跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/25 21:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:溫采雲
研究生(外文):Claudia Meidi Lukman
論文名稱:釋放一氧化氮之磁性顆粒及改質之殼寡糖之抗菌研究
論文名稱(外文):Nitric Oxide-Releasing Magnetic Nanoparticles and Modified Chitosan Oligosaccharides As Antibacterial Agents
指導教授:李振綱李振綱引用關係
指導教授(外文):Cheng-Kang Lee
口試委員:Neralla Vijayakameswara RaoDuc-Thang Vo
口試委員(外文):Neralla Vijayakameswara RaoDuc-Thang Vo
口試日期:2021-09-10
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:75
中文關鍵詞:磁性納米顆粒氧化鐵(Fe3O4)樹枝狀聚合物聚(酰胺胺)聚合物聚乙烯亞胺改性殼聚醣硫聚體疏水改性殼聚醣一氧化氮抗菌活性
外文關鍵詞:Magnetic nanoparticleiron oxide (Fe3O4)dendrimerpoly(amidoamine)polymerpolyethyleneiminemodificationchitosan thiomerhydrophobically modified chitosannitric oxideantibacterial activity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生物相容性之一氧化氮 (NO) 傳遞系統在抗菌上的應用近年來頗受重視。而本論文是以磁性奈米顆粒(MNP)為一氧化氮之載體,開發可利用磁場回收再填充之一氧化氮傳遞系統,利用氨基丙基三乙氧基硅烷 (APTES) 表面改性MNP,用于從表面產生樹狀聚合物poly(amidoamine) (PAMAM),PAMAM合成到第 3 代 (G3)後與十二烷基醛和 DMAB 以Schiff-base反應產生二級胺結構。此外也利用3--缩水甘油基丙基三乙氧基硅烷(GPTES)修飾於MNP表面,再接枝 上PEI。利用MNP表面所接上之二級胺,施以 10 atm NO 以生成能釋放NO之diazeniumdiolate。所製備之NO 釋放MNP 經 FTIR、SEM、EDS 和 DLS分析,顆粒無聚集現象,粒徑約250 nm,其中MNP@PEI 1% 有最高的 NO 釋放能力 493 nM/h/mg/mL,且持續超過 3 天。MNP@PEI 1% 可以殺死 100% 的大腸桿菌和 53% 的金黃葡萄球菌。此外,殼聚糖硫聚体 (CS-SH) 和疏水改性殼聚糖 (HMCS) 也被製備用作 NO 釋放材料。硫醇殼聚糖硫聚体 CS-SH@NO 的 NO 釋放能力為 1.69 μM/h/mg/mL,以甲醇濃度 (60%, v/v) 作為 NO 充填的溶劑, HMCS@NO 之NO 釋放能力4.81 μM /h/mg/mL。 CS-SH@NO 可殺死 54% 的大腸桿菌和 36% 的金黃葡萄球菌,而HMCS@NO 可殺死約 66% 的大腸桿菌和42% 的金黃葡萄球菌。
Recently, a promising strategy for biocompatible nitric oxide (NO)-delivery systems has gained attention in therapeutic applications, especially antimicrobial applications to kill bacteria. In this study, the MNP was modified with aminopropyltriethoxysilane (APTES) for dendrimer grafting. Aminosilane-MNP was grafted with PAMAM dendrimer, and PAMAM generations were synthesized up to generation 3 (G3). Then, secondary amine N-diazeniumdiolate of PAMAM on MNP was synthesized via Schiff base reaction between amine groups of PAMAM and dodecyl aldehye and DMAB. Besides that, MNP was also modified with (3–Glycidylocypropyl)triethoxysilane (GPTES) for grafting PEI. Then, N-diazeniumdiolate of PEI was synthesized charging with 10 atm NO. The synthesized MNP NO-releasing materials were characterized by FTIR, SEM, EDS, and DLS. SEM images showed that the synthesized nanoparticle have uniform size and there is no aggregation between each particle, and the particle size diameter is ~250 nm. Compared to the other synthesized nanoparticle, MNP@PEI 1% have the highest NO release of 493 nM/h/mg/mL and last for over 3 days. The antibacterial activity was determined by using Gram negative (E. coli) and Gram positive (S. aureus). The result showed that MNP@PEI 1% could kill 100% of E. coli cells and 53% S. aureus cells. Furthermore, chitosan thiomer (CS-SH) and hydrophobically modified chitosan (HMCS) were also used as NO-releasing materials. S-nitrosothiol chitosan thiomer was synthesized via chitosan isothiouronium salt intermediate with thiourea reagent under microwave irradiation, followed with thiol nitrosation. The release rate of NO for CS-SH@NO was estimated to be 1.69 μM/h/mg/mL, and for HMCS@NO with methanol concentration (60%, v/v) as NO charging solvent was estimated to be 4.81 μM/h/mg/mL. CS-SH@NO could kill around 54% of E. coli cells and 36% of S. aureus cells, and HMCS@NO with methanol concentration (60%, v/v) could kill around 66% of E. coli cells and 42% of S. aureus cells.
