跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/31 16:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴慶宥
研究生(外文):DIA, CHING-YOU
論文名稱:不同鈮含量對高鉻高鎳超級不銹鋼於700℃時效處理後之顯微組織
論文名稱(外文):Different Niobium Content on the Microstructures of High Chromium-High Nickel Super Stainless Steel after Aging at 700℃
指導教授:林東毅林東毅引用關係
指導教授(外文):LIN,DONG-YI
口試委員:王星豪楊哲人楊勝閔
口試委員(外文):WANG,SING-HAOYANG, JHE-RENYANG,SHENG-MIN
口試日期:2022-07-28
學位類別:碩士
校院名稱:國立高雄大學
系所名稱:化學工程及材料工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:102
中文關鍵詞:沃斯田鐵耐熱鋼Z相析出物碳氮化物
相關次數:
  • 被引用被引用:0
  • 點閱點閱:59
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本實驗採用Fe-22Cr-25Ni-W-Co-Cu-xNb之沃斯田鐵系耐熱不銹鋼作為實驗材料,並藉由1200℃固溶化熱處理及700℃不同時效熱處理時間進行加工,對顯微組織進行觀察分析,主要關注於晶粒內及晶界上之析出物轉變現象,並進行定量化分析。
結果顯示,經700℃不同時間時效熱處理後可知,樣品隨著時效熱處理時間增加至5000 Hr,Nb-0.3之樣品平均晶粒尺寸由178.1 μm成長至241.2 μm,Nb-0.6之樣品平均晶粒尺寸由139.2 μm成長至168.3 μm,而Nb-0.9之樣品平均晶粒尺寸由133.4 μm成長至183.3 μm。而X-ray分析結果顯示不同鈮含量之Fe-22Cr-25Ni合金皆呈現γ-沃斯田鐵基地相的繞射峰,而在樣品中亦發現析出物NbN、CrNbN、M23C6之繞射峰。時效熱處理初期(10 Hr)以NbN相析出物為主,隨著熱處理時間的增加,NbN相周圍逐漸生成CrNbN相,並在其周圍析出Cr23C6相。最後藉由TEM進行析出物截面分析,得知樣品中析出物之主要相變化機制為擴散關係。

In this experiment, using Fe-22Cr-25Ni-W-Co-Cu-xNb Austenite stainless steel as sample. Analysis microstructure after solid solution in 1200℃ and aging in 700℃. Focus on the changing of precipitation inside the grains and on the grain boundaries.
As the result, knowing that after 700℃ aging in different time until 5000 hours, the average grain size of Nb-0.3 will increase from 178.1μm to 241.2μm, average grain size of Nb-0.6 will increase from 139.2μm to 168.3μm, and average grain size of Nb-0.9 will increase from 133.4μm to 183.3μm. Result from X-ray analysis shows that Fe-22Cr-25Ni with different content of Niobium all contain different peaks of γ-austenite phase. And it also shows the diffraction peaks of NbN, CrNbN and M23C6.
In early stage of aging, the main precipitation will be NbN phase. As time takes longer, CrNbN phase starts to grow around NbN phase, and Cr23C6 phase precipitate just right next to CrNbN. At last, by analysis the cross section with TEM, knowing that the main phase changing effect is diffusion.

謝誌 II
目錄 III
圖目錄 V
表目錄 X
中文摘要 XII
英文摘要 XIII
第一章 前言 1
第二章 文獻探討 3
2.1 耐熱鋼合金成分的演進 3
2.1.1 9-12%Cr之肥粒鐵與麻田散鐵系不銹鋼 5
2.1.2 高鉻沃斯田鐵系不銹鋼 (Cr:18%;Ni:8%) 6
2.1.3 高鉻高鎳沃斯田鐵系不銹鋼 (Cr: 20-25%;Ni:9-25%) 7
2.2 Fe-22Cr-25Ni系列合金之顯微組織與析出相 8
2.2.1 γ-沃斯田鐵 8
2.2.2 M23C6碳化物 10
2.2.3 MX相 12
2.2.4 Z相 13
2.3 Fe-22Cr-25Ni-Nb 合金之熱力學模擬相圖 15
2.4 Fe-22Cr-25Ni-Nb合金析出物間之相互關係 18
2.4.1 MX相-Z相間之交互關係 18
2.4.2 Z相及M23C6間之交互關係 19
2.5 擴散原理 21
第三章 實驗方法與步驟 26
3.1 實驗流程 26
3.2材料製備與熱加工 27
3.4顯微組織與結構之製備與分析 28
3.5 EBSD原理及誤差影響 31
3.6 Topas軟體之原理及優勢 34
第四章 結果 35
4.1 固溶化處理對不同鈮含量之Fe-22Cr-25Ni-W-Co-Cu-xNb合金的影響 35
4.1.1 固溶化處理對不同鈮含量之Fe-22Cr-25Ni-W-Co-Cu-xNb合金顯微組織之分析 35
4.1.2 固溶化處理對不同鈮含量之Fe-22Cr-25Ni-W-Co-Cu-xNb合金析出物定量分析 41
4.2 長時間時效熱處理對不同鈮含量之Fe-22Cr-25Ni-W-Co-Cu-xNb合金的影響 44
4.2.1 長時間時效熱處理對不同鈮含量之Fe-22Cr-25Ni-W-Co-Cu-xNb合金顯微組織之分析 44
4.2.2 長時間時效熱處理對不同鈮含量之Fe-22Cr-25Ni-W-Co-Cu-xNb合金析出物定量之分析 51
4.2.3 利用EBSD進行時效處理與析出行為之觀察與分析 65
結論 80
第五章 參考文獻 82

