S. Crandall, P.M. Heyman, Electrochromism in WO3 amorphous films, Rca Rev, 1975, 36, 177-197.
[27] S.F. Cogan, N.M. Nguyen, S.J. Perrotti, R.D. Rauh, Optical properties of electrochromic vanadium pentoxide, Journal of Applied Physics, 1989, 66, 1333-1337.
[28] X. Xia, J. Tu, J. Zhang, X. Wang, W. Zhang, H. Huang, Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition, Solar Energy Materials and Solar Cells, 2008, 92, 628-633.
[29] C.-S. Hsu, C.-C. Chan, H.-T. Huang, C.-H. Peng, W.-C. Hsu, Electrochromic properties of nanocrystalline MoO3 thin films, Thin Solid Films, 2008, 516, 4839-4844.
[30] C. Dyer, J. Leach, Reversible optical changes within anodic oxide films on titanium and niobium, Journal of the Electrochemical Society, 1978, 125, 23.
[31] L. Assis, R. Leones, J. Kanicki, A. Pawlicka, M.M. Silva, Prussian blue for electrochromic devices, Journal of Electroanalytical Chemistry, 2016, 777, 33-39.
[32] K. Madasamy, D. Velayutham, V. Suryanarayanan, M. Kathiresan, K.-C. Ho, Viologen-based electrochromic materials and devices, Journal of Materials Chemistry C, 2019, 7, 4622-4637.
[33] T.-H. Lin, K.-C. Ho, A complementary electrochromic device based on polyaniline and poly (3, 4-ethylenedioxythiophene), Solar Energy Materials and Solar Cells, 2006, 90, 506-520.
[34] R. Rauh, F. Wang, J. Reynolds, D. Meeker, High coloration efficiency electrochromics and their application to multi-color devices, Electrochimica Acta, 2001, 46, 2023-2029.
[35] S.-W. Huang, K.-C. Ho, An all-thiophene electrochromic device fabricated with poly (3-methylthiophene) and poly (3, 4-ethylenedioxythiophene), Solar Energy Materials and Solar Cells,2006, 90, 491-505.
[36] M. Layani, A. Kamyshny, S. Magdassi, Transparent conductors composed of nanomaterials, Nanoscale, 2014, 6, 5581-5591.
[37] G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen, S. Magdassi, P.S. Lee, Highly stable transparent conductive silver grid/PEDOT: PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors, Advanced Energy Materials, 2016, 6, 1501882.
[38] R.D. Rauh, Electrochromic windows: an overview, Electrochimica Acta, 1999, 44, 3165-3176.
[39] D.R. Rosseinsky, R.J. Mortimer, Electrochromic systems and the prospects for devices, Advanced Materials, 2001, 13, 783-793.
[40] R.J. Mortimer, Switching colors with electricity: Electrochromic materials can be used in glare reduction, energy conservation and chameleonic fabrics, American Scientist, 2013, 101, 38-46.
[41] A. Baba, S. Tian, F. Stefani, C. Xia, Z. Wang, R.C. Advincula, D. Johannsmann, W. Knoll, Electropolymerization and doping/dedoping properties of polyaniline thin films as studied by electrochemical-surface plasmon spectroscopy and by the quartz crystal microbalance, Journal of Electroanalytical Chemistry, 2004, 562, 95-103.
[42] S. Green, J. Backholm, P. Georén, C.-G. Granqvist, G. Niklasson, Electrochromism in nickel oxide and tungsten oxide thin films: Ion intercalation from different electrolytes, Solar Energy Materials and Solar Cells, 2009, 93, 2050-2055.
[43] C.-W. Hu, K.-M. Lee, J.-H. Huang, C.-Y. Hsu, T.-H. Kuo, D.-J. Yang, K.-C. Ho, Incorporation of a stable radical 2, 2, 6, 6-tetramethyl-1-piperidinyloxy (TEMPO) in an electrochromic device, Solar Energy Materials and Solar Cells, 2009, 93, 2102-2107.
[44] J.H. Bechtel, H.J. Byker, Automatic rearview mirror system for automotive vehicles, Google Patents, 1990.
[45] H.J. Byker, Single-compartment, self-erasing, solution-phase electrochromic devices, solutions for use therein, and uses thereof, Google Patents, 1990.
[46] C.-F. Lin, C.-Y. Hsu, H.-C. Lo, C.-L. Lin, L.-C. Chen, K.-C. Ho, A complementary electrochromic system based on a Prussian blue thin film and a heptyl viologen solution, Solar Energy Materials and Solar Cells, 2011, 95, 3074-3080.
[47] Y. Watanabe, K. Imaizumi, K. Nakamura, N. Kobayashi, Effect of counter electrode reaction on coloration properties of phthalate-based electrochromic cell, Solar Energy Materials and Solar Cells, 2012, 99, 88-94.
