|
[1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte,K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science, vol. 254,pp. 1178–1181, 1991. [2] W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography. Springer International Publishing,2015. [3] J. Zhu, C. W. Merkle, M. T. Bernucci, S. P. Chong, and V. J. Srinivasan, “Can oct angiography be made a quantitative blood measurement tool?,” Applied Sciences (Switzerland), vol. 7, 7 2017. [4] J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography–a review [invited],” Biomedical Optics Express, vol. 8, p. 1838, 3 2017. [5] M. Zhou, H. Roodaki, A. Eslami, G. Chen, K. Huang, M. Maier, C. P. Lohmann, A. Knoll, and M. A.Nasseri, “Needle segmentation in volumetric optical coherence tomography images for ophthalmic microsurgery, Applied Sciences (Switzerland), vol. 7, 7 2017. [6] A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Optics Communications, vol. 117, pp. 43–48, 1995. [7] M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and fourier domain optical coherence tomography,” Opt. Express, vol. 11, pp. 2183–2189, Sep 2003. [8] G. T. Reed and A. P. Knights, Silicon Photonics. Wiley, 2008. [9] D. Culemann, A. Knuettel, and E. Voges, “Integrated optical sensor in glass for optical coherence tomography (oct),” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 5, pp. 730–734, 2000. [10] G. Yurtsever, K. Komorowska, and R. Baets, “Low dispersion integrated michelson interferometer on silicon on insulator for optical coherence tomography,” in Optical Coherence Tomography and Coherence Techniques V, p. 80910T, Optical Society of America, 2011. [11] V. D. Nguyen, N. Weiss, W. Beeker, M. Hoekman, A. Leinse, R. G. Heideman, T. G. van Leeuwen, and J. Kalkman, “Integrated-optics-based swept-source optical coherence tomography,” Opt. Lett., vol. 37, pp. 4820–4822, Dec 2012. [12] B. I. Akca, B. Považay, A. Alex, K. Wörhoff, R. M. de Ridder, W. Drexler, and M. Pollnau, “Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip,” Optics Express, vol. 21, p. 16648, 7 2013. [13] T. G. V. Leeuwen, I. B. Akca, N. Angelou, N. Weiss, M. Hoekman, A. Leinse, and R. G. Heideman, “Onchip mach-zehnder interferometer for oct systems,” Advanced Optical Technologies, vol. 7, pp. 103–106, 4 2018. [14] M. S. Eggleston, F. Pardo, C. Bolle, B. Farah, N. Fontaine, H. Safar, M. Cappuzzo, C. Pollock, D. J.Bishop, and M. P. Earnshaw, “90db sensitivity in a chip-scale swept-source optical coherence tomography system,” in 2018 Conference on Lasers and Electro-Optics (CLEO), pp. 1–2, 2018. [15] G. Lan and G. Li, “Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography,” Scientific Reports, vol. 7, 3 2017. [16] T. Wu, S. Sun, X. Wang, H. Zhang, C. He, J. Wang, X. Gu, and Y. Liu, “Optimization of linearwavenumber spectrometer for high-resolution spectral domain optical coherence tomography,” Optics Communications, vol. 405, pp. 171–176, 12 2017. [17] W. Eickhoff and R. Ulrich, “Optical frequency-domain reflectometry in single-mode fibers,” in Integrated Optics and Optical Fiber Communication, p. WF3, Optical Society of America, 1981. [18] K. Iizuka, Y. Imai, A. P. Freundorfer, R. James, R. Wong, and S. Fujii, “Optical step frequency reflectometer,”Journal of Applied Physics, vol. 68, pp. 932–936, 1990. [19] J. Nakayama, K. Iizuka, and J. Nielsen, “Optical fiber fault locator by the step frequency method,” Appl.Opt., vol. 26, pp. 440–443, Feb 1987. [20] M. Nazarathy, D. W. Dolfi, and S. A. Newton, “5 mm resolution optical frequency domain reflectometry using coded phase reversal modulator,” in Optical Fiber Sensors, p. WDD7, Optical Society of America, 1988. [21] K. IIZUKA, Y. IMAI, A. P. FREUNDORFER, R. JAMES, R. WONG, and S. FUJII, “Optical step frequency reflectometry,” in Conference on Lasers and Electro-Optics, p. CTHP4, Optical Society of America,1990. [22] U. Glombitza and E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” Journal of Lightwave Technology, vol. 11, no. 8, pp. 1377–1384, 1993. [23] E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett., vol. 17, pp. 151–153, Jan 1992. [24] C. Akcay, P. Parrein, and J. P. Rolland, “Estimation of longitudinal resolution in optical coherence imaging,”Appl. Opt., vol. 41, pp. 5256–5262, Sep 2002. [25] Z. Hu, Y. Pan, and A. M. Rollins, “Analytical model of spectrometer-based two-beam spectral interferometry,”Appl. Opt., vol. 46, pp. 8499–8505, Dec 2007. [26] R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express, vol. 11, pp. 889–894, Apr 2003. [27] M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and fourier domain optical coherence tomography,” Opt. Express, vol. 11, pp. 2183–2189, Sep 2003. [28] J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signalto-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.,vol. 28, pp. 2067–2069, Nov 2003. [29] R. Stierlin, R. Bättig, P. D. Henchoz, and P. H. Weber, “Excess-noise suppression in a fibre-optic balanced heterodyne detection system,” Optical and Quantum Electronics, vol. 18, p. 445–454, Nov 1986. [30] W.