[1] IEA. Coal 2020. IEA, Paris, https://www.iea.org/reports/coal-2020,
2020 (Accessed 12 August 2021).
[2] S. Vujic, R. Sandstrom, C. Sommitsch, Mater. High Temp. 32 (2015)
607–618.
[3] Y.H. Zhou, Y.C. Liu, X.S. Zhou, C.X. Liu, J.X. Yu, Y. Huang, J.
Mater. Sci. Technol. 33 (2017) 1448–1456.
[4] P. J. Maziasz, JOM 70 (2018) 66–75.
[5] J.B. Yan, Y.F. Gu, F. Sun, Y.X. Xu, Y. Yuan, J.T. Lu, Z. Yang, Y.Y.
Dang, Mater. Sci. Eng. A675 (2016) 289–298.
[6] J. Suo, Z. Peng, H. Yang, G. Chai, M. Yu, Metallogr. Microstruct.
Anal. 8 (2019) 281–286.
[7] P. Nag, Power Plant Engineering, Tata McGraw-Hill, New Delphi
2008.
[8] Z. Liu, X. Xie, The Chinese 700◦C A-USC development program.
Materials for ultra- supercritical and advanced ultra-supercritical
power, Plants. (2017) 715–731.
[9] P. Ennis, W. Quadakkers, Int. J. Pressure Vessels Piping 84 (2007),
82-84.
[10] J. Ehlers, D. J. Young, E. Smaardijk, A. Tyagi, H. Penkalla, L.
Singheiser, W. Quadakkers, Corros. Sci. 48 (2006) 3428–3454.
[11] P. Maziasz, I. Wright, J. Shingeldecker, T. Gibbons, R. Romanosky,
in Proc. 4th Int. Conf. on Advance Materials Technology for Fossil
Power Plants, ASM International, Materials Park, OH 2005, pp.
602–620.
[12] D. Laverde, T. Gomez-Acebo, F. Castro, Corros. Sci. 46 (2004)
613–631.

[13] Sandvik Sanicro 25, New heat resistant steel for a usc, Sandvik
Materials Technology, Sandvik Ltd. Sweden.
[14] H. K. Danielsen, J. Hald, “On the nucleation and dissolution process
of Z-phase Cr(V,Nb)N in martensitic 12%Cr steels”, Materials
Science and Engineering: A, vol.505, pp.169-177 (2009).
[15] H. Li, H. Jing, L. Xu, L. Zhao, Y. Han, “Formation mechanism of
M23C6 around NbCrN and its effect on fatigue behavior for a novel
25.5Ni-23.5Cr-3W-3Cu-1.5Co alloy”, Journal of Materials Research
and Technology, vol.9, pp.9746-9752 (2020)
[16] F. Masuyama, “History of Power Plants and Progress in Heat Resistant
Steels”, ISIJ International, Vol. 41, pp. 612-625, 2001.
[17] Zhi Liu, Jian-Guo Gong, Peng Zhao, Xiao-Cheng Zhang, Fu-Zhen
Xuan, “Creep-fatigue interaction and damage behavior in 9-12%Cr
steel under stress-controlled cycling at elevated temperature: Effects
of holding time and loading rate”, International Journal of Fatigue,
vol.156, pp.106684(2022).
[18] Tack Lee, Huakang Bian, Kenta Aoyagi, Haruki Ohnishi, Takehisa
Hino, Yujiro Nakatani, Akihiko Chiba, “Fabricating 9–12 Cr
ferritic/martensitic steels using selective electron beam melting”,
Materials Letters, vol.271, pp.127747(2020).
[19] Wen-Sheng Yang, Sheng-Chi Chen, Yu-Bing Pei, Rong-Zhi Chen,
Han-Jie Guo, “A study into enhanced oxidation resistance and its
mechanism in Cr1-xAlxN/CrN/Cr multilayer films deposited on 9–
12 % Cr heat-resistant steel”, Ceramics International, vol,47,
pp.19134-19141(2021).
[20] Sumanta Bagui, Kinkar Laha, Rahul Mitra, Soumitra Tarafder,
“Accelerated creep behavior of Nb and Cu added 18Cr-8Ni austenitic
stainless steel”, Materials Research(2018).