[48] M.S. Ahmad, A.K. Pandey, N. Abd Rahim, Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review, Renewable Sustainable Energy Reviews, 2017, 77, 89-108.
[49] S. So, I. Hwang, P. Schmuki, Hierarchical DSSC structures based on “single walled” TiO 2 nanotube arrays reach a back-side illumination solar light conversion efficiency of 8%, Energy Environmental Science, 2015, 8, 849-854.
[50] K.A. John, J. Naduvath, S.K. Remillard, S. Shaji, P.A. DeYoung, Z.T. Kellner, S. Mallick, M. Thankamoniamma, G.S. Okram, R.R. Philip, A simple method to fabricate metal doped TiO2 nanotubes, Chemical Physics, 2019, 523, 198-204.
[51] J. Halme, P. Vahermaa, K. Miettunen, P. Lund, Device physics of dye solar cells, Advanced Materials, 2010, 22, E210-E234.
[52] N. Tsvetkov, L. Larina, J. Ku Kang, O. Shevaleevskiy, Sol-gel processed TiO2 nanotube photoelectrodes for dye-sensitized solar cells with enhanced photovoltaic performance, Nanomaterials, 2020, 10, 296.
[53] X. Hou, K. Aitola, P.D. Lund, TiO2 nanotubes for dye‐sensitized solar cells—A review, Energy Science & Engineering, 2020.
[54] M. Grätzel, Photoelectrochemical cells, Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific2011, pp. 26-32.
[55] M.A. Green, Photovoltaic principles, Physica E: Low-dimensional Systems Nanostructures, 2002, 14, 11-17.
[56] D.M. Chapin, C.S. Fuller, G.L. Pearson, A new silicon p‐n junction photocell for converting solar radiation into electrical power, Journal of Applied Physics, 1954, 25, 676-677.
[57] K. Kalyanasundaram, M. Grätzel, Applications of functionalized transition metal complexes in photonic and optoelectronic devices, Coordination Chemistry Reviews, 1998, 177, 347-414.
[58] B. O'regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO 2 films, Nature, 1991, 353, 737-740.
[59] B.E. Hardin, H.J. Snaith, M.D. McGehee, The renaissance of dye-sensitized solar cells, Nature Photonics, 2012, 6, 162-169.
[60] K. Xie, M. Guo, X. Liu, H. Huang, Enhanced efficiencies in thin and semi-transparent dye-sensitized solar cells under low photon flux conditions using TiO2 nanotube photonic crystal, Journal of Power Sources, 2015, 293, 170-177.
[61] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawa, M. Hanaya, Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes, Chemical Communications, 2015, 51, 15894-15897.
[62] M. Grätzel, Solar energy conversion by dye-sensitized photovoltaic cells, Inorganic Chemistry, 2005, 44, 6841-6851.
[63] A.S. Shikoh, Z. Ahmad, F. Touati, R. Shakoor, S.A. Al-Muhtaseb, Optimization of ITO glass/TiO2 based DSSC photo-anodes through electrophoretic deposition and sintering techniques, Ceramics International, 2017, 43, 10540-10545.
[64] J. Gong, J. Liang, K. Sumathy, Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials, Renewable Sustainable Energy Reviews, 2012, 16, 5848-5860.
[65] L. Kavan, J.-H. Yum, M. Graetzel, Graphene-based cathodes for liquid-junction dye sensitized solar cells: Electrocatalytic and mass transport effects, Electrochimica Acta, 2014, 128, 349-359.
[66] G.P. Smestad, M. Gratzel, Demonstrating electron transfer and nanotechnology: a natural dye-sensitized nanocrystalline energy converter, Journal of chemical education, 1998, 75, 752.
[67] M.L. Parisi, S. Maranghi, R. Basosi, The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach, Renewable and Sustainable Energy Reviews, 2014, 39, 124-138.
[68] M.G. Kang, N.-G. Park, K.S. Ryu, S.H. Chang, K.-J. Kim, Flexible metallic substrates for TiO2 film of dye-sensitized solar cells, Chemistry Letters, 2005, 34, 804-805.
[69] H.-G. Yun, Y. Jun, J. Kim, B.-S. Bae, M.G. Kang, Effect of increased surface area of stainless steel substrates on the efficiency of dye-sensitized solar cells, Applied physics letters, 2008, 93, 365.
[70] M. Toivola, F. Ahlskog, P. Lund, Industrial sheet metals for nanocrystalline dye-sensitized solar cell structures, Solar Energy Materials and Solar Cells, 2006, 90, 2881-2893.
[71] T.Y. Tsai, C.M. Chen, S.J. Cherng, S.Y. Suen, An efficient titanium‐based photoanode for dye‐sensitized solar cell under back‐side illumination, Progress in Photovoltaics: Research Applications, 2013, 21, 226-231.
