跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/24 05:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:宋語謙
研究生(外文):Yu-Chian Soong
論文名稱:Development of Graphene/Boron Nitride/Thermoplastic Polyurethane Composite Films for Adjustable-Cooling Smart Clothes
論文名稱(外文):Development of Graphene/Boron Nitride/Thermoplastic Polyurethane Composite Films for Adjustable-Cooling Smart Clothes
指導教授:邱智瑋
指導教授(外文):Chih-Wei Chiu
口試委員:邱顯堂鄭智嘉
口試委員(外文):Hsien-Tang ChiuChih-Chia Cheng
口試日期:2021-04-12
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:英文
論文頁數:76
中文關鍵詞:聚合物複合材料石墨烯氮化硼
外文關鍵詞:polymer compositesgrapheneboron nitride
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
全球暖化造成氣候變遷、乾旱現象、沙漠化,讓人們生活的環境變得越來越熱,而能源與原物料變得越來越稀少,為了解決這些問題,各種節能減碳的研究一直被科學家長期關注。其中,熱界面材料和個人熱管理系統可以有效降低調節溫度所產生的能源耗損。然而,熱界面材料應用目前大部分局限於電子元件,個人熱管理系統只能產生微乎其微的降溫效果,因此開發出一種能夠結合高導熱與實用性的多功能材料顯得非常重要。
本文進行了兩項不同的研究,以設計、製造與鑑定來開發出含有高導熱填充物(如石墨烯與氮化硼)的多功能複合薄膜。在第一項研究中,我們將石墨烯、氮化硼與熱塑性聚氨酯结合,製造成具有多層結構的BN-GNP/TPU複合薄膜。而在第二項研究中,我們分別將表面改質的氮化硼與石墨烯利用分散劑SMAEF80-D2000均勻分散,使其具有良好的分散性,再將分散後的液體與熱塑性聚氨酯均勻混和,從而制造出具有雜化結構的BNOH/GNP/TPU複合薄膜。
所有的研究都是利用簡單製程與極低的添加量來製造多功能複合薄膜,並根據薄膜的導熱性、物理特性與實際應用進行鑑定。我們最後成功將熱界面材料的概念應用在個人熱管理系統上,創造出新一代的多功能熱界面材料。
Due to global climate change, multifunctional materials with energy-saving properties are receiving increased attention. Thermal interface materials and personal thermal management can be used to reduce energy consumption in regulating temperature. However, thermal interface materials are limited to electronic components and personal thermal management only has a small cooling effect. In order to improve these properties, multifunctional materials with excellent thermal conductivity and practical properties are becoming highly important.
For this thesis, two different studies were conducted to design, fabricate, and characterize multifunctional polymer-based composite films with high thermal conductive fillers, such as graphene and boron nitride. In the first study, a TPU matrix was combined with BN and GNP fillers having a layered structure to fabricate BN-GNP/TPU composite films. In the second study, modified BN and GNP were combined with an organic dispersant SMAEF80-D2000 for them to be well dispersed. They were mixed with the TPU matrix to fabricate BNOH/GNP/TPU composite films with a hybrid structure.
These composite films were fabricated via a facile operation process and a low filler loading. They were characterized based on their physical, thermal, and practical application properties. They were formed to prove that the idea of thermal interface materials can be applied to personal thermal management, and a new generation of multifunctional thermal interface materials can be created.