[21] J. Bugge, S. Kjaer, R. Blum,“High-efficiency coal-fired power plants
development and perspectives”, Energy, vol.31, pp.1437-1445
(2006).
[22] G. Chai, U. Forsberg, “Sanicro 25: An advanced high-strength, heat-
resistant austenitic stainless steel”, Materials for Ultra-Supercritical
and Advanced Ultra-Supercritical Power Plants, pp.391-421(2017).
[23] X.Y. San, B. Zhang, B. Wu, X.X. Wei, E.E. Oguzie, X.L. Ma,
“Investigating the effect of Cu-rich phase on the corrosion behavior
of Super 304H austenitic stainless steel by TEM”, Corrosion Science,
vol.130, pp.143-152 (2018).
[24] Wei Limin, Hao Weixun, Cheng Yi, Tan Shuping,“Isothermal aging
embrittlement in an Fe-22Cr-25Ni alloy”, Materials Science and
Engineering: A, vol.737, pp.40-46(2018).
[25] J.B. Vogt,“ fatigue properties of high nitrogen steels”, Journal of
Materials Processing Technology, vol.117, pp.364-369(2001).
[26]J.-H. Shim, E. Kozeschnik, W.-S. Jung, S.-C. Lee, D.-I. Kim, J.-Y. Suh, Y.-S. Lee, Y. W. Cho, “Numerical simulation of long-term precipitate evolution in austenitic heat-resistant steels”, Calphad, vol.34, pp.105-112 (2010).
[27]Y. Zhang, H. Jing, L. Xu, L. Zhao, Y. Han, J. Liang, “Microstructure and texture study on an advanced heat-resistant alloy during creep”, Materials Characterization, vol.130, pp.156-172 (2017).
[28]K. Ortrud, G. Von, “Iron-Binary Phase Diagrams-Iron-Copper", pp.31-34, Springer Science & Business Media,(1982).
[29]T. Sourmail, H. K. D. H. Bhadeshia, “Microstructural evolution in two variants of NF709 at 1023 and 1073 K”, Metallurgical and Materials Transactions A, vol.36, pp.23-34 (2005).
[30]P. Af, R. Pr, “Decomposition of austenite in austenitic stainless steels”, ISIJ international, vol.42, pp.325-327 (2002).
[31]F. Masuyama, “History of power plants and progress in heat resistant steels”, ISIJ international, vol.41, pp.612-625 (2001).
[32]Viswanathan, “Materials technology for coal-fired power plants”, Advanced Materials and Processes, vol.162, pp.73-80 (2004).
[33]R. L. Plaut, C. Herrera, D. M. Escriba, P. R. Rios, A. F. Padilha, “A short review on wrought austenitic stainless steels at high temperatures: processing, microstructure, properties and performance”, Materials Research, vol.10, pp.453-460 (2007).
[34]T. Sourmail, “Precipitation in creep resistant austenitic stainless steels”, Materials science and technology, vol.17, pp.1-14 (2001).
[35]M. A. Tunes, G. Greaves, T. M. Kremmer, V. M. Vishnyakov, P. D. Edmondson, S. E. Donnelly, S. Pogatscher, C. G. Schön, “Thermodynamics of an austenitic stainless steel (AISI-348) under in situ TEM heavy ion irradiation”, Acta Materialia, vol.179, pp.360-371 (2019).
[36]K.-S. Kim, J.-H. Kang, S.-J. Kim, “Effects of carbon and nitrogen on precipitation and tensile behavior in 15Cr-15Mn-4Ni austenitic stainless steels”, Materials Science and Engineering: A, vol.712, pp.114-121 (2018).
[37]A. Ramakrishnan, G. P. Dinda, “Functionally graded metal matrix composite of Haynes 282 and SiC fabricated by laser metal deposition”, Materials & Design, vol.179, (2019).
[38]L. Wei, W. Hao, Y. Cheng, S. Tan, “Isothermal aging embrittlement in an Fe-22Cr-25Ni alloy”, Materials Science and Engineering: A, vol.737, pp.40-46 (2018).
[39]Y. Zhou, Y. Liu, X. Zhou, C. Liu, J. Yu, Y. Huang, H. Li, W. Li, “Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review”, Journal of Materials Science & Technology, vol.33, pp.1448-1456 (2017).
[40]S. Das, M. Mukherjee, T. K. Pal, “Effect of grain boundary precipitation and δ-ferrite formation on surface defect of low nickel austenitic stainless steels”, Engineering Failure Analysis, vol.54, pp.90-102 (2015).
[41] Z.Zhang,Z.Hu,H.Tu,S.Schmauder,G.Wu,“Microstructure evolution
in HR3C austenitic steel during long-term creep at 650℃”,
Materials Science and Engineering: A, vol.681,pp.78-84(2017).
[42]X. Ye, X. Hua, Y. Wu, S. Lou, “Precipitates in coarse-grained heat-affected zone of Ni-based 718 superalloy produced by tungsten inert gas welding”, Journal of Materials Processing Technology, vol.217, pp.13-20 (2015).
[43]E. Erisir, U. Prahl, W. Bleck, “Effect of precipitation on hot formability of high nitrogen steels”, Materials Science and Engineering: A, vol.528, pp.519-525 (2010).
[44]W. Hui, Y. Zhang, C. Shao, S. Chen, X. Zhao, H. Dong, “Effect of Cooling Rate and Vanadium Content on the Microstructure and Hardness of Medium Carbon Forging Steel”, Journal of Materials Science & Technology, vol.32, pp.545-551 (2016).
[45]W. Rainforth, M. Black, R. Higginson, E. Palmiere, C. Sellars, I. Prabst, P. Warbichler, F. Hofer, “Precipitation of NbC in a model austenitic steel”, Acta Materialia, vol.50, pp.735-747 (2002).
[46]H. K. Danielsen, J. Hald, “A thermodynamic model of the Z-phase Cr(V, Nb)N”, Calphad, vol.31, pp.505-514 (2007).
[47]O. P. Lezenju, “Nucleation and growth of M23C6 particles in high-chromium creep-resistant steel”, Materiali in tehnologije, vol.46, pp.633-636 (2012).