[72] S. Ito, G. Rothenberger, P. Liska, P. Comte, S.M. Zakeeruddin, P. Péchy, M.K. Nazeeruddin, M. Grätzel, High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO 2 photoanode, Chemical communications, 2006, 4004-4006.
[73] H.G. Yun, B.S. Bae, M.G. Kang, A Simple and Highly Efficient Method for Surface Treatment of Ti Substrates for Use in Dye‐Sensitized Solar Cells, Advanced Energy Materials, 2011, 1, 337-342.
[74] J. An, W. Guo, T. Ma, Enhanced Photoconversion Efficiency of All‐Flexible Dye‐Sensitized Solar Cells Based on a Ti Substrate with TiO2 Nanoforest Underlayer, Small, 2012, 8, 3427-3431.
[75] Y. Rui, Y. Wang, Q. Zhang, Q. Chi, M. Zhang, H. Wang, Y. Li, C. Hou, In-situ construction of three-dimensional titania network on Ti foil toward enhanced performance of flexible dye-sensitized solar cells, Applied Surface Science, 2016, 380, 210-217.
[76] N.-S. Peighambardoust, S. Khameneh-Asl, H. Azimi, Improved performance of anodic titanium oxide nanotube arrays synthesized by sonoelectrochemical anodization method for dye-sensitized solar cells, Applied Physics A, 2017, 123, 345.
[77] A. Khan, Y.-T. Huang, T. Miyasaka, M. Ikegami, S.-P. Feng, W.-D. Li, Solution-processed transparent nickel-mesh counter electrode with in-situ electrodeposited platinum nanoparticles for full-plastic bifacial dye-sensitized solar cells, ACS Applied Materials Interfaces, 2017, 9, 8083-8091.
[78] Y. Jun, J. Kim, M.G. Kang, A study of stainless steel-based dye-sensitized solar cells and modules, Solar Energy Materials and Solar Cells, 2007, 91, 779-784.
[79] M.G. Kang, N.-G. Park, K.S. Ryu, S.H. Chang, K.-J. Kim, A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate, Solar Energy Materials and Solar Cells, 2006, 90, 574-581.
[80] Y.-T. Huang, S.-P. Feng, C.-M. Chen, Nickel substrate covered with a Sn-based protection bi-layer as a photoanode substrate for dye-sensitized solar cells, Electrochimica Acta, 2013, 99, 230-237.
[81] K. Fan, T. Peng, B. Chai, J. Chen, K. Dai, Fabrication and photoelectrochemical properties of TiO2 films on Ti substrate for flexible dye-sensitized solar cells, Electrochimica Acta, 2010, 55, 5239-5244.
[82] W. Tan, X. Yin, X. Zhou, J. Zhang, X. Xiao, Y. Lin, Electrophoretic deposition of nanocrystalline TiO2 films on Ti substrates for use in flexible dye-sensitized solar cells, Electrochimica Acta, 2009, 54, 4467-4472.
[83] D. Kim, P. Roy, K. Lee, P. Schmuki, Dye-sensitized solar cells using anodic TiO2 mesosponge: improved efficiency by TiCl4 treatment, Electrochemistry communications, 2010, 12, 574-578.
[84] C.-H. Huang, Y.-W. Chen, C.-M. Chen, Chromatic Titanium Photoanode for Dye-Sensitized Solar Cells under Rear Illumination, ACS Applied Materials & Interfaces, 2018, 10, 2658-2666.
[85] S. Ito, S.M. Zakeeruddin, P. Comte, P. Liska, D. Kuang, M. Grätzel, Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte, Nature Photonics, 2008, 2, 693-698.
[86] J. Bisquert, The two sides of solar energy, Nature Photonics, 2008, 2, 648-649.
[87] R. Hezel, Novel applications of bifacial solar cells, Progress in Photovoltaics: Research Applications, 2003, 11, 549-556.
[88] J. Wu, Y. Li, Q. Tang, G. Yue, J. Lin, M. Huang, L. Meng, Bifacial dye-sensitized solar cells: A strategy to enhance overall efficiency based on transparent polyaniline electrode, Scientific Reports, 2014, 4, 1-7.
[89] Q. Tai, X.-Z. Zhao, Pt-free transparent counter electrodes for cost-effective bifacial dye-sensitized solar cells, Journal of Materials Chemistry A, 2014, 2, 13207-13218.
[90] S.A. Hashemi, S. Ramakrishna, A.G. Aberle, Recent progress in flexible–wearable solar cells for self-powered electronic devices, Energy Environmental Science, 2020, 13, 685-743.
