# 臺灣博碩士論文加值系統

(44.221.70.232) 您好！臺灣時間：2024/05/29 11:20

:::

### 詳目顯示

:

• 被引用:1
• 點閱:207
• 評分:
• 下載:0
• 書目收藏:0
 摘要Abstract致謝目錄圖索引表索引第一章 緒論1.1 研究動機與目的1.2 章節大綱第二章 多階層飛馳電容型圖騰柱功率因數修正器架構分析2.1 無橋式圖騰柱電路架構介紹2.2 多階層飛馳電容型圖騰柱電路架構介紹2.3 多階層飛馳電容型圖騰柱功率因數修正器之階層數比較第三章 四階層飛馳電容型圖騰柱功率因數修正器分析3.1 電路架構介紹3.2 狀態與動作區間分析3.2.1 D介於0到1/3之間的動作區間分析3.2.2 D介於1/3到2/3之間的動作分析3.2.3 D介於2/3到1之間的動作分析3.3 控制迴路分析3.3.1 功率因數修器控制方法3.3.2 電流迴路分析3.3.3 電壓迴路分析3.3.4 數位補償器設計3.4 控制分析3.4.1 輸入電壓極性判斷3.4.2 同步整流控制3.4.3 零交越電感電流突波第四章 電路設計與實現4.1 平板電感設計4.2 開關選用4.3 電容設計4.3.1 飛馳電容設計4.3.2 輸出電容設計第五章 模擬與實測結果5.1 模擬結果5.2 實測結果第六章 結論與未來展望6.1 結論6.2 未來展望參考文獻
 [1] ENERGY STAR Program Requirements for Computer Servers. [Online]. Available:https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Version%203.0%20Computer%20Servers%20Program%20Requirements_0.pdf[2] Wikipedia IEC 61000-3-2. [Online]. Available:https://en.wikipedia.org/wiki/IEC_61000-3-2[3] “Power Factor Correction Handbook”, ON Semiconductor, 2014.[4] A. F. de Souza and I. Barbi, “High power factor rectifier with reduced conduction and commutation losses,” 21st International Telecommu-nications Energy Conference. INTELEC '99 (Cat. No.99CH37007), 1999, pp. 158-.[5] W. Choi, J. Kwon, E. Kim, J. Lee and B. Kwon, “Bridgeless Boost Rectifier With Low Conduction Losses and Reduced Diode Re-verse-Recovery Problems,” in IEEE Transactions on Industrial Elec-tronics, vol. 54, no. 2, pp. 769-780, April 2007.[6] L. Huber, Y. Jang and M. M. Jovanovic, "Performance Evaluation of Bridgeless PFC Boost Rectifiers," in IEEE Transactions on Power Electronics, vol. 23, no. 3, pp. 1381-1390, May 2008.[7] Yungtaek Jang, M. M. Jovanovic and D. L. Dillman, "Bridgeless PFC boost rectifier with optimized magnetic utilization," 2008 Twen-ty-Third Annual IEEE Applied Power Electronics Conference and Exposition, 2008, pp. 1017-1021.[8] F. Musavi, W. Eberle and W. G. Dunford, "A High-Performance Sin-gle-Phase Bridgeless Interleaved PFC Converter for Plug-in Hybrid Electric Vehicle Battery Chargers," in IEEE Transactions on Industry Applications, vol. 47, no. 4, pp. 1833-1843 , July-Aug. 2011.[9] M. Ancuti, M. Svoboda, S. Musuroi, A. Hedes, N. Olarescu and M. Wienmann, "Boost interleaved PFC versus bridgeless boost inter-leaved PFC converter performance/efficiency analysis," 2014 Interna-tional Conference on Applied and Theoretical Electricity (ICATE), 2014, pp. 1-6.[10] L. Xue, Z. Shen, D. Boroyevich and P. Mattavelli, "GaN-based high frequency totem-pole bridgeless PFC design with digital implementa-tion," 2015 IEEE Applied Power Electronics Conference and Exposi-tion (APEC), 2015, pp. 759-766.[11] L. Zhou, Y. Wu, J. Honea and Z. Wang, "High-efficiency True Bridgeless Totem Pole PFC based on GaN HEMT: Design Challenges and Cost-effective Solution," Proceedings of PCIM Europe 2015; In-ternational Exhibition and Conference for Power Electronics, Intelli-gent Motion, Renewable Energy and Energy Management, 2015, pp. 1-8.[12] Infineon Evaluation Boards [Online]. Available:https://www.infineon.com/cms/en/product/evaluation-boards/eval_2500w_pfc_gan_a/[13] Infineon Evaluation Boards. [Online]. Available:https://www.infineon.com/dgdl/Infineon-Evaluationboard_EVAL_3K3W_TP_PFC_SIC-ApplicationNotes-v01_00-EN.pdf?fileId=5546d4626fc1ce0b016fc2ae66e20040[14] Jae-Hyun Kim, Gun-Woo Moon and Jae-Kuk Kim, "Ze-ro-voltage-switching totem-pole bridgeless boost rectifier with re-duced reverse-recovery problem for power factor correction," Pro-ceedings of The 7th International Power Electronics and Motion Control Conference, 2012, pp. 1044-1048.[15] K. S. Muhammad and Dylan Dah-Chuan Lu, "Two-switch ZCS to-tem-pole bridgeless PFC boost rectifier," 2012 IEEE International Conference on Power and Energy (PECon), 2012, pp. 1-6.[16] GaN System Application Notes. [Online]. Available:https://gansystems.com/wp-content/uploads/2021/07/GN001_An-Introduction-to-GaN-E-HEMTs-210720.pdf[17] Alex Lidow, Michael de Rooij, Johan Strydom, David Reusch, John Glaser, GaN Transistor for Efficient Power Conversion. USA, CA: John Wiley & Sons, 2020.