跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/27 23:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周偉翔
研究生(外文):WEI-XEING CHOU
論文名稱:感應馬達及機械負載功率模擬器研發
論文名稱(外文):Development of Power Hardware-in-The-Loop for Induction Motors and Mechanical Loads
指導教授:黃仲欽
指導教授(外文):Jonq-Chin Hwang
口試委員:林法正劉傳聖林長華
口試委員(外文):Faa-Jeng LinChuan-Sheng LiuChang-Hua Liu
口試日期:2021-08-10
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:125
中文關鍵詞:感應馬達機械負載信號硬體模擬器功率硬體模擬器
外文關鍵詞:Induction Motorsmechanical loadsignal hardware-in-the-looppower hardware-in-the-loop
相關次數:
  • 被引用被引用:4
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖表索引 VIII
符號索引 XV
第一章 緒論 16
1-1  研究動機與目的 16
1-2  文獻探討 17
1-2-1 動力計測試平台 17
1-2-2 信號硬體模擬器 18
1-2-3 功率硬體模擬器 18
1-3  系統架構及本文特色 20
1-3-1 馬達驅動器之馬達及機械負載傳統測試平台 20
1-3-2 本文的功率硬體模擬器 21
1-3-3 功率硬體模擬器之功率潮流 22
1-3-4 功率硬體模擬器的系統架構 23
1-3-5 本文特色 24
1-4  本文大綱 25
第二章 三相感應馬達及機械負載的模式 26
2-1  前言 26
2-2  三相感應馬達及機械負載的連續的s域模式 26
2-3  三相感應馬達及機械負載在連續域模式 31
2-4  三相感應馬達及機械負載模擬的離散化模式及規劃 36
2-5  結語 40
第三章 三相感應馬達及機械負載的硬體模擬器規劃 41
3-1 前言 41
3-2 信號硬體模擬器的架構 41
3-3 信號硬體模擬器的軟體規劃 43
3-4 編碼器的信號硬體模擬器規劃及實測 45
3-5 功率硬體模擬器的架構及控制策略 47
A. 功率硬體模擬器的架構 47
B. 功率硬體模擬器的模式 50
C. 功率硬體模擬器的電流控制策略 52
3-6  結語 54
第四章 實體製作及實測 55
4-1  前言 55
4-2  信號硬體模擬器的實體製作 55
4-3  三相感應馬達及負載的信號硬體模擬器的實測 65
4-4  功率硬體模擬器的實體製作 76
4-5  功率硬體模擬器在Simulink的模擬 86
4-6 功率硬體模擬器實測 100
4-7  信號硬體模擬器及功率硬體模擬器的實測性能比較 106
4-8  結語 107
第五章 結論與建議 108
5-1  結論 108
5-2  建議 109
參考文獻 110
附錄A 待測三相感應馬達的參數 117
附錄B 待測馬達驅動器的轉速/電流閉迴路控制策略 118
附錄C 三相感應馬達驅動器製作及實測 119
[1] A. H. Kadam, R. Menon, and S. S. Williamson, "Traction inverter performance testing using mathematical and real-time controller-in-the-loop permanent magnet synchronous motor emulator," IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, pp. 6651-6656, IEEE, 2016.
[2]C. Dufour, S. Abourida, J. Bélanger, and V. Lapointe, "Real-time simulation of permanent magnet motor drive on FPGA chip for high-bandwidth controller tests and validation," IECON 2006-32nd Annual Conference on IEEE Industrial Electronics, pp. 4581-4586, 2006.
[3]A. Monti, E. Santi, R. A. Dougal, and M. Riva, "Rapid prototyping of digital controls for power electronics," IEEE Transactions on power electronics, vol. 18, No. 3, pp. 915-923, 2003.
[4]P. Terwiesch, T. Keller, and E. Scheiben, "Rail vehicle control system integration testing using digital hardware-in-the-loop simulation," IEEE transactions on control systems technology, vol. 7, No. 3, pp. 352-362, 1999.
[5]C. Dufour and J. Bélanger, "A PC-based real-time parallel simulator of electric systems and drives," Parallel Computing in Electrical Engineering, International Conference on, 2004, pp. 105-113: IEEE, 2004.
[6]A. Monti, S. D'arco, and A. Deshmukh, "A new architecture for low cost power hardware in the loop testing of power electronics equipments," 2008 IEEE International Symposium on Industrial Electronics, pp. 2183-2188, 2008.