[91] L. Zhao, J. Duan, L. Liu, J. Wang, Y. Duan, L. Vaillant-Roca, X. Yang, Q. Tang, Boosting power conversion efficiency by hybrid triboelectric nanogenerator/silicon tandem solar cell toward rain energy harvesting, Nano Energy, 2021, 82, 105773.
[92] D. Yang, Y. Ni, H. Su, Y. Shi, Q. Liu, X. Chen, D. He, Hybrid energy system based on solar cell and self-healing/self-cleaning triboelectric nanogenerator, Nano Energy, 2021, 79, 105394.
[93] D.-L. Wen, P. Huang, H.-Y. Qian, Y.-Y. Ba, Z.-Y. Ren, C. Tu, T.-X. Gong, W. Huang, X.-S. Zhang, Hybrid nanogenerator-based self-powered double-authentication microsystem for smart identification, Nano Energy, 2021, 86, 106100.
[94] H. Wang, Z. Fan, T. Zhao, J. Dong, S. Wang, Y. Wang, X. Xiao, C. Liu, X. Pan, Y. Zhao, M. Xu, Sandwich-like triboelectric nanogenerators integrated self-powered buoy for navigation safety, Nano Energy, 2021, 84, 105920.
[95] W. Shang, G. Gu, W. Zhang, H. Luo, T. Wang, B. Zhang, J. Guo, P. Cui, F. Yang, G. Cheng, Z. Du, Rotational pulsed triboelectric nanogenerators integrated with synchronously triggered mechanical switches for high efficiency self-powered systems, Nano Energy, 2021, 82, 105725.
[96] D. Saranin, S. Pescetelli, A. Pazniak, D. Rossi, A. Liedl, A. Yakusheva, L. Luchnikov, D. Podgorny, P. Gostischev, S. Didenko, A. Tameev, D. Lizzit, M. Angelucci, R. Cimino, R. Larciprete, A. Agresti, A. Di Carlo, Transition metal carbides (MXenes) for efficient NiO-based inverted perovskite solar cells, Nano Energy, 2021, 82, 105771.
[97] T. Ozturk, E. Akman, A.E. Shalan, S. Akin, Composition engineering of operationally stable CsPbI2Br perovskite solar cells with a record efficiency over 17%, Nano Energy, 2021, 87, 106157.
[98] S. Manoharan, P. Pazhamalai, V.K. Mariappan, K. Murugesan, S. Subramanian, K. Krishnamoorthy, S.-J. Kim, Proton conducting solid electrolyte-piezoelectric PVDF hybrids: Novel bifunctional separator for self-charging supercapacitor power cell, Nano Energy, 2021, 83, 105753.
[99] T. Gokulnath, J. Choi, H.-Y. Park, K. Sung, Y. Do, H. Park, J. Kim, S.S. Reddy, J. Kim, M. Song, J. Yoon, S.-H. Jin, A wide-bandgap π-conjugated polymer for high-performance ternary organic solar cells with an efficiency of 17.40%, Nano Energy, 2021, 89, 106323.
[100] Z.L. Wang, Self-Powered Nanosensors and Nanosystems, Advanced Materials, 2012, 24, 280-285.
[101] H. Guo, X. Pu, J. Chen, Y. Meng, M.-H. Yeh, G. Liu, Q. Tang, B. Chen, D. Liu, S. Qi, A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids, Science Robotics, 2018, 3.
[102] D.R. Needell, M.E. Phelan, J.T. Hartlove, H.A. Atwater, Solar power windows: Connecting scientific advances to market signals, Energy, 2021, 219, 119567.
[103] F. Yi, X. Wang, S. Niu, S. Li, Y. Yin, K. Dai, G. Zhang, L. Lin, Z. Wen, H. Guo, A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring, Science Advances, 2016, 2, e1501624.
[104] Z. Wen, M.-H. Yeh, H. Guo, J. Wang, Y. Zi, W. Xu, J. Deng, L. Zhu, X. Wang, C. Hu, Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors, Science Advances, 2016, 2, e1600097.
[105] Z. Li, J. Chen, H. Guo, X. Fan, Z. Wen, M.H. Yeh, C. Yu, X. Cao, Z.L. Wang, Triboelectrification‐enabled self‐powered detection and removal of heavy metal ions in wastewater, Advanced Materials, 2016, 28, 2983-2991.
[106] H. Guo, M.-H. Yeh, Y.-C. Lai, Y. Zi, C. Wu, Z. Wen, C. Hu, Z.L. Wang, All-in-one shape-adaptive self-charging power package for wearable electronics, ACS Nano, 2016, 10, 10580-10588.
[107] T. Inoue, A. Fujishima, K. Honda, Photoelectrochromic characteristics of photoelectrochemical imaging system with a semiconductor/solution (metallic ion) junction, Journal of The Electrochemical Society, 1980, 127, 1582.