摘要 i
ABSTRACT ii
ACKNOWLEDGEMENT iii
ABBREVIATIONS iv
TABLE OF CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES x
CHAPTER 1 1
INTRODUCTION 1
1.1. Background 1
1.2. Objectives 3
CHAPTER 2 4
LITERATURE REVIEW 4
2.1. Magnetic nanoparticles (MNPs) 4
2.2. Poly(amidoamine) (PAMAM) dendrimer 5
2.3. Polyethyleneimine (PEI) 8
2.4. Chitosan (CS), Thiolated Chitosan (CS-SH), and Hydrophobically Modified Chitosan (HMCS) 9
2.5. Nitric oxide (Nitrogen Monoxide, NO) 11
CHAPTER 3 14
MATERIALS AND METHOD 14
3.1. Materials 14
3.1.1. Bacteria 14
3.1.2. Chemical 14
3.2. Bacteria culture medium 15
3.3. Reagent 16
3.4. Apparatus 17
3.5. Characterization 18
3.6. Method 22
3.6.1. Preparation of silica-coated magnetic nanoparticles 22
3.6.2. Preparation of APTES-coated magnetic nanoparticles 23
3.6.3. Surface grafted PAMAM dendrimer 23
3.6.4. Synthesis of secondary amine on the surface of G3 23
3.6.5. Synthesis of secondary amine on the surface of MNP@GPTES by using PEI 24
3.6.6. Synthesis of N-Diazeniumdiolate-functionalized PAMAM dendrimer and PEI 24
3.6.7. Preparation of low molecular weight chitosan 26
3.6.8. Synthesis of thiolated chitosan (CS-SH) 26
3.6.9. Synthesis of S-nitrosothiol-modified chitosan 26
3.6.10. Synthesis of Hydrophobically modified chitosan (HMCS) 27
3.6.11. Synthesis of NONOates on HMCS 27
3.6.12. Antimicrobial activity 28
CHAPTER 4 30
RESULTS AND DISCUSSION 30
4.1. Characterization of MNPs and PAMAM dendrimer grafted MNPs 30
4.2. Characterization of MNPs and PEI grafted MNPs 35
4.3. Particle size distribution 39
4.4. Amino group content determination 40
4.5. NO release of N-diazeniumdiolates functionalized PAMAM and PEI 43
4.6. Antibacterial test 44
4.7. Characterization of CS, (CS-SH), and (HMCS) 45
4.8. NO release determination of S-nitrosothiol-modified CS-SH and N-diazeniumdiolates functionalized HMCS 48
4.9. Antibacterial test 50
CHAPTER 5 53
CONCLUSION AND FUTURE WORK 53
5.1. Conclusion 53
5.2. Future work 53
REFERENCES 55
Abdel-Magid, A. (2014). Reduction of C= O to CHOH by Metal Hydrides, Comprehensive Organic Synthesis II, Volume 8. EU Elsevier Ltd. doi: 10.1016. Retrieved from
Ahangaran, F., Hassanzadeh, A., & Nouri, S. (2013). Surface modification of Fe 3 O 4@ SiO 2 microsphere by silane coupling agent. International Nano Letters, 3(1), 1-5.
