跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/22 22:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宸瑋
研究生(外文):Chen-Wei Lin
論文名稱:以縮尺模型探討MICP於邊坡崩坍整治之應用
論文名稱(外文):Investigation on applying MICP for rainfall-induced slope failure mitigation by model test
指導教授:鄧福宸
指導教授(外文):Fu-Chen Teng
口試委員:郭治平楊國鑫鄭世豪
口試委員(外文):Chih-Ping KuoKuo-Hsin YangShih-Hao Cheng
口試日期:2021-09-03
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:104
中文關鍵詞:MICP微生物土壤改良邊坡破壞
外文關鍵詞:MICPMicroorganismSoil improvementSlope failure
相關次數:
  • 被引用被引用:2
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前較常使用的土壤改良工法為水泥化學灌漿或高分子漿液之工法,但近年來環保意識抬頭,化學灌漿之人造合成材料多可能會危及到大自然環境,因此較為環保之改良工法逐漸被學者們研究與應用,例如微生物引致碳酸鈣沉澱(MICP)。此技術為一種利用微生物化學反應改良土壤工程性質的技術,本研究之目的為探討微生物引致碳酸鈣沉澱改良技術應用於邊坡在強降雨下之破壞行為。
研究中使用微生物改良技術先進行室內重模土壤的力學性質試驗,改良後土壤的滲透性較改良前降低約38%,在CPT貫入試驗中,改良試體的錐尖阻抗增加約90 kPa;此外利用排水三軸壓縮試驗,得到MICP改良土壤之凝聚力c'增加2.41 kPa,而內摩擦角φ'與未改良土壤相比,有微幅的增加。本研究亦利用改良後的土壤參數進行數值分析,得到其改良前後的模擬分析結果。
本研究亦進行縮尺模型試驗,縮尺率(Scaling law)為N = 5,長為65公分、高30公分、坡度40度的縮尺邊坡,並透過影像分析技術分析邊坡變位,求得破壞面上土壤剪應變發展。結果顯示在降雨強度80 mm/hr的條件下(100年重現期距),改良後破壞範圍較改良前破壞範圍小,邊坡也呈現出較良好的自立性,改良後的邊坡在100年、200年重現期距、甚至極端氣候條件下都沒有造成大規模的土方滑落坍方現象,也有助於阻擋水的滲流,延長坡腳局部崩落破壞的時間。
At present, the more commonly used soil improvement methods are cement chemical grouting or polymer slurry methods. But in recent years, environmental awareness has increased, and chemical grouting of man-made synthetic materials may endanger the natural environment, so more environmentally friendly improvement techniques are gradually being studied and applied, such as microbial-induced calcite carbonate precipitation (MICP). This technology is to modify soil engineering properties using microbial chemical reactions. The purpose of this study is to investigate the application of microbial-induced calcite carbonate precipitation improvement technology to slope failure under heavy rainfall.
The mechanical properties of the soil were first tested indoors using microbial amendment techniques, and the permeability of the amended soil was reduced by about 38% compared to that before the amendment. In the CPT penetration test, the cone tip impedance of the modified specimen increased by about 90 kPa. The cohesion of the MICP-improved soil increased by 2.41 kPa and the friction angle φ' has a slight increase compared to the unimproved soil. In this study, numerical analysis was also conducted using the improved soil parameters to obtain the simulation results before and after the improvement.
In this study, a reduced model with a scaling law of N = 5, a reduced slope of 65 cm in length, 30 cm in height, and a slope of 40 degrees was also tested, and the soil shear strain development on the failure surface was analyzed by image analysis techniques. The results showed that under the condition of 80 mm/hr rainfall intensity (100-year return period distance), the failure extent after improvement was smaller than that before improvement, and the slope also showed better self-supporting, and the improved slope did not cause large-scale soil slide slumping under 100-year, 200-year return period distance, or even extreme weather conditions, which also helped to block water infiltration and extended the time of local failure at the foot of the slope.