[108] D.W. DeBerry, A. Viehbeck, Photoelectrochromic Behavior of Prussian Blue‐Modified TiO2 Electrodes, Journal of The Electrochemical Society, 1983, 130, 249.
[109] O. Inganäs, I. Lundström, A photoelectrochromic memory and display device based on conducting polymers, Journal of the Electrochemical Society, 1984, 131, 1129.
[110] I. Bedja, S. Hotchandani, P.V. Kamat, Photoelectrochemistry of quantized WO3 colloids: electron storage, electrochromic, and photoelectrochromic effects, The Journal of Physical Chemistry, 2002, 97, 11064-11070.
[111] P. Monk, J. Duffy, M. Ingram, Electrochromic display devices of tungstic oxide containing vanadium oxide or cadmium sulphide as a light-sensitive layer, Electrochimica Acta, 1993, 38, 2759-2764.
[112] I. Bedja, S. Hotchandani, R. Carpentier, K. Vinodgopal, P.V. Kamat, Electrochromic and photoelectrochemical behavior of thin WO3 films prepared from quantized colloidal particles, Thin Solid Films, 1994, 247, 195-200.
[113] F. Pichot, S. Ferrere, R.J. Pitts, B.A. Gregg, Flexible solid‐state photoelectrochromic windows, Journal of the Electrochemical Society, 1999, 146, 4324.
[114] S. Kuwabata, K. Mitsui, H. Yoneyama, Photoelectrochromic properties of methylene blue in conducting polyaniline matrixes, Journal of the Electrochemical Society, 1992, 139, 1824.
[115] S. Yanagida, Y. Yu, K. Manseki, Iodine/iodide-free dye-sensitized solar cells, Accounts of Chemical Research, 2009, 42, 1827-1838.
[116] X. Yu, Y. Li, N. Zhu, Q. Yang, K. Kalantar-zadeh, A polyaniline nanofibre electrode and its application in a self-powered photoelectrochromic cell, Nanotechnology, 2006, 18, 015201.
[117] N.R. de Tacconi, J. Carmona, K. Rajeshwar, Reversibility of photoelectrochromism at the TiO2/methylene blue interface, Journal of the Electrochemical Society, 1997, 144, 2486.
[118] A. Hauch, A. Georg, U.O. Krašovec, B. Orel, Comparison of photoelectrochromic devices with different layer configurations, Journal of the Electrochemical Society, 2002, 149, H159.
[119] U.O. Krašovec, A. Georg, A. Georg, V. Wittwer, J. Luther, M. Topič, Performance of a solid-state photoelectrochromic device, Solar Energy Materials and Solar Cells, 2004, 84, 369-380.
[120] A. Georg, U.O. Krašovec, Photoelectrochromic window with Pt catalyst, Thin Solid Films, 2006, 502, 246-251.
[121] A. Georg, A. Georg, W. Graf, V. Wittwer, Switchable windows with tungsten oxide, Vacuum, 2008, 82, 730-735.
[122] J. Liao, K. Ho, A photoelectrochromic device using a PEDOT thin film, Journal of New Materials for Electrochemical Systems, 2005, 8, 37-47.
[123] L. Ma, Y. Li, X. Yu, N. Zhu, Q. Yang, C.-H.J.J.o.S.S.E. Noh, Electrochemical preparation of PMeT/TiO 2 nanocomposite electrochromic electrodes with enhanced long-term stability, 2008, 12, 1503-1509.
[124] F. Carlucci, A Review of Smart and Responsive Building Technologies and their Classifications, Future Cities and Environment, 2021, 7, 10.
[125] A. Cannavale, F. Martellotta, F. Fiorito, U. Ayr, The Challenge for Building Integration of Highly Transparent Photovoltaics and Photoelectrochromic Devices, Energies, 2020, 13, 1929.
[126] C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, B.A. Gregg, Photoelectrochromic windows and displays, Nature, 1996, 383, 608-610.
[127] A. Hauch, A. Georg, S. Baumgärtner, U.O. Krašovec, B. Orel, New photoelectrochromic device, Electrochimica Acta, 2001, 46, 2131-2136.
[128] J.-J. Wu, M.-D. Hsieh, W.-P. Liao, W.-T. Wu, J.-S. Chen, Fast-switching photovoltachromic cells with tunable transmittance, ACS Nano, 2009, 3, 2297-2303.
[129] A. Dokouzis, K. Theodosiou, G. Leftheriotis, Assessment of the long-term performance of partly covered photoelectrochromic devices under insolation and in storage, Solar Energy Materials and Solar Cells, 2018, 182, 281-293.
[130] G. Boschloo, A. Hagfeldt, Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells, Accounts of Chemical Research, 2009, 42, 1819-1826.