Al-Jabri, M. T. K., Devi, M. G., & Al Abri, M. (2018). Synthesis, characterization and application of magnetic nanoparticles in the removal of copper from aqueous solution. Applied Water Science, 8(8), 1-7.
Allafchian, A., & Hosseini, S. S. (2019). Antibacterial magnetic nanoparticles for therapeutics: a review. IET nanobiotechnology, 13(8), 786-799.
Atay, H. Y. (2019). Antibacterial activity of chitosan-based systems. Functional chitosan, 457.
Barbarić, M., Kralj, M., Marjanović, M., Husnjak, I., Pavelić, K., Filipović-Grčić, J., . . . Zorc, B. (2007). Synthesis and in vitro antitumor effect of diclofenac and fenoprofen thiolated and nonthiolated polyaspartamide-drug conjugates. European journal of medicinal chemistry, 42(1), 20-29.
Bernkop-Schnürch, A., Scholler, S., & Biebel, R. G. (2000). Development of controlled drug release systems based on thiolated polymers. Journal of Controlled Release, 66(1), 39-48.
Bhagavan, N. (2002). Chapter 2-Amino Acids. In (pp. 17-33): Academic Press: San Diego.
Bryan, N. S., & Grisham, M. B. (2007). Methods to detect nitric oxide and its metabolites in biological samples. Free radical biology and medicine, 43(5), 645-657.
Charles, S., Vasanthan, N., Kwon, D., Sekosan, G., & Ghosh, S. (2012). Surface modification of poly (amidoamine)(PAMAM) dendrimer as antimicrobial agents. Tetrahedron letters, 53(49), 6670-6675.
Chauhan, K., Singh, P., & Singhal, R. K. (2015). New chitosan–thiomer: an efficient colorimetric sensor and effective sorbent for mercury at ultralow concentration. ACS Applied Materials & Interfaces, 7(47), 26069-26078.
Cheung, R. C. F., Ng, T. B., Wong, J. H., & Chan, W. Y. (2015). Chitosan: an update on potential biomedical and pharmaceutical applications. Marine drugs, 13(8), 5156-5186.
Chung, Y.-C., Wang, H.-L., Chen, Y.-M., & Li, S.-L. (2003). Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Bioresource technology, 88(3), 179-184.
Clemons, T. D., Kerr, R. H., & Joos, A. (2019). Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. In Comprehensive nanoscience and nanotechnology: Volume 3: Biological nanoscience (pp. 193-210): Elsevier BV.
Dowling, M. B., Kumar, R., Keibler, M. A., Hess, J. R., Bochicchio, G. V., & Raghavan, S. R. (2011). A self-assembling hydrophobically modified chitosan capable of reversible hemostatic action. Biomaterials, 32(13), 3351-3357.
Du, X., Liu, Y., Wang, X., Yan, H., Wang, L., Qu, L., . . . Wang, L. (2019). Injectable hydrogel composed of hydrophobically modified chitosan/oxidized-dextran for wound healing. Materials Science and Engineering: C, 104, 109930.
Dung, T. T., Danh, T. M., Duc, N. H., & Chien, D. M. (2009). Preparation and characterization of magnetic nanoparticles coated with polyethylene glycol. Paper presented at the Journal of Physics: Conference Series.
Ertürk, A. S., & Elmacı, G. (2018). PAMAM dendrimer functionalized manganese ferrite magnetic nanoparticles: microwave-assisted synthesis and characterization. Journal of Inorganic and Organometallic Polymers and Materials, 28(5), 2100-2107.
Fernandes, M. M., Francesko, A., Torrent-Burgués, J., & Tzanov, T. (2013). Effect of thiol-functionalisation on chitosan antibacterial activity: Interaction with a bacterial membrane model. Reactive and Functional Polymers, 73(10), 1384-1390.
Ganzarolli de Oliveira, M. (2016). S‐Nitrosothiols as platforms for topical nitric oxide delivery. Basic & clinical pharmacology & toxicology, 119, 49-56.
Homogen, M. (2018). Synthesis and physicochemical properties of magnetite nanoparticles (Fe3O4) as potential solid support for homogeneous catalysts. Malaysian Journal of Analytical Sciences, 22(5), 768-774.