-C. Kuo, C.-M. Lai, Y.-S. Huang, C.-Y. Chang, and Y.-M. Kuo, “Balanced detection for spectral domain optical coherence tomography,” Opt. Express, vol. 21, pp. 19280–19291, Aug 2013. [31] E. Bo, X. Liu, S. Chen, X. Yu, X. Wang, and L. Liu, “Spectral-domain optical coherence tomography with dual-balanced detection for auto-correlation artifacts reduction,” Opt. Express, vol. 23, pp. 28050–28058, Oct 2015. [32] K. Tsuji, K. Shimizu, T. Horiguchi, and Y. Koyamada, “Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearisation,” Electronics Letters, vol. 33, no. 5, pp. 408–410, 1997. [33] K. Iiyama, Lu-Tang Wang, and Ken-Ichi Hayashi, “Linearizing optical frequency-sweep of a laser diode for fmcw reflectometry,” Journal of Lightwave Technology, vol. 14, no. 2, pp. 173–178, 1996. [34] Kao-Yang Huang and G. M. Carter, “Coherent optical frequency domain reflectometry (ofdr) using a fiber grating external cavity laser,” IEEE Photonics Technology Letters, vol. 6, no. 12, pp. 1466–1468, 1994. [35] T.-J. Ahn and D. Y. Kim, “Analysis of nonlinear frequency sweep in high-speed tunable laser sources using a self-homodyne measurement and hilbert transformation,” Appl. Opt., vol. 46, pp. 2394–2400, May 2007. [36] E. D. Moore and R. R. McLeod, “Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry,” Opt. Express, vol. 16, pp. 13139–13149, Aug 2008. [37] K. Yüksel, M. Wuilpart, and P. Mégret, “Analysis and suppression of nonlinear frequency modulation in an optical frequency-domain reflectometer,” Opt. Express, vol. 17, pp. 5845–5851, Mar 2009. [38] H. Rosenfeldt, C. Knothe, J. Cierullies, and E. Brinkmeyer, “Evolution of amplitude and dispersion spectra during fiber bragg grating fabrication,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, p. BWA4, Optical Society of America, 2001. [39] B. Boashash, “Estimating and interpreting the instantaneous frequency of a signal. i. fundamentals,” Proceedings of the IEEE, vol. 80, no. 4, pp. 520–538, 1992. [40] B. Cense, N. A. Nassif, T. C. Chen, M. C. Pierce, S.-H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express, vol. 12, pp. 2435–2447, May 2004. [41] M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation,”Opt. Express, vol. 12, pp. 2404–2422, May 2004. [42] K. Singh, G. Sharma, and G. J. Tearney, “Estimation and compensation of dispersion for a high-resolution optical coherence tomography system,” Journal of Optics, vol. 20, p. 025301, jan 2018. [43] N. Lippok, S. Coen, P. Nielsen, and F. Vanholsbeeck, “Dispersion compensation in fourier domain optical coherence tomography using the fractional fourier transform,” Opt. Express, vol. 20, pp. 23398–23413, Oct 2012. [44] A. Bradu, M. Maria, and A. G. Podoleanu, “Demonstration of tolerance to dispersion of master/slave interferometry,” Opt. Express, vol. 23, pp. 14148–14161, Jun 2015. [45] K. Wang and Z. Ding, “Spectral calibration in spectral domain optical coherence tomography,” Chin. Opt. Lett., vol. 6, pp. 902–904, Dec 2008. [46] X. Attendu, R. M. Ruis, C. Boudoux, T. G. van Leeuwen, and D. J. Faber, “Simple and robust calibration procedure for k-linearization and dispersion compensation in optical coherence tomography,” Journal of Biomedical Optics, vol. 24, no. 5, pp. 1 – 11, 2019. [47] A. Reilly, G. Frazer, and B. Boashash, “Analytic signal generation-tips and traps,” IEEE Transactions on Signal Processing, vol. 42, no. 11, pp. 3241–3245, 1994. [48] K. M. Ratheesh, L. K. Seah, and V. M. Murukeshan, “Spectral phase-based automatic calibration scheme for swept source-based optical coherence tomography systems,” Physics in Medicine and Biology, vol. 61, pp. 7652–7663, oct 2016. [49] S.-H. Hsu, Y.-C. Yang, Y.-H. Su, S.-M. Wang, S.-A. Huang, and C.-Y. Lin, “Biosensing using microring resonator interferograms,” Sensors, vol. 14, no. 1, pp. 1184–1194, 2014. [50] Synopsis, “Rsoft.” https://www.synopsys.com/company.html. Accessed: 2020-10-19. [51] C. K. Madsen and J. H. Zhao, Optical filter design and analysis : a signal processing approach. John Wiley, 1999. [52] A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering). USA: Oxford University Press, Inc., 2006. [53] E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express, vol. 14, pp. 3853–3863, May 2006. [54] J.