[7]M. Matar and R. Iravani, "Massively parallel implementation of AC machine models for FPGA-based real-time simulation of electromagnetic transients," IEEE transactions on power delivery, vol. 26, no. 2, pp. 830-840, 2010.
[8]L. Herrera and J. Wang, "FPGA-based detailed real-time simulation of power converters and electric machines for EV HIL applications," 2013 IEEE energy conversion congress and exposition, vol. 51, no. 2, pp. 1702-1712, 2014.
[9]A. Bouscayrol, "Different types of hardware-in-the-loop simulation for electric drives," 2008 IEEE International Symposium on Industrial Electronics, pp. 2146-2151, 2008.
[10]S. Lentijo, S. D'Arco, and A. J. I. T. o. I. E. Monti, "Comparing the dynamic performances of power hardware-in-the-loop interfaces," IEEE transactions on industrial electronics, vol. 57, no. 4, pp. 1195-1207, 2009.
[11]陳冠宇,“具雙向功率轉換之單相市電併網型永磁式同步電機驅動器研製”,國立臺灣科技大學電機工程學系碩士論文,民國一百零八年。
[12]李建霖,“具能量回收之動力計用的雙向三相感應電機驅動器研製”,國立臺灣科技大學電機工程學系碩士論文,民國一百零六年。
[13]陳立洋,“具雙向功率轉換之市電併網型三相永磁式 同步電動機驅動器設計”,國立臺灣科技大學電機工程學系碩士論文,民國一百零七年。
[14]A. Monti, S. D'Arco, Y. Work, and A. Lentini, "A virtual testing facility for elevator and escalator systems," 2007 IEEE Power Electronics Specialists Conference, pp. 820-825, 2007.
[15]R. M. Kennel, T. Boller, and J. Holtz, "Replacement of electrical (load) drives by a hardware-in-the-loop system," International Aegean Conference on Electrical Machines and Power Electronics and Electromotion, Joint Conference, pp. 17-25, 2011.
[16]A. Schmitt, J. Richter, M. Braun, and M. Doppelbauer, "power hardware-in-the-Loop emulation of permanent magnet synchronous machines with nonlinear magnetics-concept & verification," PCIM Europe 2016; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, pp. 1-8, 2016.
[17]A. Schmitt, M. Gommeringer, C. Rollbuhler, P. Pomnitz, and M. Braun, "A novel modulation scheme for a modular multiphase multilevel converter in a power hardware-in-the-loop emulation system," IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society, pp. 001276-001281, 2015.
[18]A. Schmitt, J. Richter, M. Gommeringer, T. Wersal, and M. Braun, "A novel 100 kW power hardware-in-the-loop emulation test bench for permanent magnet synchronous machines with nonlinear magnetics," 8th IET international conference on power electronics, machines and drives, 2016.
[19]W. Ren, M. Steurer, and T. L. J. I. T. o. I. A. Baldwin, "Improve the stability and the accuracy of power hardware-in-the-loop simulation by selecting appropriate interface algorithms," IEEE transactions of industry applications, vol. 44, no. 4, pp. 1286-1294, 2008.
[20]S. Grubic, B. Amlang, W. Schumacher, and A. J. I. T. o. I. E. Wenzel, "A high-performance electronic hardware-in-the-loop drive–load simulation using a linear inverter (LinVerter)," IEEE transactions on industrial electronics, vol. 57, no. 4, pp. 1208-1216, 2009.
[21]S. Liebig, A. Schmitt, and H. Hammerer, "High-dynamic high-power e-motor emulator for power electronic testing," PCIM Europe 2018; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, pp. 1-5, 2018.
[22]A. Schmitt, J. Richter, U. Jurkewitz, and M. Braun, "FPGA-based real-time simulation of nonlinear permanent magnet synchronous machines for power hardware-in-the-loop emulation systems," IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society, pp. 3763-3769, 2014.
[23]W. Ren, M. Steurer, and L. Qi, "Evaluating dynamic performance of modern electric drives via power-hardware-in-the-loop simulation," 2008 IEEE International Symposium on Industrial Electronics, pp. 2201-2206, 2008.
[24]X. Wu, S. Lentijo, A. Deshmuk, A. Monti, and F. Ponci, "Design and implementation of a power-hardware-in-the-loop interface: a nonlinear load case study," Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005., vol. 2, pp. 1332-1338, 2005.
[25]M. Schnarrenberger, L. Stefanski, C. Rollbühler, D. Bräckle, and M. Braun, "A 50 kW power hardware-in-the-loop test bench for permanent magnet synchronous machines based on a modular multilevel converter," 2018 20th European Conference on Power Electronics and Applications (EPE'18 ECCE Europe), pp. P. 1-P. 10, 2018.