[131] X. Wu, J. Zheng, C. Xu, Highly optical performance photoelectrochromic device based on Br−/Br3− electrolyte, Electrochimica Acta, 2016, 191, 902-907.
[132] X. Wu, J. Zheng, G. Luo, D. Zhu, C. Xu, Photoelectrochromic devices based on cobalt complex electrolytes, RSC Advances, 2016, 6, 81680-81684.
[133] C.-Y. Hsu, K.-M. Lee, J.-H. Huang, K.J. Thomas, J.T. Lin, K.-C. Ho, A novel photoelectrochromic device with dual application based on poly (3, 4-alkylenedioxythiophene) thin film and an organic dye, Journal of Power Sources, 2008, 185, 1505-1508.
[134] S. Yang, J. Zheng, M. Li, C. Xu, A novel photoelectrochromic device based on poly(3,4-(2,2-dimethylpropylenedioxy)thiophene) thin film and dye-sensitized solar cell, Solar Energy Materials and Solar Cells, 2012, 97, 186-190.
[135] G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells, Nano Letters, 2006, 6, 215-218.
[136] T.N. Murakami, S. Ito, Q. Wang, M.K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Pechy, Highly efficient dye-sensitized solar cells based on carbon black counter electrodes, Journal of the Electrochemical Society, 2006, 153, A2255.
[137] K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J.-i. Nakamura, K. Murata, High-performance carbon counter electrode for dye-sensitized solar cells, Solar Energy Materials and Solar Cells, 2003, 79, 459-469.
[138] J. Chen, K. Li, Y. Luo, X. Guo, D. Li, M. Deng, S. Huang, Q. Meng, A flexible carbon counter electrode for dye-sensitized solar cells, Carbon, 2009, 47, 2704-2708.
[139] K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida, Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells, Chemistry Letters, 2003, 32, 28-29.
[140] J. Han, H. Kim, D.Y. Kim, S.M. Jo, S.-Y. Jang, Water-soluble polyelectrolyte-grafted multiwalled carbon nanotube thin films for efficient counter electrode of dye-sensitized solar cells, ACS Nano, 2010, 4, 3503-3509.
[141] J.D. Roy-Mayhew, D.J. Bozym, C. Punckt, I.A. Aksay, Functionalized graphene as a catalytic counter electrode in dye-sensitized solar cells, ACS Nano, 2010, 4, 6203-6211.
[142] N.-R. Chiou, C. Lu, J. Guan, L.J. Lee, A.J. Epstein, Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties, Nature Nanotechnology, 2007, 2, 354-357.
[143] J.M. D’Arcy, H.D. Tran, V.C. Tung, A.K. Tucker-Schwartz, R.P. Wong, Y. Yang, R.B. Kaner, Versatile solution for growing thin films of conducting polymers, Proceedings of the National Academy of Sciences, 2010, 107, 19673-19678.
[144] B.H. Lee, S.H. Park, H. Back, K. Lee, Novel Film‐Casting Method for High‐Performance Flexible Polymer Electrodes, Advanced Functional Materials, 2011, 21, 487-493.
[145] Q. Tai, B. Chen, F. Guo, S. Xu, H. Hu, B. Sebo, X.-Z. Zhao, In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells, ACS Nano, 2011, 5, 3795-3799.
[146] K. Lee, S. Cho, M. Kim, J. Kim, J. Ryu, K.-Y. Shin, J. Jang, Highly porous nanostructured polyaniline/carbon nanodots as efficient counter electrodes for Pt-free dye-sensitized solar cells, Journal of Materials Chemistry A, 2015, 3, 19018-19026.
[147] B. He, X. Zhang, H. Zhang, J. Li, Q. Meng, Q. Tang, Transparent molybdenum sulfide decorated polyaniline complex counter electrodes for efficient bifacial dye-sensitized solar cells, Solar Energy, 2017, 147, 470-478.
[148] 鄭朝元鄭朝元, 設計具高光著色效率之新穎混合式光驅動電致色變元件並實設計具高光著色效率之新穎混合式光驅動電致色變元件並實現光學互補特性現光學互補特性之研究之研究, 化學工程系化學工程系, 國立臺灣科技大學國立臺灣科技大學, 台北市台北市, 2020, pp. 130.
[149] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N.
Vlachopoulos, M. Grätzel, Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, Journal of the American Chemical Society, 1993, 115, 6382-6390.
[150] K. Zhang, Z. Cui, G. Xing, Y. Feng, S. Meng, Improved performance of dye-sensitized solar cells based on modified kaolin/PVDF-HFP composite gel electrolytes, RSC Advances, 2016, 6, 100079-100089.
[151] G. Boschloo, L. Häggman, A. Hagfeldt, Quantification of the effect of 4-tert-butylpyridine addition to I-/I3-redox electrolytes in dye-sensitized nanostructured TiO2 solar cells, The Journal of Physical Chemistry B, 2006, 110, 13144-13150.