[48]H. Kwon, W. Kim, J. Kim, R. Koc, “Stability Domains of NbC and Nb(CN) During Carbothermal Reduction of Niobium Oxide”, Journal of the American Ceramic Society, vol.98, pp.315-319 (2015).
[49]L. Ma, S. Hu, J. Shen, J. Han, Z. Zhu, “Effects of Cr Content on the Microstructure and Properties of 26Cr–3.5Mo–2Ni and 29Cr–3.5Mo–2Ni Super Ferritic Stainless Steels”, Journal of Materials Science & Technology, vol.32, pp.552-560 (2016).
[50]X. Xiao, G. Liu, B. Hu, J. Wang, W. Ma, “Microstructure Stability of V and Ta Microalloyed 12%Cr Reduced Activation Ferrite/Martensite Steel during Long-term Aging at 650 °C”, Journal of Materials Science & Technology, vol.31, pp.311-319 (2015).
[51]P. Robinson, D. Jack, “Precipitation of Z-phase in a high-nitrogen stainless steel”, Journal of Heat Treating, vol.4, pp.69-74 (1985).
[52]Y. Zhou, Y. Li, Y. Liu, Q. Guo, C. Liu, L. Yu, C. Li, H. Li,
“Precipitation behavior of type 347H heat-resistant austenitic steel during long-term high-temperature aging”, Journal of Materials Research, vol.30, pp.3642-3652 (2015).
[53]R. Zhou, L. Zhu, Y. Liu, Z. Lu, L. Chen, X. Ma, “Microstructural evolution and the effect on hardness of Sanicro 25 welded joint base metal after creep at 973 K”, Journal of Materials Science, vol.52, pp.6161-6172 (2017).
[54] M. H. Lewis, B. Hattersley, “Precipitation of M23C6 in austenitic steels”, Acta Metall, vol.13, pp.1159–1168 (1965).
[55] J. Bugge, S. Kjaer, R. Blum,“High-efficiency coal-fired power plants development and perspectives”, Energy, vol.31, pp.1437-1445 (2006).

[56] A. J. Schwartz, M. Kumar, and B. L. Adams, Electron Backscatter
Diffraction in Materials Science, New York: Kluwer Academic
(2000).
[57] W. O. Binder: ‘Symposium on sigma-phase’, 146; 1950,
Cleveland,OH, ASTM.
[58] D. H. Jack and K. H. Jack: J. Iron Steel Inst., 1972, 209, 790–792. [59] H. O. Andren, A. Henjered and L. Karlsson: in ‘Stainless steel
84’,91–96; 1985, London, The Institute of Metals
[60] A. Strang and V. Vodarek: Mater. Sci. Technol., 1996, 12, 552–556.
[61] D.A. Porter, K.E. Easterling and M.Y. Sherif: Phase Transformations
in Metals and Alloys ,” Chapter 5.
[62] A. A. Coelho: “TOPAS and TOPAS-Academic: an optimization
program integrating computer algebra and crystallographic objects
written in C++,” 51, 210-218

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