|
[1] IEA. Coal 2020. IEA, Paris, https://www.iea.org/reports/coal-2020, 2020 (Accessed 12 August 2021). [2] S. Vujic, R. Sandstrom, C. Sommitsch, Mater. High Temp. 32 (2015) 607–618. [3] Y.H. Zhou, Y.C. Liu, X.S. Zhou, C.X. Liu, J.X. Yu, Y. Huang, J. Mater. Sci. Technol. 33 (2017) 1448–1456. [4] P. J. Maziasz, JOM 70 (2018) 66–75. [5] J.B. Yan, Y.F. Gu, F. Sun, Y.X. Xu, Y. Yuan, J.T. Lu, Z. Yang, Y.Y. Dang, Mater. Sci. Eng. A675 (2016) 289–298. [6] J. Suo, Z. Peng, H. Yang, G. Chai, M. Yu, Metallogr. Microstruct. Anal. 8 (2019) 281–286. [7] P. Nag, Power Plant Engineering, Tata McGraw-Hill, New Delphi 2008. [8] Z. Liu, X. Xie, The Chinese 700◦C A-USC development program. Materials for ultra- supercritical and advanced ultra-supercritical power, Plants. (2017) 715–731. [9] P. Ennis, W. Quadakkers, Int. J. Pressure Vessels Piping 84 (2007), 82-84. [10] J. Ehlers, D. J. Young, E. Smaardijk, A. Tyagi, H. Penkalla, L. Singheiser, W. Quadakkers, Corros. Sci. 48 (2006) 3428–3454. [11] P. Maziasz, I. Wright, J. Shingeldecker, T. Gibbons, R. Romanosky, in Proc. 4th Int. Conf. on Advance Materials Technology for Fossil Power Plants, ASM International, Materials Park, OH 2005, pp. 602–620. [12] D. Laverde, T. Gomez-Acebo, F. Castro, Corros. Sci. 46 (2004) 613–631.
[13] Sandvik Sanicro 25, New heat resistant steel for a usc, Sandvik Materials Technology, Sandvik Ltd. Sweden. [14] H. K. Danielsen, J. Hald, “On the nucleation and dissolution process of Z-phase Cr(V,Nb)N in martensitic 12%Cr steels”, Materials Science and Engineering: A, vol.505, pp.169-177 (2009). [15] H. Li, H. Jing, L. Xu, L. Zhao, Y. Han, “Formation mechanism of M23C6 around NbCrN and its effect on fatigue behavior for a novel 25.5Ni-23.5Cr-3W-3Cu-1.5Co alloy”, Journal of Materials Research and Technology, vol.9, pp.9746-9752 (2020) [16] F. Masuyama, “History of Power Plants and Progress in Heat Resistant Steels”, ISIJ International, Vol. 41, pp. 612-625, 2001. [17] Zhi Liu, Jian-Guo Gong, Peng Zhao, Xiao-Cheng Zhang, Fu-Zhen Xuan, “Creep-fatigue interaction and damage behavior in 9-12%Cr steel under stress-controlled cycling at elevated temperature: Effects of holding time and loading rate”, International Journal of Fatigue, vol.156, pp.106684(2022). [18] Tack Lee, Huakang Bian, Kenta Aoyagi, Haruki Ohnishi, Takehisa Hino, Yujiro Nakatani, Akihiko Chiba, “Fabricating 9–12 Cr ferritic/martensitic steels using selective electron beam melting”, Materials Letters, vol.271, pp.127747(2020). [19] Wen-Sheng Yang, Sheng-Chi Chen, Yu-Bing Pei, Rong-Zhi Chen, Han-Jie Guo, “A study into enhanced oxidation resistance and its mechanism in Cr1-xAlxN/CrN/Cr multilayer films deposited on 9– 12 % Cr heat-resistant steel”, Ceramics International, vol,47, pp.19134-19141(2021). [20] Sumanta Bagui, Kinkar Laha, Rahul Mitra, Soumitra Tarafder, “Accelerated creep behavior of Nb and Cu added 18Cr-8Ni austenitic stainless steel”, Materials Research(2018).
