跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/29 11:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭又睿
研究生(外文):You-Rui Zheng
論文名稱:四階層飛馳電容型圖騰柱功率因數修正器之研製
論文名稱(外文):Design and Implementment of Four Level Flying Capacitor Totem Pole Power Factor Correction
指導教授:林景源林景源引用關係
指導教授(外文):Jing-Yuan Lin
口試委員:謝耀慶邱煌仁林景源張佑丞
口試委員(外文):Yao-Ching HsiehHuang-Jen ChiuJing-Yuan LinYu-Chen Chang
口試日期:2021-08-25
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:92
中文關鍵詞:無橋式圖騰柱功率因數修正器四階層飛馳電容型圖騰柱高效率高功率密度平板式電感氮化鎵開關
外文關鍵詞:totem pole bridgeless PFCfour level flying capacitor PFChigh efficiencyhigh power densityplanar inductorGaN device
相關次數:
  • 被引用被引用:1
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
Abstract
致謝
目錄
圖索引
表索引
第一章 緒論
1.1 研究動機與目的
1.2 章節大綱
第二章 多階層飛馳電容型圖騰柱功率因數修正器架構分析
2.1 無橋式圖騰柱電路架構介紹
2.2 多階層飛馳電容型圖騰柱電路架構介紹
2.3 多階層飛馳電容型圖騰柱功率因數修正器之階層數比較
第三章 四階層飛馳電容型圖騰柱功率因數修正器分析
3.1 電路架構介紹
3.2 狀態與動作區間分析
3.2.1 D介於0到1/3之間的動作區間分析
3.2.2 D介於1/3到2/3之間的動作分析
3.2.3 D介於2/3到1之間的動作分析
3.3 控制迴路分析
3.3.1 功率因數修器控制方法
3.3.2 電流迴路分析
3.3.3 電壓迴路分析
3.3.4 數位補償器設計
3.4 控制分析
3.4.1 輸入電壓極性判斷
3.4.2 同步整流控制
3.4.3 零交越電感電流突波
第四章 電路設計與實現
4.1 平板電感設計
4.2 開關選用
4.3 電容設計
4.3.1 飛馳電容設計
4.3.2 輸出電容設計
第五章 模擬與實測結果
5.1 模擬結果
5.2 實測結果
第六章 結論與未來展望
6.1 結論
6.2 未來展望
參考文獻
[1] ENERGY STAR Program Requirements for Computer Servers. [Online]. Available:
https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Version%203.0%20Computer%20Servers%20Program%20Requirements_0.pdf
[2] Wikipedia IEC 61000-3-2. [Online]. Available:
https://en.wikipedia.org/wiki/IEC_61000-3-2
[3] “Power Factor Correction Handbook”, ON Semiconductor, 2014.
[4] A. F. de Souza and I. Barbi, “High power factor rectifier with reduced conduction and commutation losses,” 21st International Telecommu-nications Energy Conference. INTELEC '99 (Cat. No.99CH37007), 1999, pp. 158-.
[5] W. Choi, J. Kwon, E. Kim, J. Lee and B. Kwon, “Bridgeless Boost Rectifier With Low Conduction Losses and Reduced Diode Re-verse-Recovery Problems,” in IEEE Transactions on Industrial Elec-tronics, vol. 54, no. 2, pp. 769-780, April 2007.
[6] L. Huber, Y. Jang and M. M. Jovanovic, "Performance Evaluation of Bridgeless PFC Boost Rectifiers," in IEEE Transactions on Power Electronics, vol. 23, no. 3, pp. 1381-1390, May 2008.
[7] Yungtaek Jang, M. M. Jovanovic and D. L. Dillman, "Bridgeless PFC boost rectifier with optimized magnetic utilization," 2008 Twen-ty-Third Annual IEEE Applied Power Electronics Conference and Exposition, 2008, pp. 1017-1021.
[8] F. Musavi, W. Eberle and W. G. Dunford, "A High-Performance Sin-gle-Phase Bridgeless Interleaved PFC Converter for Plug-in Hybrid Electric Vehicle Battery Chargers," in IEEE Transactions on Industry Applications, vol. 47, no. 4, pp. 1833-1843 , July-Aug. 2011.
[9] M. Ancuti, M. Svoboda, S. Musuroi, A. Hedes, N. Olarescu and M. Wienmann, "Boost interleaved PFC versus bridgeless boost inter-leaved PFC converter performance/efficiency analysis," 2014 Interna-tional Conference on Applied and Theoretical Electricity (ICATE), 2014, pp. 1-6.
[10] L. Xue, Z. Shen, D. Boroyevich and P. Mattavelli, "GaN-based high frequency totem-pole bridgeless PFC design with digital implementa-tion," 2015 IEEE Applied Power Electronics Conference and Exposi-tion (APEC), 2015, pp. 759-766.
[11] L. Zhou, Y. Wu, J. Honea and Z. Wang, "High-efficiency True Bridgeless Totem Pole PFC based on GaN HEMT: Design Challenges and Cost-effective Solution," Proceedings of PCIM Europe 2015; In-ternational Exhibition and Conference for Power Electronics, Intelli-gent Motion, Renewable Energy and Energy Management, 2015, pp. 1-8.
[12] Infineon Evaluation Boards [Online]. Available:
https://www.infineon.com/cms/en/product/evaluation-boards/eval_2500w_pfc_gan_a/
[13] Infineon Evaluation Boards. [Online]. Available:
https://www.infineon.com/dgdl/Infineon-Evaluationboard_EVAL_3K3W_TP_PFC_SIC-ApplicationNotes-v01_00-EN.pdf?fileId=5546d4626fc1ce0b016fc2ae66e20040
[14] Jae-Hyun Kim, Gun-Woo Moon and Jae-Kuk Kim, "Ze-ro-voltage-switching totem-pole bridgeless boost rectifier with re-duced reverse-recovery problem for power factor correction," Pro-ceedings of The 7th International Power Electronics and Motion Control Conference, 2012, pp. 1044-1048.