[18] Q. Huang and A. Q. Huang, "Review of GaN totem-pole bridgeless PFC," in CPSS Transactions on Power Electronics and Applications, vol. 2, no. 3, pp. 187-196 , Sept. 2017.[19] T. A. Meynard and H. Foch, "Multi-level conversion: high voltage choppers and voltage-source inverters," PESC '92 Record. 23rd An-nual IEEE Power Electronics Specialists Conference, 1992, pp. 397-403 vol.1.[20] Y. Lei et al., "A 2-kW Single-Phase Seven-Level Flying Capacitor Multilevel Inverter With an Active Energy Buffer," in IEEE Transac-tions on Power Electronics, vol. 32, no. 11, pp. 8570-8581, Nov. 2017.[21] I. Moon et al., "Design and implementation of a 1.3 kW, 7-level flying capacitor multilevel AC-DC converter with power factor correction," 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2017, pp. 67-73.[22] T. T. Vu and G. Young, "Implementation of multi-level bridgeless PFC rectifiers for mid-power single phase applications," 2016 IEEE Ap-plied Power Electronics Conference and Exposition (APEC), 2016, pp. 1835-1841.[23] Q. Huang, Q. Ma, P. Liu, A. Q. Huang and M. de Rooij, "3kW Four-Level Flying Capacitor Totem-Pole Bridgeless PFC Rectifier with 200V GaN Devices," 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 2019, pp. 81-88.[24] R.B. Ridley, “Average small-signal analysis of the boost power factor correction circuit”, in Proc. VPEC Seminar Proceedings, 1989, pp. 108-120.[25] Chen Zhou and Milan M. Jovanović, “Design trade-offs in continuous current-mode controlled boost power-factor correction circuits”, in Proc. High Frequency Power Conversion Conference (HFPC), 1992.[26] Koen De Gusseme, D. M. Van de Sype, A. P. M. Van den Bossche and J. A. Melkebeek, "Digitally controlled boost power-factor-correction converters operating in both continuous and discontinuous conduction mode," in IEEE Transactions on Industrial Electronics, vol. 52, no. 1, pp. 88-97, Feb. 2005.[27] D. M. Van de Sype, Koen De Gusseme, A. P. M. Van den Bossche and J. A. Melkebeek, "Duty-ratio feedforward for digitally controlled boost PFC converters," in IEEE Transactions on Industrial Electron-ics, vol. 52, no. 1, pp. 108-115, Feb. 2005.[28] L. Zhou, Y. Wu, J. Honea and Z. Wang, "High-efficiency True Bridgeless Totem Pole PFC based on GaN HEMT: Design Challenges and Cost-effective Solution," Proceedings of PCIM Europe 2015; In-ternational Exhibition and Conference for Power Electronics, Intelli-gent Motion, Renewable Energy and Energy Management, 2015, pp. 1-8.[29] Texas Instruments Inc, “How to reduce current spikes at AC ze-ro-crossing for totem-pole PFC”, Application notes, Oct. 2015. [30] GaN System Application Notes. [Online]. Available:https://gansystems.com/wp-content/uploads/2021/07/GN002_Thermal-Design-Guide-for-Top-Side-Cooled-GaNpx-T-Devices_Rev-210720.pdf.[31] S. Qin, Y. Lei, Z. Ye, D. Chou and R. C. N. Pilawa-Podgurski, "A High-Power-Density Power Factor Correction Front End Based on Seven-Level Flying Capacitor Multilevel Converter," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 3, pp. 1883-1898, Sept. 2019.[32] 3C96 datasheet. [Online]. Available:https://www.ferroxcube.com/upload/media/product/file/MDS/3c96.pdf.[33] ER41/7.6/32 datasheet. [Online]. Available:https://www.ferroxcube.com/upload/media/product/file/Pr_ds/ER41_7.6_32.pdf.[34] ER32/6/25 datasheet. [Online]. Available:https://www.ferroxcube.com/upload/media/product/file/Pr_ds/ER32_6_25.pdf.[35] W. A. Roshen, "Fringing Field Formulas and Winding Loss Due to an Air Gap," in IEEE Transactions on Magnetics, vol. 43, no. 8, pp. 3387-3394, Aug. 2007.[36] J. Schäfer, D. Bortis and J. W. Kolar, "Novel Highly Efficient/Compact Automotive PCB Winding Inductors Based on the Compensating Air-Gap Fringing Field Concept," in IEEE Transactions on Power Electronics, vol. 35, no. 9, pp. 9617-9631, Sept. 2020.[37] C5750X6S2W225K250KA datasheet. [Online]. Available:https://pdf1.alldatasheet.com/datasheet-pdf/view/797962/TDK/C575 0X6S2W225K250KA.html
 電子全文(網際網路公開日期：20241006)
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 四階層飛馳電容型圖騰柱功率因數修正器研製 2 具動態載波相移脈寬調變之三相六階飛馳電容功率因數修正器 3 四階飛馳電容式功率因數修正器