[21] J. Bugge, S. Kjaer, R. Blum,“High-efficiency coal-fired power plants development and perspectives”, Energy, vol.31, pp.1437-1445 (2006). [22] G. Chai, U. Forsberg, “Sanicro 25: An advanced high-strength, heat- resistant austenitic stainless steel”, Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, pp.391-421(2017). [23] X.Y. San, B. Zhang, B. Wu, X.X. Wei, E.E. Oguzie, X.L. Ma, “Investigating the effect of Cu-rich phase on the corrosion behavior of Super 304H austenitic stainless steel by TEM”, Corrosion Science, vol.130, pp.143-152 (2018). [24] Wei Limin, Hao Weixun, Cheng Yi, Tan Shuping,“Isothermal aging embrittlement in an Fe-22Cr-25Ni alloy”, Materials Science and Engineering: A, vol.737, pp.40-46(2018). [25] J.B. Vogt,“ fatigue properties of high nitrogen steels”, Journal of Materials Processing Technology, vol.117, pp.364-369(2001). [26]J.-H. Shim, E. Kozeschnik, W.-S. Jung, S.-C. Lee, D.-I. Kim, J.-Y. Suh, Y.-S. Lee, Y. W. Cho, “Numerical simulation of long-term precipitate evolution in austenitic heat-resistant steels”, Calphad, vol.34, pp.105-112 (2010). [27]Y. Zhang, H. Jing, L. Xu, L. Zhao, Y. Han, J. Liang, “Microstructure and texture study on an advanced heat-resistant alloy during creep”, Materials Characterization, vol.130, pp.156-172 (2017). [28]K. Ortrud, G. Von, “Iron-Binary Phase Diagrams-Iron-Copper", pp.31-34, Springer Science & Business Media,(1982). [29]T. Sourmail, H. K. D. H. Bhadeshia, “Microstructural evolution in two variants of NF709 at 1023 and 1073 K”, Metallurgical and Materials Transactions A, vol.36, pp.23-34 (2005). [30]P. Af, R. Pr, “Decomposition of austenite in austenitic stainless steels”, ISIJ international, vol.42, pp.325-327 (2002). [31]F. Masuyama, “History of power plants and progress in heat resistant steels”, ISIJ international, vol.41, pp.612-625 (2001). [32]Viswanathan, “Materials technology for coal-fired power plants”, Advanced Materials and Processes, vol.162, pp.73-80 (2004). [33]R. L. Plaut, C. Herrera, D. M. Escriba, P. R. Rios, A. F. Padilha, “A short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance”, Materials Research, vol.10, pp.453-460 (2007). [34]T. Sourmail, “Precipitation in creep resistant austenitic stainless steels”, Materials science and technology, vol.17, pp.1-14 (2001). [35]M. A. Tunes, G. Greaves, T. M. Kremmer, V. M. Vishnyakov, P. D. Edmondson, S. E. Donnelly, S. Pogatscher, C. G. Schön, “Thermodynamics of an austenitic stainless steel (AISI-348) under in situ TEM heavy ion irradiation”, Acta Materialia, vol.179, pp.360-371 (2019). [36]K.-S. Kim, J.-H. Kang, S.-J. Kim, “Effects of carbon and nitrogen on precipitation and tensile behavior in 15Cr-15Mn-4Ni austenitic stainless steels”, Materials Science and Engineering: A, vol.712, pp.114-121 (2018). [37]A. Ramakrishnan, G. P. Dinda, “Functionally graded metal matrix composite of Haynes 282 and SiC fabricated by laser metal deposition”, Materials & Design, vol.179, (2019). [38]L. Wei, W. Hao, Y. Cheng, S. Tan, “Isothermal aging embrittlement in an Fe-22Cr-25Ni alloy”, Materials Science and Engineering: A, vol.737, pp.40-46 (2018). [39]Y. Zhou, Y. Liu, X. Zhou, C. Liu, J. Yu, Y. Huang, H. Li, W. Li, “Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review”, Journal of Materials Science & Technology, vol.33, pp.1448-1456 (2017). [40]S. Das, M. Mukherjee, T. K. Pal, “Effect of grain boundary precipitation and δ-ferrite formation on surface defect of low nickel austenitic stainless steels”, Engineering Failure Analysis, vol.54, pp.90-102 (2015). [41] Z.Zhang,Z.Hu,H.Tu,S.Schmauder,G.Wu,“Microstructure evolution in HR3C austenitic steel during long-term creep at 650℃”, Materials Science and Engineering: A, vol.681,pp.78-84(2017). [42]X. Ye, X. Hua, Y. Wu, S. Lou, “Precipitates in coarse-grained heat-affected zone of Ni-based 718 superalloy produced by tungsten inert gas welding”, Journal of Materials Processing Technology, vol.217, pp.13-20 (2015). [43]E. Erisir, U. Prahl, W. Bleck, “Effect of precipitation on hot formability of high nitrogen steels”, Materials Science and Engineering: A, vol.528, pp.519-525 (2010). [44]W. Hui, Y. Zhang, C. Shao, S. Chen, X. Zhao, H. Dong, “Effect of Cooling Rate and Vanadium Content on the Microstructure and Hardness of Medium Carbon Forging Steel”, Journal of Materials Science & Technology, vol.32, pp.545-551 (2016). [45]W. Rainforth, M. Black, R. Higginson, E. Palmiere, C. Sellars, I. Prabst, P. Warbichler, F. Hofer, “Precipitation of NbC in a model austenitic steel”, Acta Materialia, vol.50, pp.735-747 (2002). [46]H. K. Danielsen, J. Hald, “A thermodynamic model of the Z-phase Cr(V, Nb)N”, Calphad, vol.31, pp.505-514 (2007). [47]O. P. Lezenju, “Nucleation and growth of M23C6 particles in high-chromium creep-resistant steel”, Materiali in tehnologije, vol.46, pp.633-636 (2012).
[48]H. Kwon, W. Kim, J. Kim, R. Koc, “Stability Domains of NbC and Nb(CN) During Carbothermal Reduction of Niobium Oxide”, Journal of the American Ceramic Society, vol.98, pp.315-319 (2015). [49]L. Ma, S. Hu, J. Shen, J. Han, Z. Zhu, “Effects of Cr Content on the Microstructure and Properties of 26Cr–3.5Mo–2Ni and 29Cr–3.5Mo–2Ni Super Ferritic Stainless Steels”, Journal of Materials Science & Technology, vol.32, pp.552-560 (2016). [50]X. Xiao, G. Liu, B. Hu, J. Wang, W. Ma, “Microstructure Stability of V and Ta Microalloyed 12%Cr Reduced Activation Ferrite/Martensite Steel during Long-term Aging at 650 °C”, Journal of Materials Science & Technology, vol.31, pp.311-319 (2015). [51]P. Robinson, D. Jack, “Precipitation of Z-phase in a high-nitrogen stainless steel”, Journal of Heat Treating, vol.4, pp.69-74 (1985). [52]Y. Zhou, Y. Li, Y. Liu, Q. Guo, C. Liu, L. Yu, C. Li, H. Li, “Precipitation behavior of type 347H heat-resistant austenitic steel during long-term high-temperature aging”, Journal of Materials Research, vol.30, pp.3642-3652 (2015). [53]R. Zhou, L. Zhu, Y. Liu, Z. Lu, L. Chen, X. Ma, “Microstructural evolution and the effect on hardness of Sanicro 25 welded joint base metal after creep at 973 K”, Journal of Materials Science, vol.52, pp.6161-6172 (2017). [54] M. H. Lewis, B. Hattersley, “Precipitation of M23C6 in austenitic steels”, Acta Metall, vol.13, pp.1159–1168 (1965). [55] J. Bugge, S. Kjaer, R. Blum,“High-efficiency coal-fired power plants development and perspectives”, Energy, vol.31, pp.1437-1445 (2006).
[56] A. J. Schwartz, M. Kumar, and B. L. Adams, Electron Backscatter Diffraction in Materials Science, New York: Kluwer Academic (2000). [57] W. O. Binder: ‘Symposium on sigma-phase’, 146; 1950, Cleveland,OH, ASTM. [58] D. H. Jack and K. H. Jack: J. Iron Steel Inst., 1972, 209, 790–792. [59] H. O. Andren, A. Henjered and L. Karlsson: in ‘Stainless steel 84’,91–96; 1985, London, The Institute of Metals [60] A. Strang and V. Vodarek: Mater. Sci. Technol., 1996, 12, 552–556. [61] D.A. Porter, K.E. Easterling and M.Y. Sherif: Phase Transformations in Metals and Alloys ,” Chapter 5. [62] A. A. Coelho: “TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++,” 51, 210-218
|