第一章、 緒論
1.1 前言
1.2 研究目的與動機
第二章、 文獻回顧
2.1 坡地災害類型
2.2 微生物引致碳酸鈣沉澱技術(MICP)-Microbial-Induced Calcite Precipitation
2.2.1 微生物引致碳酸鈣沉澱機制
2.2.2 微生物對砂土強度改良之影響
2.2.3 MICP於大地工程上之應用
2.3 降雨及滲流作用下邊坡滑動之行為
2.3.1 大型邊坡降雨滑動試驗
2.3.2 縮尺模型模擬邊坡滑動試驗
2.4 模型相似定律
第三章、 土壤基本性質與試驗流程
3.1 未改良土壤試體性質
3.1.1 土壤基本性質
3.1.2 滲透試驗
3.1.3 均向壓密排水三軸試驗(CD-Test)
3.2 MICP重模土壤室內固結試驗
3.2.1 微生物介紹與培養基選擇
3.2.2 菌液培養流程
3.2.3 菌液濃度檢測
3.2.4 MICP改良後土壤強度試驗
3.2.5 CPT貫入試驗
3.3 試驗縮尺砂箱模型設計
3.3.1 模型相似性
3.3.2 模型配置
3.3.3 降雨裝置
3.4 試驗流程與規劃
3.4.1 試驗流程
3.4.2 縮尺邊坡土壤固結試驗流程
3.4.3 剪應變影像分析
第四章、 試驗結果
4.1 室內試驗土壤性質結果
4.1.1 MICP改良後土壤滲透試驗
4.1.2 CPT貫入強度試驗結果
4.1.3 排水三軸強度試驗結果
4.2 極限平衡法分析結果
4.2.1 極限平衡法說明
4.2.2 未改良縮尺邊坡極限平衡分析
4.2.3 改良縮尺邊坡極限平衡分析
4.3 縮尺邊坡試驗結果
4.3.1 未改良縮尺邊坡試驗結果
4.3.2 改良縮尺邊坡試驗結果
第五章、 結論與建議
5.1 結論
5.2 建議
【1】 Askarinejad A., Akca D., Springman, S. M.(2018). Precursors of instability in a natural slope due to rainfall: a full-scale experiment. 10.1007/s10346-018-0994-0
【2】 Chu, J., V. Ivanov, M. Naeimi, V. Stabnikov, and H.-L. Liu. (2014). Optimization of calcium-based bioclogging and biocementation of sand. Acta Geotechnica 9 (2):277–285. doi:10.1007/s11440-013-0278-8
【3】 DeJong, J. T., Mortensen, B. M., Martinez, B. C., Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering 36 (2010) 197–210
【4】 Gowthaman, S., Mitsuyama, S., Nakashima, K., Komatsu, M., Kawasaki, S.(2019). Biogeotechnical approach for slope soil stabilization using locally isolated bacteria and inexpensive low-grade chemicals: A feasibility study on Hokkaido expressway soil, Japan. Soils and Foundations, 59 (2019), 484–499
【5】 Hungr, O., Leroueil, S., and Picarelli, L. (2013). The Varnes classification of landslide types, an update. Landslides, 11 (2), 167-194
【6】 Huang, J. X., Wang, Y. H., Nguyen, T. A., Hsu, C. S., and Hung, W. Y.(2021). Soil Improvement by Microbial-Induced Calcite Precipitation and a Chemical Method for Liquefaction Mitigation. Journal of GeoEngineering, Vol. 16, No. 1, pp. 035-046, March 2021
【7】 Lourenc¸o Se´rgio D. N., Sassa, K., Fukuoka, H.(2006). Failure process and hydrologic response of a two layer physical model: Implications for rainfall-induced landslides. Geomorphology 73 (2006) 115– 130
【8】 Leon A. van Paassen; Ranajit Ghose; Thomas J. M. van der Linden; Wouter R. L. van der Star; and Mark C. M. van Loosdrecht (2010). Quantifying Biomediated Ground Improvement by Ureolysis: Large-Scale Biogrout Experiment. 10.1061/(ASCE)GT.1943-5606.0000382
【9】 Moriwaki, H., Inokuchi, T., Hattanji, T., Sassa, K., Ochiai, H., Wang, G.(2004). Failure processes in a full-scale landslide experiment using a rainfall simulator. 10.1007/s10346-004-0034-0
【10】 Muynck, W. D., N. D. Belie, and W. Verstraete. 2010. Microbial carbonate precipitation in construction materials: a review. Ecological Engineering 36 (2):118–36.
【11】 Montoya, B. M., J. T. Dejong, R. W. Boulanger, D. W. Willson. 2012. Liquefaction mitigation using microbial induced calcite precipitation. GeoCongress: State of the Art and Practice in Geotechnical Engineering, 1918–1927. Oakland: ASCE.
【12】 Tohari, A., Nishigak, M. and Komatsu, M.(2007). Laboratory Rainfall-Induced Slope Failure with Moisture Content Measurement. 10.1061/(ASCE)1090-0241(2007)133:5(575)
【13】 Teng, F. C., Ouedraogo, C., Sie, Y. C. (2020). Strength improvement of a silty clay with microbiologically induced process and coir fiber. Journal of GeoEngineering, Vol. 15, No. 2, pp. 79-88, June 2020.
【14】 Varnes, D. J. (1978). Slope Movement Types and Processes. In Special Report 176: Landslides: Analysis and Control, editors R.L. Schuster and R.J. Krizek, TRB, National Research Council, Washington, D.C., 11-33.
【15】 Whiffin, V. S., L. A. Van Paassen, and M. P. Harkes. 2007. Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal 24 (5):417–423. doi:10.1080/01490450701436505
【16】 Yasuhara, H., Neupane, D., Hayashi, K., Okamura, M.(2012). Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation. Soils and Foundations. 2012, 52 (3), 539–549
【17】 陳榮河、紀柏全 (2010),「模型邊坡試驗之因次分析」,地工技術,125 pp. 7-14。
電子全文 電子全文(網際網路公開日期:20240928)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top