Hong, S., Bielinska, A. U., Mecke, A., Keszler, B., Beals, J. L., Shi, X., . . . Banaszak Holl, M. M. (2004). Interaction of poly (amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjugate chemistry, 15(4), 774-782.
Hrabie, J. A., & Keefer, L. K. (2002). Chemistry of the nitric oxide-releasing diazeniumdiolate (“nitrosohydroxylamine”) functional group and its oxygen-substituted derivatives. Chemical reviews, 102(4), 1135-1154.
Hussain, Z., Yousif, E., Ahmed, A., & Altaie, A. (2014). Synthesis and characterization of Schiff's bases of sulfamethoxazole. Organic and medicinal chemistry letters, 4(1), 1-4.
Jen, M. C., Serrano, M. C., Van Lith, R., & Ameer, G. A. (2012). Polymer‐based nitric oxide therapies: Recent insights for biomedical applications. Advanced functional materials, 22(2), 239-260.
Kainz, Q. M., & Reiser, O. (2014). Polymer-and dendrimer-coated magnetic nanoparticles as versatile supports for catalysts, scavengers, and reagents. Accounts of chemical research, 47(2), 667-677.
Keçili, R., Büyüktiryaki, S., Dolak, İ., & Hussain, C. M. (2020). The use of magnetic nanoparticles in sample preparation devices and tools. In Handbook of Nanomaterials in Analytical Chemistry (pp. 75-95): Elsevier.
Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry, 12(7), 908-931.
Khodadust, R., Unsoy, G., Yalcın, S., Gunduz, G., & Gunduz, U. (2013). PAMAM dendrimer-coated iron oxide nanoparticles: synthesis and characterization of different generations. Journal of nanoparticle research, 15(3), 1-13.
Kong, M., Chen, X. G., Liu, C. S., Liu, C. G., & Meng, X. H. (2008). Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli. Colloids and Surfaces B: Biointerfaces, 65(2), 197-202.
Li, D., Xu, F., Shao, L., & Wang, M. (2015). Effect of the addition of 3-glycidoxypropyltrimethoxysilane to tetraethoxyorthosilicate-based stone protective coating using n-octylamine as a catalyst. Bulletin of Materials Science, 38(1), 49-55.
Li, Y. Y., Chen, X. G., Yu, L. M., Wang, S. X., Sun, G. Z., & Zhou, H. Y. (2006). Aggregation of hydrophobically modified chitosan in solution and at the air–water interface. Journal of Applied Polymer Science, 102(2), 1968-1973.
Liu, S., Liang, H., Sun, T., Yang, D., & Cao, M. (2018). A recoverable dendritic polyamidoamine immobilized TEMPO for efficient catalytic oxidation of cellulose. Carbohydrate polymers, 202, 563-570.
Lu, W., Ling, M., Jia, M., Huang, P., Li, C., & Yan, B. (2014). Facile synthesis and characterization of polyethylenimine-coated Fe3O4 superparamagnetic nanoparticles for cancer cell separation. Molecular medicine reports, 9(3), 1080-1084.
Lu, Y., Slomberg, D. L., & Schoenfisch, M. H. (2014). Nitric oxide-releasing chitosan oligosaccharides as antibacterial agents. Biomaterials, 35(5), 1716-1724.
Lu, Y., Slomberg, D. L., Shah, A., & Schoenfisch, M. H. (2013). Nitric oxide-releasing amphiphilic poly (amidoamine)(PAMAM) dendrimers as antibacterial agents. Biomacromolecules, 14(10), 3589-3598.
Lu, Y., Slomberg, D. L., Sun, B., & Schoenfisch, M. H. (2013). Shape‐and nitric oxide flux‐dependent bactericidal activity of nitric oxide‐releasing silica nanorods. Small, 9(12), 2189-2198.
Lungu, C. N., Diudea, M. V., Putz, M. V., & Grudziński, I. P. (2016). Linear and branched PEIs (polyethylenimines) and their property space. International journal of molecular sciences, 17(4), 555.
Lyu, Z., Ding, L., Huang, A.-T., Kao, C.-L., & Peng, L. (2019). Poly (amidoamine) dendrimers: Covalent and supramolecular synthesis. Materials Today Chemistry, 13, 34-48.