[152] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Electrolytes in dye-sensitized solar cells, Chemical Reviews, 2015, 115, 2136-2173.
[153] S. Wang, M. Sina, P. Parikh, T. Uekert, B. Shahbazian, A. Devaraj, Y.S. Meng, Role of 4-tert-butylpyridine as a hole transport layer morphological controller in perovskite solar cells, Nano Letters, 2016, 16, 5594-5600.
[154] K. Kannankutty, C.-C. Chen, V.S. Nguyen, Y.-C. Lin, H.-H. Chou, C.-Y. Yeh, T.-C. Wei, tert-Butylpyridine Coordination with [Cu (dmp) 2] 2+/+ Redox Couple and Its Connection to the Stability of the Dye-Sensitized Solar Cell, ACS Applied Materials Interfaces, 2020, 12, 5812-5819.
[155] J. Zou, Q. Yan, C. Li, Y. Lu, Z. Tong, Y. Xie, Light-absorbing pyridine derivative as a new electrolyte additive for developing efficient porphyrin dye-sensitized solar cells, ACS Applied Materials Interfaces, 2020, 12, 57017-57024.
[156] N.M. Saidi, N. Farhana, S. Ramesh, K. Ramesh, Influence of different concentrations of 4-tert-butyl-pyridine in a gel polymer electrolyte towards improved performance of Dye-Sensitized Solar Cells (DSSC), Solar Energy, 2021, 216, 111-119.
[157] A.J. Bard, L.R. Faulkner, Fundamentals and applications, Electrochemical Methods, 2001, 2, 580-632.
[158] J. Colomer-Farrarons, P. Miribel-Català, A.I. Rodríguez-Villarreal, J. Samitier, Portable Bio-Devices: Design of electrochemical instruments from miniaturized to implantable devices, 2011.
[159] A. Lasia, Modeling of experimental data, Electrochemical Impedance Spectroscopy and its Applications, Springer2014, pp. 301-321.
[160] S. Wang, J. Tian, Recent advances in counter electrodes of quantum dot-sensitized solar cells, RSC Advances, 2016, 6, 90082-90099.
[161] B.J. Venton, Ultraviolet-Visible (UV-Vis) Spectroscopy, JoVE Science Education Database. Analytical Chemistry. , 2021.
[162] Y. Jusman, S.C. Ng, N.A. Abu Osman, Investigation of CPD and HMDS sample preparation techniques for cervical cells in developing computer-aided screening system based on FE-SEM/EDX, The Scientific World Journal, 2014, 2014.
[163] S. Mosca, C. Conti, N. Stone, P. Matousek, Spatially offset Raman spectroscopy, Nature Reviews Methods Primers, 2021, 1, 1-16.
[164] 林正嵐林正嵐, 普魯士藍薄膜電極電化學析鍍與氧化還原行為之研究普魯士藍薄膜電極電化學析鍍與氧化還原行為之研究, 化學工程學研究所化學工程學研究所, 國立臺灣大學國立臺灣大學, 台北市台北市, 2002, pp. 125.
[165] C.H. Yoon, R. Vittal, J. Lee, W.-S. Chae, K.-J. Kim, Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode, Electrochimica Acta, 2008, 53, 2890-2896.
[166] R. Islam, R. Chan-Yu-King, J.-F. Brun, C. Gors, A. Addad, M. Depriester, A. Hadj-Sahraoui, F. Roussel, Transport and thermoelectric properties of polyaniline/reduced graphene oxide nanocomposites, Nanotechnology, 2014, 25, 475705.
[167] M.-j. Li, C.-m. Liu, Y.-b. Xie, H.-b. Cao, H. Zhao, Y. Zhang, The evolution of surface charge on graphene oxide during the reduction and its application in electroanalysis, Carbon, 2014, 66, 302-311.
[168] S.Y. Huang, G. Schlichthörl, A.J. Nozik, M. Grätzel, A.J. Frank, Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells, The Journal of Physical Chemistry B, 1997, 101, 2576-2582.
[169] Y.-F. Lin, C.-T. Li, K.-C. Ho, A template-free synthesis of the hierarchical hydroxymethyl PEDOT tube-coral array and its application in dye-sensitized solar cells, Journal of Materials Chemistry A, 2016, 4, 384-394.
[170] M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, Journal of the American Chemical Society, 1993, 115, 6382-6390.
[171] A. Dokouzis, F. Bella, K. Theodosiou, C. Gerbaldi, G. Leftheriotis, Photoelectrochromic devices with cobalt redox electrolytes, Materials Today Energy, 2020, 15, 100365.