Abstract...............................................I
Chinese Abstract.......................................II
Acknowledgment.........................................III
Table of Contents......................................IV
List of Figures........................................VII
List of Tables.........................................X
Chapter 1 Introduction.................................1
1.1 Background.........................................1
1.2 Objectives.........................................2
1.3 Thesis Organization................................2
Chapter 2 Literature Review............................3
2.1 Thermal Conduction Properties......................3
2.1.1 Definition of Thermal Conduction.................3
2.1.2 Theoretical mechanism in crystalline.............4
2.1.3 Theoretical mechanism in polymers................5
2.1.4 Theoretical mechanism in composites..............6
2.2.5 Dispersion State Affected Thermal Conductivity...7
2.2 High Thermal Conduction Materials..................8
2.2.1 Graphene.........................................8
2.2.2 Boron Nitride....................................9
2.3 Relative Work......................................10
2.3.1 Graphene Polymer Composite Materials.............10
2.3.2 Boron Nitride Polymer Composite Materials........11
2.3.3 Laminated/Layered Composite Materials............12
2.3.4 Hybrid Composite Materials.......................13
2.4 State of Arts......................................15
2.4.1 Thermal Interface Materials......................15
2.4.2 Cooling Garments.................................16
Chapter 3 Experiment Section...........................18
3.1 Materials..........................................18
3.2 Experiment Apparatus...............................19
3.3 Experiment Flow Chart..............................20
3.4 Characterization Techniques........................21
3.4.1 Field Emission Scanning Electron Microscopy......21
3.4.2 Transmission Electron Microscopy.................21
3.4.3 Hot Disk.........................................21
3.4.4 Tensile Tests....................................21
3.4.5 Fatigue Tests....................................22
3.4.6 UV-Vis Absorption Spectroscopy...................22
3.4.7 Fourier-Transform Infrared Spectroscopy..........22
3.4.8 X-Ray Photoelectron Spectroscopy.................22
3.4.9 Surface Wettability..............................23
3.4.10 Washing Tests...................................23
3.4.11 The Cooling Performance.........................23
Chapter 4 Multilayered Graphene/Boron Nitride/Thermoplastic Polyurethane Composite Films with High Thermal Conductivity, Stretchability, and Washability for Adjustable-Cooling Smart Clothes.......................25
4.1 Introduction.......................................25
4.2 Experimental.......................................26
4.2.1 Materials........................................26
4.2.2 Sample Preparation...............................26
4.3 Sample Characterization............................27
4.3.1 Formation Mechanism..............................27
4.3.2 Morphologies.....................................28
4.4 Results and Discussion.............................30
4.4.1 Thermal Properties...............................30
4.4.2 Physical Properties..............................31
4.4.3 Contact Angle....................................33
4.4.4 Washing Test.....................................34
4.4.5 The Cooling Performance..........................35
4.5 Summary............................................41
Chapter 5 Boron Nitride/Graphene/Thermoplastic Polyurethane Multifunctional Hybrid Films with High Thermal Conductivity, Washability, and Stretchability for Wearable Cooling Smart Clothes..................................42
5.1 Introduction.......................................42
5.2 Methods............................................43
5.2.1. Materials.......................................43
5.2.2. Surface modification of BN by NaOH..............44
5.2.3. Synthesis of the Dispersing Agent SMAEF80-D2000.45
5.2.4. Preparation of Dispersed BNOH/GNP/TPU hybrids...45
5.3. RESULTS AND DISCUSSION............................46
5.3.1. Analysis of Modified BN Particles...............46
5.3.2. Analysis of Dispersing Agent SMAEF80-D2000......48
5.3.3. Synthesis and Structural Analysis of the Composite Films.52
5.3.4. Improved Properties of Composites...............54
5.3.5. The Cooling Performance Measurement.............60
5.4. Summary...........................................65
Chapter 6 Conclusions..................................66
References.............................................68
1. P. Stott. (2016). How climate change affects extreme weather events. Science, 352, 1517-1518. doi:10.1126/science.aaf7271
2. H. Wang, Z. Yang, Y. Saito, J. Liu, X. Sun, and Y. Wang. (2007). Stepwise decreases of the Huanghe (yellow river) sediment load (1950–2005): Impacts of climate change and human activities. Global and Planetary Change, 57, 331-354. doi:10.1016/j.gloplacha.2007.01.003
3. W. Ripple, C. Wolf, T. Newsome, P. Barnard, W. Moomaw, and s.s.f. countries. (2020). Corrigendum: world scientists’ warning of a climate emergency. BioScience, 70, 100. doi:10.1093/biosci/biz152
4. G. Semieniuk, L. Taylor, A. Rezai, and D. Foley. (2021). Plausible energy demand patterns in a growing global economy with climate policy. Nature Climate Change, 11, 313-318. doi:10.1038/s41558-020-00975-7
5. R. Rawal, M. Schweiker, O. Kazanci, V. Vardhan, Q. Jin, and L. Duanmu. (2020). Personal comfort systems: A review on comfort, energy, and economics. Energy and Buildings, 214, 109858. doi:10.1016/j.enbuild.2020.109858
6. L. Davis and P. Gertler. (2015). Contribution of air conditioning adoption to future energy use under global warming. Proceedings of the National Academy of Sciences, 112, 5962-5967. doi:10.1073/pnas.1423558112
7. Y. Peng and Y. Cui. (2020). Advanced textiles for personal thermal management and energy. Joule, 4, 724-742. doi:10.1016/j.joule.2020.02.011
8. R. Hu, Y. Liu, S. Shin, S. Huang, X. Ren, W. Shu, J. Cheng, G. Tao, W. Xu, R. Chen, and X. Luo. (2020). Emerging materials and strategies for personal thermal management. Advanced Energy Materials, 10, 1903921. doi:10.1002/aenm.201903921
9. P. Davies, A. Tzalenchuk, P. Wiper, and S. Walton. (2016) Summary of graphene (and related compounds) chemical and physical properties. Nuclear Decommissioning Authority, 1-19.