Maghami, G. G., & Roberts, G. A. (1988). Evaluation of the viscometric constants for chitosan. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 189(1), 195-200.
Miao, Q., Mi, Y., Cui, J., Zhang, J., Tan, W., Li, Q., & Guo, Z. (2021). Determination of chitosan content with Schiff base method and HPLC. International Journal of Biological Macromolecules.
Miller, M., & Megson, I. (2007). Recent developments in nitric oxide donor drugs. British journal of pharmacology, 151(3), 305-321.
Moratti, S., & Cabral, J. (2017). Antibacterial properties of chitosan. In Chitosan Based Biomaterials Volume 1 (pp. 31-44): Elsevier.
Mousavi, M., & Fini, E. (2020). Silanization mechanism of silica nanoparticles in bitumen using 3-aminopropyl triethoxysilane (APTES) and 3-glycidyloxypropyl trimethoxysilane (GPTMS). ACS Sustainable Chemistry & Engineering, 8(8), 3231-3240.
Nguyen, A. H., Abdelrasoul, G. N., Lin, D., Maadi, H., Tong, J., Chen, G., . . . Fang, Q. (2018). Polyethylenimine-coated iron oxide magnetic nanoparticles for high efficient gene delivery. Applied Nanoscience, 8(4), 811-821.
No, H. K., Park, N. Y., Lee, S. H., & Meyers, S. P. (2002). Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International journal of food microbiology, 74(1-2), 65-72.
Nosrati, H., Salehiabar, M., Davaran, S., Ramazani, A., Manjili, H. K., & Danafar, H. (2017). New advances strategies for surface functionalization of iron oxide magnetic nano particles (IONPs). Research on chemical intermediates, 43(12), 7423-7442.
Pan, B., Cui, D., Sheng, Y., Ozkan, C., Gao, F., He, R., . . . Huang, T. (2007). Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer research, 67(17), 8156-8163.
Pawar, S. H., Rohiwal, S. S., & Yakhmi, J. (2017). Organic-inorganic antimicrobial nanostructures for health care applications. Biomaterials and Tissue Engineering Bulletin, 4(1-4), 66-80.
Pelegrino, M., Natividade, T., Gonçalves, M., Nakazato, G., & Seabra, A. (2021). Thiolate chitosan nanoparticles capable to delivery nitric oxide: synthesis, characterization and antibacterial potential. Paper presented at the Journal of Physics: Conference Series.
Pelegrino, M. T., Pieretti, J. C., Nakazato, G., Gonçalves, M. C., Moreira, J. C., & Seabra, A. B. (2021). Chitosan chemically modified to deliver nitric oxide with high antibacterial activity. Nitric Oxide, 106, 24-34.
Quinn, J. F., Whittaker, M. R., & Davis, T. P. (2015). Delivering nitric oxide with nanoparticles. Journal of Controlled Release, 205, 190-205.
Ren, Q., Shen, X., Sun, Y., Fan, R., & Zhang, J. (2020). A highly sensitive competitive immunosensor based on branched polyethyleneimine functionalized reduced graphene oxide and gold nanoparticles modified electrode for detection of melamine. Food chemistry, 304, 125397.
Rho, W.-Y., Kim, H.-M., Kyeong, S., Kang, Y.-L., Kim, D.-H., Kang, H., . . . Jun, B.-H. (2014). Facile synthesis of monodispersed silica-coated magnetic nanoparticles. Journal of Industrial and Engineering Chemistry, 20(5), 2646-2649.
Riccio, D. A., & Schoenfisch, M. H. (2012). Nitric oxide release: Part I. Macromolecular scaffolds. Chemical Society Reviews, 41(10), 3731-3741.
Rodrigues, G. R., López-Abarrategui, C., de la Serna Gómez, I., Dias, S. C., Otero-González, A. J., & Franco, O. L. (2019). Antimicrobial magnetic nanoparticles based-therapies for controlling infectious diseases. International journal of pharmaceutics, 555, 356-367.