[172] I.T. Choi, M.J. Ju, S.H. Kang, M.S. Kang, B.S. You, J.Y. Hong, Y.K. Eom, S.H. Song, H.K. Kim, Structural effect of carbazole-based coadsorbents on the photovoltaic performance of organic dye-sensitized solar cells, Journal of Materials Chemistry A, 2013, 1, 9114-9121.
[173] C. Longo, A. Nogueira, M.-A. De Paoli, H. Cachet, Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy, The Journal of Physical Chemistry B, 2002, 106, 5925-5930.
[174] Q. Wang, J.-E. Moser, M. Grätzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells, The Journal of Physical Chemistry B, 2005, 109, 14945-14953.
[175] T. Liu, K. Yu, L. Gao, H. Chen, N. Wang, L. Hao, T. Li, H. He, Z. Guo, A graphene quantum dot decorated SrRuO 3 mesoporous film as an efficient counter electrode for high-performance dye-sensitized solar cells, Journal of Materials Chemistry A, 2017, 5, 17848-17855.
[176] T.M. Koh, K. Nonomura, N. Mathews, A. Hagfeldt, M. Grätzel, S.G. Mhaisalkar, A.C. Grimsdale, Influence of 4-tert-butylpyridine in DSCs with CoII/III redox mediator, The Journal of Physical Chemistry C, 2013, 117, 15515-15522.
[177] N.M. Saidi, N.K. Farhana, S. Ramesh, K. Ramesh, Influence of different concentrations of 4-tert-butyl-pyridine in a gel polymer electrolyte towards improved performance of Dye-Sensitized Solar Cells (DSSC), Solar Energy, 2021, 216, 111-119.
[178] J.-Y. Kim, J.Y. Kim, D.-K. Lee, B. Kim, H. Kim, M.J. Ko, Importance of 4-tert-butylpyridine in electrolyte for dye-sensitized solar cells employing SnO2 electrode, The Journal of Physical Chemistry C, 2012, 116, 22759-22766.
[179] A.L. Johnson, E. Muetterties, J. Stohr, F. Sette, Chemisorption geometry of pyridine on platinum (111) by NEXAFS, The Journal of Physical Chemistry, 1985, 89, 4071-4075.
[180] Y. Diamant, S. Chen, O. Melamed, A. Zaban, Core− shell nanoporous electrode for dye sensitized solar cells: the effect of the SrTiO3 shell on the electronic properties of the TiO2 core, The Journal of Physical Chemistry B, 2004, 107, 1977-1981.
[181] A. Gupta, K. Sahu, M. Dhonde, V.V.S. Murty, Novel synergistic combination of Cu/S co-doped TiO2 nanoparticles incorporated as photoanode in dye sensitized solar cell, Solar Energy, 2020, 203, 296-303.
[182] J. Zhang, J. Yang, G. Leftheriotis, H. Huang, Y. Xia, C. Liang, Y. Gan, W. Zhang, Integrated photo-chargeable electrochromic energy-storage devices, Electrochimica Acta, 2020, 345, 136235.
電子全文 電子全文(網際網路公開日期:20260831)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 含聚苯胺之電致色變元件之性質研究
2. 以聚苯胺及三氧化鎢薄膜搭配丁二腈/聚乙二醇固態電解質組裝可撓式互補型電致色變元件及其性質研究與效能最佳化
3. 互補式電致色變元件PANI-PEDOT光譜電化學與最適化之研究
4. 聚苯胺-銅奈米粒子修飾石墨烯之複合材料於氨氣感測之應用
5. 聚苯胺/還原石墨烯氧化物/奈米碳管三元複合電極材料應用於超級電容器之特性探討
6. 奈米氧化鐵/聚苯胺/還原氧化石墨烯奈米混成材料之電化學超級電容器特性研究
7. 三苯胺/苯乙烯系染料合成與其在敏化太陽能電池與電致變色元件之初步應用
8. 利用聚苯胺/多層奈米碳管/石墨烯複合材料製作染料敏化太陽能電池對電極之製程及性能研究
9. 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討
10. 以銀-氧化還原石墨烯複合薄膜製備染料敏化太陽能電池對電極之光電特性與催化能力分析
11. 碳材料改質光陽極在染料敏化太陽能電池之研究
12. 設計可撓式以還原氧化石墨烯與磁珠修飾二氧化鈦光陽極 染敏太陽能電池模組於低照度之光伏量測與等效電路分析
13. 設計具高光著色效率之新穎混合式光驅動電致色變元件並實現光學互補特性之研究
14. 應用奈米複合材料於染料敏化太陽能電池電極之研究
15. 探討以還原氧化石墨烯修飾鉑對電極設計AZO 光陽極串並聯染料敏化太陽能電池模組於低照度之 光伏量測、等效電路之阻抗分析與應用
 
無相關期刊