10. J. Fourier. (2003) The analytical theory of heat. Dover phoenix editions. Mineola, New York, Dover Publications.
11. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, and A.K. Geim. (2007). Room-Temperature Quantum Hall Effect in Graphene. Science, 315, 1379. doi:10.1126/science.1137201
12. N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, and D. Ruch. (2016). Review of thermal conductivity in composites: Mechanisms, parameters and theory. Progress in Polymer Science, 61, 1-28. doi:10.1016/j.progpolymsci.2016.05.001
13. M. Maldovan. (2013). Sound and heat revolutions in phononics. Nature, 503, 209-217. doi:10.1038/nature12608
14. W.D. Callister and D.G. Rethwisch. (2014) Materials science and engineering: An introduction. Wiley Publications.
15. A. Li, C. Zhang, and Y.F. Zhang. (2017). Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications. Polymers (Basel), 9, 437. doi:10.3390/polym9090437
16. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8, 902-907. doi:10.1021/nl0731872
17. A. Tessema, D. Zhao, J. Moll, S. Xu, R. Yang, C. Li, S.K. Kumar, and A. Kidane. (2017). Effect of filler loading, geometry, dispersion and temperature on thermal conductivity of polymer nanocomposites. Polymer Testing, 57, 101-106. doi:10.1016/j.polymertesting.2016.11.015
18. A.K. Geim and K.S. Novoselov. (2007). The rise of graphene. Nature Materials, 6, 183-191. doi:10.1038/nmat1849
19. Y. Zhang, Y. Tan, H.L. Stormer, and P. Kim. (2005). Experimental observation of the quantum hall effect and berry's phase in graphene. Nature, 438, 201-204. doi:10.1038/nature04235
20. C. Yuan, J. Li, L. Lindsay, D. Cherns, J.W. Pomeroy, S. Liu, J.H. Edgar, and M. Kuball. (2019). Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration. Communications Physics, 2, 43. doi:10.1038/s42005-019-0145-5
21. W.H. Balmain. (1842). Bemerkungen über die bildung von verbindungen des bors und siliciums mit stickstoff und gewissen metallen. journal für praktische chemie, 27, 422-430. doi:10.1002/prac.18420270164
22. S. Bernard and P. Miele. (2014). Nanostructured and architectured boron nitride from boron, nitrogen and hydrogen-containing molecular and polymeric precursors. Materials Today, 17, 443-450. doi:10.1016/j.mattod.2014.07.006
23. C. Soldano, A. Mahmood, and E. Dujardin. (2010). Production, properties and potential of graphene. Carbon, 48, 2127-2150. doi:10.1016/j.carbon.2010.01.058
24. Y. Zhang, D. Han, Y. Zhao, and S. Bai. (2016). High-performance thermal interface materials consisting of vertically aligned graphene film and polymer. Carbon, 109, 552-557. doi:10.1016/j.carbon.2016.08.051
25. M. Razeghi and G. Pircheraghi. (2018). TPU/graphene nanocomposites: Effect of graphene functionality on the morphology of separated hard domains in thermoplastic polyurethane. Polymer, 148, 169-180. doi:10.1016/j.polymer.2018.06.026