Ruocco, N., Frielinghaus, H., Vitiello, G., D’Errico, G., Leal, L. G., Richter, D., . . . Paduano, L. (2015). How hydrophobically modified chitosans are stabilized by biocompatible lipid aggregates. Journal of colloid and interface science, 452, 160-168.
Sadrearhami, Z., Nguyen, T.-K., Namivandi-Zangeneh, R., Jung, K., Wong, E. H., & Boyer, C. (2018). Recent advances in nitric oxide delivery for antimicrobial applications using polymer-based systems. Journal of Materials Chemistry B, 6(19), 2945-2959.
Santos, V. P., Marques, N. S., Maia, P. C., Lima, M. A. B. d., Franco, L. d. O., & Campos-Takaki, G. M. d. (2020). Seafood waste as attractive source of chitin and chitosan production and their applications. International journal of molecular sciences, 21(12), 4290.
Savliwala, S., Chiu-Lam, A., Unni, M., Rivera-Rodriguez, A., Fuller, E., Sen, K., . . . Rinaldi, C. (2020). Magnetic nanoparticles. In Nanoparticles for Biomedical Applications (pp. 195-221): Elsevier.
Seabra, A. B., & Durán, N. (2010). Nitric oxide-releasing vehicles for biomedical applications. Journal of Materials Chemistry, 20(9), 1624-1637.
Sharafi, Z., Bakhshi, B., Javidi, J., & Adrangi, S. (2018). Synthesis of silica-coated iron oxide nanoparticles: preventing aggregation without using additives or seed pretreatment. Iranian journal of pharmaceutical research: IJPR, 17(1), 386.
Shukla, R., Thomas, T. P., Peters, J., Kotlyar, A., Myc, A., & Baker Jr, J. R. (2005). Tumor angiogenic vasculature targeting with PAMAM dendrimer–RGD conjugates. Chemical communications(46), 5739-5741.
Singh, A., & Dubey, A. K. (2018). Various biomaterials and techniques for improving antibacterial response. ACS Applied Bio Materials, 1(1), 3-20.
Singh, R., Smitha, M., & Singh, S. P. (2014). The role of nanotechnology in combating multi-drug resistant bacteria. Journal of nanoscience and nanotechnology, 14(7), 4745-4756.
Stiriba, S. E., Frey, H., & Haag, R. (2002). Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy. Angewandte Chemie International Edition, 41(8), 1329-1334.
Tachaboonyakiat, W. (2017). Antimicrobial applications of chitosan. In Chitosan Based Biomaterials Volume 2 (pp. 245-274): Elsevier.
Tahir, T. F., Salhin, A., & Ghani, S. A. (2012). Flow injection analysis of mercury using 4-(dimethylamino) benzaldehyde-4-ethylthiosemicarbazone as the ionophore of a coated wire electrode. Sensors, 12(11), 14968-14982.
Taira, S., Kaneko, D., Onuma, K., Miyazato, A., Hiroki, T., Kawamura-Konishi, Y., & Ichiyanagi, Y. (2012). Synthesis and characterization of functionalized magnetic nanoparticles for the detection of pesticide. International Journal of Inorganic Chemistry, 2012.
Tang, Y.-H., Ya-Ting Huang, A., Chen, P.-Y., Chen, H.-T., & Kao, C.-L. (2011). Metallodendrimers and dendrimer nanocomposites. Current pharmaceutical design, 17(22), 2308-2330.
Thomas, T. P., Patri, A. K., Myc, A., Myaing, M. T., Ye, J. Y., Norris, T. B., & Baker, J. R. (2004). In vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles. Biomacromolecules, 5(6), 2269-2274.
Tiringer, U., Milošev, I., Durán, A., & Castro, Y. (2018). Hybrid sol–gel coatings based on GPTMS/TEOS containing colloidal SiO 2 and cerium nitrate for increasing corrosion protection of aluminium alloy 7075-T6. Journal of Sol-Gel Science and Technology, 85(3), 546-557.
Tomalia, D. A., Baker, H., Dewald, J., Hall, M., Kallos, G., Martin, S., . . . Smith, P. (1985). A new class of polymers: starburst-dendritic macromolecules. Polymer journal, 17(1), 117-132.