[26]C. Dufour, S. Cense, T. Yamada, R. Imamura, and J. Bélanger, "Fpga permanent magnet synchronous motor floating-point models with variable-dq and spatial harmonic finite-element analysis solvers," 2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), pp. LS6b. 2-1-LS6b. 2-10, 2012.
[27]M. Novak, J. Novak, Z. Novak, J. Chysky, and O. Sivkov, "Efficiency mapping of a 100 kW PMSM for traction applications," 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), pp. 290-295, 2017.
[28] J. Richter, P. Winzer, and M. Doppelbauer, "Einsatz virtueller prototypen bei der akausalen modellierung und simulation von permanenterregten synchronmaschinen," Internationaler ETG-Kongress 2013 (ETG-FB 139), 2013.
[29]I. G. Park and S. I. Kim, "Modeling and analysis of multi-interphase transformers for connecting power converters in parallel," PESC97. Record 28th Annual IEEE Power Electronics Specialists Conference. Formerly Power Conditioning Specialists Conference 1970-71. Power Processing and Electronic Specialists Conference 1972, vol. 2, pp. 1164-1170, 1997.
[30]S. Baciu, S. Trabelsi, B. Amlang, and W. Schumacher, "Linverter a low-harmonic and high-bandwidth inverter based on a parallel multilevel structure," 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No. 04CH37551), vol. 5, pp. 3927-3931, 2004.
[31]J. Richter, P. Bäuerle, T. Gemassmer, and M. Doppelbauer, "Transient trajectory control of permanent magnet synchronous machines with nonlinear magnetics," 2015 IEEE International Conference on Industrial Technology (ICIT), pp. 2345-2351, 2012.
[32]L. Wang, J. Jatskevich, and H. Dommel, "Re-examination of synchronous machine modeling techniques for electromagnetic transient simulations," 2007 IEEE Transactions on Power Systems, vol. 22, no. 3, pp. 1221-1230, 2007.
[33]S.-K. Lee, G.-H. Kang, J. Hur, and B.-W. Kim, "Design and experiment of 100kW interior permanent magnet machine for ship anti heeling system," 2012 IEEE Vehicle Power and Propulsion Conference, pp. 544-548, 2012.
[34]A. Schmitt, M. Gommeringer, J. Kolb, M. Braun, ‘A high current, high frequency modular multiphase multilevel converter for power hardware-in-the-loop emulator,’ 2014 PCIM Europe, pp 1537-1544, 2014.
[35]A. Schmitt, “Hochdynmische power hardware-in-the-loop emulation hoch ausgenutzter synchronmaschinen mit einem modularen-multiphasen-multilevel. umrichter”, 2017, KIT Scientific Publishing, Karlsruhe.
[36]Analog Devices, AD2S1210 Datasheet.
[37]C. M. Ong, “Dynamic simulations of electric machinery”, 1997, Prentice Hall PTR.
[38]National Instruments, NI PXIe-7861 Specifications.
[39]林祐瑄,“永磁式同步馬達及機械負載之功率應體模擬器開發”,國立臺灣科技大學電機工程學系碩士論文,民國一百零九年。
[40]Grubic, S., B. Amlang, W. Schumacher and A. Wenzel. “A High-Performance Electronic Hardware-in-the-Loop Drive–Load Simulation Using a Linear Inverter (LinVerter).” IEEE Transactions on Industrial Electronics 57 (2010): 1208-1216.
[41]R. Gregor, G. Valenzano, J. Rodas, J. Rodriguez-Pineiro, and D. Gregor, “Design and Implementation of an FPGA-based Real-time Simulator for a Dual Three-Phase Induction Motor Drive,” Journal of Power Electronics, vol. 16, no. 2, pp. 553–563, Mar. 2016.
[42]Song, Y., Ran Cheng and Ke Ma. “Mission Profile Emulator for Permanent Magnet Synchronous Machine Based on Three-phase Power Electronic Converter.” 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia) (2018): 3877-3883.
[43]C. Jing and T. Chaonan, "Sliding mode repetitive equivalent control for induction motor based on hardware-in-loop system," IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 2017, pp. 3116-3121, doi: 10.1109/IECON.2017.8216526.
[44]黃仲欽,電機機械理論講義 三相感應電動機之動態模式(model of three-phase induction machines)。
[45]黃兆廷,“具四支路電感耦合的單相及三相換流器設計”,國立臺灣科技大學電機工程學系碩士論文,民國一百一十年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