26. A Li, C. Zhang, and Y. Zhang. (2017). RGO/TPU composite with a segregated structure as thermal interface material. Composites Part A: Applied Science and Manufacturing, 101, 108-114. doi:10.1016/j.compositesa.2017.06.009
27. I. Jo, M.T. Pettes, J. Kim, K. Watanabe, T. Taniguchi, Z. Yao, and L. Shi. (2013). Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Letters, 13, 550-554. doi:10.1021/nl304060g
28. J. Han, G. Du, W. Gao, and H. Bai. (2019). An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3D network. Advanced Functional Materials, 29, 1900412. doi:10.1002/adfm.201900412
29. E. Çakmakçı, Ç. Koçyiğit, S. Çakır, A. Durmus, and M.V. Kahraman. (2014). Preparation and characterization of thermally conductive thermoplastic polyurethane/h-BN nanocomposites. Polymer Composites, 35, 530-538. doi:10.1002/pc.22692
30. C. Yu, W. Gong, W. Tian, Q. Zhang, Y. Xu, Z. Lin, M. Hu, X. Fan, and Y. Yao. (2018). Hot-pressing induced alignment of boron nitride in polyurethane for composite films with thermal conductivity over 50 Wm−1 K−1. Composites Science and Technology, 160, 199-207. doi:10.1016/j.compscitech.2018.03.028
31. W. Song, M. Cao, M. Lu, S. Bi, C. Wang, J. Liu, J. Yuan, and L. Fan. (2014). Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon, 66, 67-76. doi:10.1016/j.carbon.2013.08.043
32. J. Darkwa and O. Su. (2012). Thermal simulation of composite high conductivity laminated microencapsulated phase change material (MEPCM) board. Applied Energy, 95, 246-252. doi:10.1016/j.apenergy.2012.02.062
33. H. Malekpour, K.H. Chang, J.C. Chen, C.Y. Lu, D.L. Nika, K.S. Novoselov, and A.A. Balandin. (2014). Thermal conductivity of graphene laminate. Nano Letters, 14, 5155-5161. doi:10.1021/nl501996v
34. Y. Yao, J. Sun, X. Zeng, R. Sun, J. Xu, and C. Wong. (2018). Construction of 3D skeleton for polymer composites achieving a high thermal conductivity. Small, 14, 1704044. doi:10.1002/smll.201704044
35. J. Chang, Q. Zhang, Y. Lin, C. Zhou, W. Yang, L. Yan, and G. Wu. (2018). Carbon nanotubes grown on graphite films as effective interface enhancement for an aluminum matrix laminated composite in thermal management applications. ACS Applied Materials & Interfaces, 10, 38350-38358. doi:10.1021/acsami.8b12691
36. Z. Su, H. Wang, X. Ye, K. Tian, W. Huang, C. Xiao, and X. Tian. (2017). Enhanced thermal conductivity of functionalized-graphene/boron nitride flexible laminated composite adhesive via a facile latex approach. Composites Part A: Applied Science and Manufacturing, 99, 166-175. doi:10.1016/j.compositesa.2017.03.033
37. H. Zhou, M.H. Chua, and J. Xu. (2019). 6 - Functionalized POSS-based hybrid composites, in Polymer Composites with Functionalized Nanoparticles, K. Pielichowski and T.M. Majka, Editors. Elsevier. 179-210.