 無相關期刊

 1 能量收集器功率調節電路之設計 2 使用步階式氣隙電感實現高峰值輸出功率之電源轉換器 3 交錯式三相三階整流器循環電流抑制與輸出電容電壓平衡之控制策略 4 具同步整流預導通控制之寬範圍輸出電壓LLC諧振轉換器 5 雙模式控制之三相三階二極體箝位式換流器 6 具飛馳電容電壓平衡控制之三階層單電感雙輸出降壓型轉換器 7 四階層飛馳電容型圖騰柱功率因數修正器研製 8 用於500W行動充電站換流器研製 9 三階層飛馳電容式直流轉換器 10 應用於電動載具之無線功率傳輸系統研製 11 從創客到創業─專業技術普及化的實踐歷程： 以雷射雕刻機 Cubiio為例 12 以服務設計觀點探討智慧手錶串流音樂應用程式之體驗 13 應用深度學習與3D列印技術於頭部電腦斷層掃描全自動分割辨識鼻竇與鼻竇黏膜發炎系統之開發及提出臨床診斷全新慢性鼻竇炎之評估標準 14 紙漿複合材料之壓合成形與機械強度分析研究 15 一種電路耦合預測模型應用於電路設計之全域放置利用生成對抗網路基於常微分方程求解器

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室