Torrico, R. F., Harb, S. V., Trentin, A., Uvida, M. C., Pulcinelli, S. H., Santilli, C. V., & Hammer, P. (2018). Structure and properties of epoxy-siloxane-silica nanocomposite coatings for corrosion protection. Journal of colloid and interface science, 513, 617-628.
Trivedi, M. K., Patil, S., Shettigar, H., Singh, R., & Jana, S. (2015). An impact of biofield treatment on spectroscopic characterization of pharmaceutical compounds. Modern Chemistry & Applications, 3(3).
Tsai, G., Su, W.-H., Chen, H.-C., & Pan, C.-L. (2002). Antimicrobial activity of shrimp chitin and chitosan from different treatments. Fisheries science, 68(1), 170-177.
ur Rahman, O., Mohapatra, S. C., & Ahmad, S. (2012). Fe3O4 inverse spinal super paramagnetic nanoparticles. Materials Chemistry and Physics, 132(1), 196-202.
Ustinova, T., Yuidin, M., Vengerovich, N., Stepanov, A., & Gadzikovskii, S. (2018). Comparative analysis of polyethyleneimine efficiency for improvement of plasmid DNA bioavailability. Bulletin of experimental biology and medicine, 164(4), 473-477.
Vigl, C., Leithner, K., Albrecht, K., & Bernkop-Schnurch, A. (2009). The efflux pump inhibitory properties of (thiolated) polyallylamines. Journal of drug delivery science and technology, 19(6), 405-411.
Vo, D.-T., & Lee, C.-K. (2017). Cells capture and antimicrobial effect of hydrophobically modified chitosan coating on Escherichia coli. Carbohydrate polymers, 164, 109-117.
Vo, D.-T., & Lee, C.-K. (2018). Antimicrobial sponge prepared by hydrophobically modified chitosan for bacteria removal. Carbohydrate polymers, 187, 1-7.
Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: present situation and prospects for the future. International journal of nanomedicine, 12, 1227.
Weng, L., Rostamzadeh, P., Nooryshokry, N., Le, H. C., & Golzarian, J. (2013). In vitro and in vivo evaluation of biodegradable embolic microspheres with tunable anticancer drug release. Acta biomaterialia, 9(6), 6823-6833.
Wo, Y., Brisbois, E. J., Bartlett, R. H., & Meyerhoff, M. E. (2016). Recent advances in thromboresistant and antimicrobial polymers for biomedical applications: just say yes to nitric oxide (NO). Biomaterials science, 4(8), 1161-1183.
Won, C.-Y., Chu, C.-C., & Yu, T.-J. (1997). Synthesis of starch-based drug carrier for the control/release of estrone hormone. Carbohydrate polymers, 32(3-4), 239-244.
Xu, Z., Hou, Y., & Sun, S. (2007). Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. Journal of the American Chemical Society, 129(28), 8698-8699.
Yin, M., Li, X., Liu, Y., & Ren, X. (2021). Functional chitosan/glycidyl methacrylate-based cryogels for efficient removal of cationic and anionic dyes and antibacterial applications. Carbohydrate polymers, 266, 118129.
Yin, M., Wan, S., Ren, X., & Chu, C.-C. (2021). Development of Inherently Antibacterial, Biodegradable, and Biologically Active Chitosan/Pseudo-Protein Hybrid Hydrogels as Biofunctional Wound Dressings. ACS Applied Materials & Interfaces, 13(12), 14688-14699.
Zhoua, Q., Wu, Y., Sun, Y., Sheng, X., Tong, Y., Guo, J., . . . Zhao, J. (2021). Magnetic polyamidoamine dendrimers for magnetic separation and sensitive determination of organochlorine pesticides from water samples by high-performance liquid chromatography. Journal of Environmental Sciences, 102, 64-73.
Ziegler-Borowska, M., Chełminiak, D., Siódmiak, T., Sikora, A., Marszałł, M. P., & Kaczmarek, H. (2014). Synthesis of new chitosan coated magnetic nanoparticles with surface modified with long-distanced amino groups as a support for bioligands binding. Materials Letters, 132, 63-65.
電子全文 電子全文(網際網路公開日期:20240922)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