38. T. Huang, X. Zeng, Y. Yao, R. Sun, F. Meng, J. Xu, and C. Wong. (2016). Boron nitride@graphene oxide hybrids for epoxy composites with enhanced thermal conductivity. RSC Advances, 6, 35847-35854. doi:10.1039/C5RA27315C
39. J.S. Lewis, Z. Barani, A.S. Magana, F. Kargar, and A.A. Balandin. (2019). Thermal and electrical conductivity control in hybrid composites with graphene and boron nitride fillers. Materials Research Express, 6, 085325. doi:10.1088/2053-1591/ab2215
40. L. Shao, L. Shi, X. Li, N. Song, and P. Ding. (2016). Synergistic effect of BN and graphene nanosheets in 3D framework on the enhancement of thermal conductive properties of polymeric composites. Composites Science and Technology, 135, 83-91. doi:10.1016/j.compscitech.2016.09.013
41. R. Bahru, M.F.M.A. Zamri, A.H. Shamsuddin, N. Shaari, and M.A. Mohamed. (2021). A review of thermal interface material fabrication method toward enhancing heat dissipation. International Journal of Energy Research, 45, 3548-3568. doi:10.1002/er.6078
42. K.M. Razeeb, E. Dalton, G.L.W. Cross, and A.J. Robinson. (2018). Present and future thermal interface materials for electronic devices. International Materials Reviews, 63, 1-21. doi:10.1080/09506608.2017.1296605
43. W. Dai, L. Lv, J. Lu, H. Hou, Q. Yan, F.E. Alam, Y. Li, X. Zeng, J. Yu, Q. Wei, X. Xu, J. Wu, N. Jiang, S. Du, R. Sun, J. Xu, C. Wong, and C. Lin. (2019). A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods. ACS Nano, 13, 1547-1554. doi:10.1021/acsnano.8b07337
44. M. Loeblein, S. Tsang, M. Pawlik, E.J. Phua, H. Yong, X. Zhang, C.L. Gan, and E.H. Teo. (2017). High-density 3D-boron nitride and 3D-graphene for high-performance nano–thermal interface material. ACS Nano, 11, 2033-2044. doi:10.1021/acsnano.6b08218
45. H. Jiang, Z. Wang, H. Geng, X. Song, H. Zeng, and C. Zhi. (2017). Highly flexible and self-healable thermal interface material based on boron nitride nanosheets and a dual cross-linked hydrogel. ACS Applied Materials & Interfaces, 9, 10078-10084. doi:10.1021/acsami.6b16195
46. Y. Guangjie, L. Haohao, S. Bo, and L. Johan. (2019). Thermal interface materials based on vertically aligned carbon nanotube arrays: A review. Micro and Nanosystems, 11, 3-10. doi10.2174/1876402911666181218143608
47. M.M. Yazdiand M. Sheikhzadeh. (2014). Personal cooling garments: A review. The Journal of The Textile Institute, 105, 1231-1250. doi:10.1080/00405000.2014.895088
48. S. Sarkar and V.K. Kothari. (2014). Cooling garments-A review. Indian Journal of Fibre & Textile Research 39, 450-458.
49. Y. Song, R. Ma, L. Xu, H. Huang, D. Yan, J. Xu, G. Zhong, J. Lei, and Z. Li. (2018). Wearable polyethylene/polyamide composite fabric for passive human body cooling. ACS Applied Materials & Interfaces, 10, 41637-41644. doi:10.1021/acsami.8b14140
50. D. Barr, W. Gregson, and T. Reilly. (2010). The thermal ergonomics of firefighting reviewed. Applied Ergonomics, 41, 161-172. doi:10.1016/j.apergo.2009.07.001
51. Y. Song, Y. Li, D. Yan, J. Lei, and Z. Li. (2020). Novel passive cooling composite textile for both outdoor and indoor personal thermal management. Composites Part A: Applied Science and Manufacturing, 130, 105738. doi:10.1016/j.compositesa.2019.105738
52. M. Zhao, C. Gao, F. Wang, K. Kuklane, I. Holmér, and J. Li. (2013). A study on local cooling of garments with ventilation fans and openings placed at different torso sites. International Journal of Industrial Ergonomics, 43, 232-237. doi:10.1016/j.ergon.2013.01.001
53. T. Guo, B. Shang, B. Duan, and X. Luo. (2015). Design and testing of a liquid cooled garment for hot environments. Journal of Thermal Biology, 49-50, 47-54. doi:10.1016/j.jtherbio.2015.01.003