[15] K. S. Muhammad and Dylan Dah-Chuan Lu, "Two-switch ZCS to-tem-pole bridgeless PFC boost rectifier," 2012 IEEE International Conference on Power and Energy (PECon), 2012, pp. 1-6.
[16] GaN System Application Notes. [Online]. Available:
https://gansystems.com/wp-content/uploads/2021/07/GN001_An-Introduction-to-GaN-E-HEMTs-210720.pdf
[17] Alex Lidow, Michael de Rooij, Johan Strydom, David Reusch, John Glaser, GaN Transistor for Efficient Power Conversion. USA, CA: John Wiley & Sons, 2020.
[18] Q. Huang and A. Q. Huang, "Review of GaN totem-pole bridgeless PFC," in CPSS Transactions on Power Electronics and Applications, vol. 2, no. 3, pp. 187-196 , Sept. 2017.
[19] T. A. Meynard and H. Foch, "Multi-level conversion: high voltage choppers and voltage-source inverters," PESC '92 Record. 23rd An-nual IEEE Power Electronics Specialists Conference, 1992, pp. 397-403 vol.1.
[20] Y. Lei et al., "A 2-kW Single-Phase Seven-Level Flying Capacitor Multilevel Inverter With an Active Energy Buffer," in IEEE Transac-tions on Power Electronics, vol. 32, no. 11, pp. 8570-8581, Nov. 2017.
[21] I. Moon et al., "Design and implementation of a 1.3 kW, 7-level flying capacitor multilevel AC-DC converter with power factor correction," 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2017, pp. 67-73.
[22] T. T. Vu and G. Young, "Implementation of multi-level bridgeless PFC rectifiers for mid-power single phase applications," 2016 IEEE Ap-plied Power Electronics Conference and Exposition (APEC), 2016, pp. 1835-1841.
[23] Q. Huang, Q. Ma, P. Liu, A. Q. Huang and M. de Rooij, "3kW Four-Level Flying Capacitor Totem-Pole Bridgeless PFC Rectifier with 200V GaN Devices," 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 2019, pp. 81-88.
[24] R.B. Ridley, “Average small-signal analysis of the boost power factor correction circuit”, in Proc. VPEC Seminar Proceedings, 1989, pp. 108-120.
[25] Chen Zhou and Milan M. Jovanović, “Design trade-offs in continuous current-mode controlled boost power-factor correction circuits”, in Proc. High Frequency Power Conversion Conference (HFPC), 1992.
[26] Koen De Gusseme, D. M. Van de Sype, A. P. M. Van den Bossche and J. A. Melkebeek, "Digitally controlled boost power-factor-correction converters operating in both continuous and discontinuous conduction mode," in IEEE Transactions on Industrial Electronics, vol. 52, no. 1, pp. 88-97, Feb. 2005.
[27] D. M. Van de Sype, Koen De Gusseme, A. P. M. Van den Bossche and J. A. Melkebeek, "Duty-ratio feedforward for digitally controlled boost PFC converters," in IEEE Transactions on Industrial Electron-ics, vol. 52, no. 1, pp. 108-115, Feb. 2005.
[28] L. Zhou, Y. Wu, J. Honea and Z. Wang, "High-efficiency True Bridgeless Totem Pole PFC based on GaN HEMT: Design Challenges and Cost-effective Solution," Proceedings of PCIM Europe 2015; In-ternational Exhibition and Conference for Power Electronics, Intelli-gent Motion, Renewable Energy and Energy Management, 2015, pp. 1-8.
[29] Texas Instruments Inc, “How to reduce current spikes at AC ze-ro-crossing for totem-pole PFC”, Application notes, Oct. 2015.

[30] GaN System Application Notes. [Online]. Available:
https://gansystems.com/wp-content/uploads/2021/07/GN002_Thermal-Design-Guide-for-Top-Side-Cooled-GaNpx-T-Devices_Rev-210720.pdf.
[31] S. Qin, Y. Lei, Z. Ye, D. Chou and R. C. N. Pilawa-Podgurski, "A High-Power-Density Power Factor Correction Front End Based on Seven-Level Flying Capacitor Multilevel Converter," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 3, pp. 1883-1898, Sept. 2019.
[32] 3C96 datasheet. [Online]. Available:
https://www.ferroxcube.com/upload/media/product/file/MDS/3c96.pdf.
[33] ER41/7.6/32 datasheet. [Online]. Available:
https://www.ferroxcube.com/upload/media/product/file/Pr_ds/ER41_7.6_32.pdf.
[34] ER32/6/25 datasheet. [Online]. Available:
https://www.ferroxcube.com/upload/media/product/file/Pr_ds/ER32_6_25.pdf.
[35] W. A. Roshen, "Fringing Field Formulas and Winding Loss Due to an Air Gap," in IEEE Transactions on Magnetics, vol. 43, no. 8, pp. 3387-3394, Aug. 2007.
[36] J. Schäfer, D. Bortis and J. W. Kolar, "Novel Highly Efficient/Compact Automotive PCB Winding Inductors Based on the Compensating Air-Gap Fringing Field Concept," in IEEE Transactions on Power Electronics, vol. 35, no. 9, pp. 9617-9631, Sept. 2020.
[37] C5750X6S2W225K250KA datasheet. [Online]. Available:
https://pdf1.alldatasheet.com/datasheet-pdf/view/797962/TDK/C575 0X6S2W225K250KA.html
電子全文 電子全文(網際網路公開日期:20241006)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top