-M. Jin, The finite element method in electromagnetics, 3rd Edition. Wiley-IEEE Press, 2014. [55] W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” IEEE Journal of Quantum Electronics, vol. 29, no. 10, pp. 2639–2649, 1993. [56] M. Heiblum and J. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE Journal of Quantum Electronics, vol. 11, no. 2, pp. 75–83, 1975. [57] W. A. Gambling, H. Matsumura, and C. M. Ragdale, “Field deformation in a curved single-mode fibre,”Electronics Letters, vol. 14, no. 5, pp. 130–132, 1978. [58] K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, “Mach-zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio,”Electronics Letters, vol. 26, no. 17, pp. 1326–1327, 1990. [59] B. E. Little and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using mach-zehnder structures,” IEEE Photonics Technology Letters, vol. 9, no. 12, pp. 1607–1609, 1997. [60] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 vol.4, 1995. [61] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and convergence in a multidimensional complex space,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002. [62] Y.-T. Lu, B. Y. B. Widhianto, S.-H. Hsu, and C.-C. Chang, “Tandem mach zehnder directional coupler design and simulation on silicon platform for optical coherence tomography applications,” Sensors, vol. 20, p. 1054, Feb 2020. [63] B. Y. B. Widhianto, Y. T. Lu, W. C. Chang, and S. H. Hsu, “Broadband coupler manipulation through particle swarm optimization for arrayed waveguide grating based optical coherence tomography,” IEEE Photonics Journal, vol. 13, no. 1, pp. 1–13, 2021. [64] C. R. Pollock and M. Lipson, Numerical Methods for Analyzing Optical Waveguides, pp. 209–239. Boston, MA: Springer US, 2003. [65] B. K. X. J. MLeijtens and M. K. Smit, Arrayed Waveguide Gratings, pp. 125–187. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. [66] A. R. Vellekoop and M. K. Smit, “Four-channel integrated-optic wavelength demultiplexer with weak polarization dependence,” Journal of Lightwave Technology, vol. 9, no. 3, pp. 310–314, 1991. [67] A. R. Vellekoop and M. K. Smit, “Low-loss planar optical polarisation splitter with small dimensions,”Electronics Letters, vol. 25, no. 15, pp. 946–947, 1989. [68] H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electronics Letters, vol. 26, no. 2, pp. 87–88, 1990. [69] H. Takahashi, I. Nishi, and Y. Hibino, “10 ghz spacing optical frequency division multiplexer based on arrayed-waveguide grating,” Electronics Letters, vol. 28, no. 4, pp. 380–380, 1992. [70] A. Kaneko, T. Goh, H. Yamada, T. Tanaka, and L. Ogawa, “Design and applications of silica-based planar lightwave circuits,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, no. 5, pp. 1227–1236, 1999. [71] L. Eldada, J. Fujita, A. Radojevic, T. Izuhara, R. Gerhardt, J. Shi, D. Pant, F. Wang, and A. Malek, “40-channel ultra-low-power compact plc-based roadm subsystem,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, p. NThC4, Optical Society of America, 2006. [72] Geun-Young Kim and Yong-Gil Lee, “Simple and reliable bidirectional optical amplifier suitable for variable traffic pattern networks,” IEEE Photonics Technology Letters, vol. 14, no. 4, pp. 552–554, 2002. [73] R. A. Crocombe, Miniature optical spectrometers: The art of the possible, Part IV: New near-infrared technologies and spectrometers. Advanstar Communications Inc., 2009. [74] P. Gatkine, S. Veilleux, and M. Dagenais, “Astrophotonic spectrographs,” Applied Sciences, vol. 9, no. 2,2019. [75] B. I. Akca and C. R. Doerr, “Interleaved silicon nitride awg spectrometers,” IEEE Photonics Technology Letters, vol. 31, no. 1, pp. 90–93, 2019. [76] R. M. Ruis, A. Leinse, R. Dekker, R. G. Heideman, T. G. van Leeuwen, and D. J. Faber, “Decreasing the size of a spectral domain optical coherence tomography system with cascaded arrayed waveguide gratings in a photonic integrated circuit,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, no. 1, pp. 1–9, 2019. [77] E. A. Rank, R. Sentosa, D. J. Harper, M. Salas, A. Gaugutz, D. Seyringer, S. Nevlacsil, A. Maese-Novo,M. Eggeling, P. Muellner, R. Hainberger, M. Sagmeister, J. Kraft, R. A. Leitgeb, and W. Drexler, “Toward optical coherence tomography on a chip: in vivo three-dimensional human retinal imaging using photonic integrated circuit-based arrayed waveguide gratings,” Light: Science & Applications, vol. 10, p. 6, Jan 2021. [78] M. K. Smit and C. Van Dam, “Phasar-based wdm-devices: Principles, design and applications,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, no. 2, pp. 236–250, 1996. [79] D. Seyringer, Arrayed waveguide gratings, p. 16. SPIE Press, 2016.
|