54. L. Jia, K. Ding, R.-J. Ma, H. Wang, W. Sun, D. Yan, B. Li, and Z. Li. (2019). Highly conductive and machine-washable textiles for efficient electromagnetic interference shielding. Advanced Materials Technologies, 4, 1800503. doi:10.1002/admt.201800503
55. B. Liu, Y. Li, T. Fei, S. Han, C. Xia, Z. Shan, and J. Jiang. (2020). Highly thermally conductive polystyrene/polypropylene/boron nitride composites with 3D segregated structure prepared by solution-mixing and hot-pressing method. Chemical Engineering Journal, 385, 123829. doi:10.1016/j.cej.2019.123829
56. W. Guo and G. Chen. (2014). Fabrication of graphene/epoxy resin composites with much enhanced thermal conductivity via ball milling technique. Journal of Applied Polymer Science, 131, 40565. doi:10.1002/app.40565
57. S.P. Damari, L. Cullari, D. Laredo, R. Nadiv, E. Ruse, R. Sripada‏, and O. Regev. (2019). Graphene and boron nitride nanoplatelets for improving vapor barrier properties in epoxy nanocomposites. Progress in Organic Coatings, 136, 105207. doi:10.1016/j.porgcoat.2019.06.053
58. I. Isarn, L. Bonnaud, L. Massagués, À. Serra, and F. Ferrando. (2019). Enhancement of thermal conductivity in epoxy coatings through the combined addition of expanded graphite and boron nitride fillers. Progress in Organic Coatings, 133, 299-308. doi:10.1016/j.porgcoat.2019.04.064
59. K. Kim, M. Kim, Y. Hwang, and J. Kim. (2014). Chemically modified boron nitride-epoxy terminated dimethylsiloxane composite for improving the thermal conductivity. Ceramics International, 40, 2047-2056. doi:10.1016/j.ceramint.2013.07.117
60. S. Ryu, K. Kim, and J. Kim. (2018). Silane surface treatment of boron nitride to improve the thermal conductivity of polyethylene naphthalate requiring high temperature molding. Polymer Composites, 39, E1692-E1700. doi:10.1002/pc.24680
61. J. Lin and Y.C. Hsu. (2009). Temperature and pH-responsive properties of poly(styrene-co-maleic anhydride)-grafting poly(oxypropylene)-amines. Journal of Colloid and Interface Science, 336, 82-89. doi:10.1016/j.jcis.2009.03.064
62. J. Lin, Y. Hsu, and K. Wei. (2007). Mechanistic aspects of clay intercalation with amphiphilic poly (styrene-co-maleic anhydride)-grafting polyamine salts. Macromolecules, 40, 1579-1584. doi:10.1021/ma062508d
63. Y. Lu, J. Cao, S. Ren, W. Gao, H. Chen, S. Chen, X. Yan, S. Xin, J. Li, and Y. Bai. (2021). Boron nitride self-assembly cladding structure promoting thermal property and dimensional stability of polymer composites. Composites Science and Technology, 201, 108536. doi:10.1016/j.compscitech.2020.108536
64. S. Sarwar, S. Park, T. Dao, M. Lee, A. Ullah, S. Hong, and C. Han. (2020). Scalable photoelectrochromic glass of high performance powered by ligand attached TiO2 photoactive layer. Solar Energy Materials and Solar Cells, 210, 110498. doi:10.1016/j.solmat.2020.110498
65. S.N. Leung. (2018). Thermally conductive polymer composites and nanocomposites: Processing-structure-property relationships. Composites Part B: Engineering, 150, 78-92. doi:10.1016/j.compositesb.2018.05.056
66. Z. Liu, J. Li, and X. Liu. (2020). Novel functionalized BN nanosheets/epoxy composites with advanced thermal conductivity and mechanical properties. ACS Applied Materials & Interfaces, 12, 6503-6515. doi:10.1021/acsami.9b21467
67. X. Cui, P. Ding, N. Zhuang, L. Shi, N. Song, and S. Tang. (2015). Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets: A morphology-promoted synergistic effect. ACS Applied Materials & Interfaces, 7, 19068-19075. doi:10.1021/acsami.5b04444
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